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INTRODUCTION
Distal radius fractures (DRFs) are the most common 

upper extremity (UE) fracture, and the overall incidence is 
increasing worldwide.1 Deciding on appropriate treatment 
after DRF remains a challenge, with multiple high-quality 
studies providing incongruous results that may indicate a 
lack of adequate patient-specific granularity in treatment 
decision-making.2–5 Although there are several outcome 

measures, including strength/range of motion testing, 
patient-reported outcomes (PROs), and motor testing, 
they ultimately all fall short in accurately describing func-
tional use of the UE.6,7 Accelerometry analysis is an appeal-
ing alternative to better characterize UE use in daily living, 
but previous studies have failed to validate it as a reliable 
tool for differentiating functional versus nonfunctional use 
of the UE.8–10 We describe our use of accelerometry analysis 
with machine learning (ML) algorithms to reliably track 
UE functional movements in DRF patients.

PATIENTS AND METHODS
This study was conducted between December 2020 

and October 2021. Institutional review board approval 
was obtained. Patients with a DRF who underwent open 
reduction and internal fixation (ORIF) by hand surgeons 
in a regional group of tertiary care centers were asked to 
participate in the study. Patients were excluded if they had 
a baseline deficit in activities of daily living before DRF, 
history of abnormal bilateral UE function before DRF, or 
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Summary: Current outcome measures, including strength/range of motion test-
ing, patient-reported outcomes (PROs), and motor skill testing, may provide 
inadequate granularity in reflecting functional upper extremity (UE) use after 
distal radius fracture (DRF) repair. Accelerometry analysis also has shortcomings, 
namely, an inability to differentiate functional versus nonfunctional movements. 
The objective of this study was to evaluate the accuracy of machine learning (ML) 
analyses in capturing UE functional movements based on accelerometry data for 
patients after DRF repair. In this prospective study, six patients were enrolled 2–6 
weeks after DRF open reduction and internal fixation (ORIF). They all performed 
standardized activities while wearing a wrist accelerometer, and the data were ana-
lyzed by an ML algorithm. These activities were also videotaped and evaluated by 
visual inspection. Our novel ML algorithm was able to predict from accelerom-
etry data whether the limb was performing a movement rated as functional, with 
accuracy of 90.4% ± 3.6% for within-subject modeling and 79.8% ± 8.9% accuracy 
for between-subject modeling. The application of ML algorithms to accelerometry 
data allowed for capture of functional UE activity in patients after DRF open reduc-
tion and internal fixation and accurately predicts functional UE use. Such analyses 
could improve our understanding of recovery and enhance routine postoperative 
rehabilitation in DRF patients. (Plast Reconstr Surg Glob Open 2022;10:e4472; doi: 
10.1097/GOX.0000000000004472; Published online 18 August 2022.)
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conditions that would impact their ability to ambulate or 
use their UE. Written informed consent was obtained.

Patients were asked to complete various PROs, includ-
ing Michigan Hand questionnaire, Activity Card Sort Test, 
PROMIS UE short form 7a, Wong-Baker-faces pain scale, 
patient perception of change, and Simple Hand Score. 
Patients donned wrist accelerometers and performed an 
activity script of unstructured activities, such as laundry 
and shopping, while being videotaped in a supervised 
setting to simulate a typical home environment. Patients 
were counseled to perform activities as they would nor-
mally in an unsupervised setting.

Data Analysis
A full description of the approach has been reported 

elsewhere.10 Briefly, each frame of the video was annotated 
by humans into functional and nonfunctional categories, 
and these ground truth labels were transferred to accel-
erometry data. We then trained a random forest classifier, 
an ensemble ML algorithm to classify data, on the acceler-
ometry data. For the intrasubject models, stratified fivefold 
cross validation was used and reports intrasubject accuracy. 
For the intersubject models, leave-one-out cross validation 
was used since it is approximately unbiased and the sample 
size was small; it reports intersubject accuracy. Correlations 
between percent functional use from video versus from ML 
and between percent functional use and PRO data were ana-
lyzed using Pearson correlation coefficient.

RESULTS
A total of six patients with DRF who underwent ORIF 

completed functional testing and completed PROs 
4–8 weeks following surgery. The mean patient age was 
45.2 ± 8.2 years. All six patients sustained dorsally angu-
lated DRFs. Two underwent concomitant carpal tunnel 
release and one underwent concomitant distal ulnar 
ORIF. Five patients were internally fixed with a volar lock-
ing plate, and one was fixed with a dorsal plate. On aver-
age, 19.5 days elapsed from surgery to therapy initiation 
and 34.2 days elapsed from surgery to study visitation.

The average functional use of the impaired UE deter-
mined via video analysis was 65.4% ± 17.9% (Table  1). 
Predicted functional use from the stratified fivefold cross-
validation algorithm was 68.7% ± 21.5% for intrasubject 
modeling and 88.3% ± 4.8% for intersubject modeling 
from the leave-one-out cross-validation algorithm (Fig. 1). 
The average accuracy of the new adjunct ML algorithms 
in predicting functional use within and between DRF 
patients was 90.4% ± 3.6% and 79.8% ± 8.9%, respectively. 

The average correlation between functional use and PROs 
was 0.58 ± 0.19 (Table 2; Fig. 2). Correlation between intra-
subject predictions and proportion of functional use from 
video analysis was 0.994.

DISCUSSION
Our pilot study demonstrates an innovative ML algo-

rithm for accelerometry analysis. This approach aims to 
reliably obtain functional data regarding UE use using 
data science enhanced accelerometry. Our preliminary 
results suggest that ML algorithms of accelerometry analy-
sis can accurately predict functional UE use in patients 
after DRF ORIF.

According to the literature, many contemporary out-
come measures, such as PRO scores, strength/range of 
motion testing, and motor testing, do not provide insight 
into functional use of the UE in DRF patients.6,9,10 PROs 
have become the central focus of outcome studies across 
a variety of specialties and conditions; however, especially 
in hand surgery, the available instruments are all lim-
ited by some combination of ceiling/floor effects, lack 
of granularity, inconsistent or unreliable completion, 
and others that limit accuracy especially in differentiat-
ing between more subtle variations.6,11–13 Accelerometry 
was introduced to better characterize unsupervised 
functional outcomes, although, in silo, accelerometry 
is unable to differentiate functional movements from 
nonfunctional ones. The optimization of accelerometry 
analysis via data science enhancement has been previ-
ously conducted to evaluate functional use of the UE 

Table 1. Intrasubject and Intersubject Modeling of Functional Use

 
Percentage of Functional Use from  

Video Analysis 

Intrasubject Intersubject

Accuracy Predictions Accuracy Predictions 

Subject 1 0.344 0.891 0.295 0.644 0.850
Subject 2 0.624 0.890 0.665 0.768 0.845
Subject 3 0.679 0.864 0.745 0.779 0.862
Subject 4 0.725 0.889 0.788 0.847 0.921
Subject 5 0.656 0.923 0.692 0.868 0.963
Subject 6 0.894 0.968 0.939 0.884 0.857

Takeaways
Question: Do ML algorithms reliably capture functional 
upper extremity use data from accelerometry analysis in 
DRF patients following surgery?

Findings: Six patients treated surgically for DRF donned 
a wrist accelerometer, and the data were analyzed by ML 
algorithms. Our novel ML algorithm predicted from 
accelerometry data whether the limb was performing a 
movement rated as functional, with accuracy of 90.4% ± 
3.6% for within-subject modeling and 79.8% ± 8.9% accu-
racy for between-subject modeling.

Meaning: Using ML algorithms to analyze accelerometry 
data helps to more accurately capture functional upper 
extremity activity in DRF patients following surgery, which 
can provide insight into optimizing postoperative reha-
bilitation with patient-specific granularity.
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in stroke patients.10 In amputees, ML models applied to 
inertial wrist-worn sensors were shown to reliably sepa-
rate functional movement from walking to greater than 
95% accuracy for intrasubject modeling and greater 
than 80% accuracy for intersubject modeling, highlight-
ing real-world application of these models for clinical 

rehabilitation.14 Our application of ML algorithms of 
accelerometry data was able to predict with an accuracy 
of 90.4% ± 3.6% in within-subject modeling and 79.8% ± 
8.9% in between-subject modeling compared with video 
analysis of functional use, similar to what has been previ-
ously described in other patient populations.

Fig. 1. association between functional use by video analysis and functional use by machine learning.

Table 2. PRO Scores and Correlation with Functional Use of UE

Participant 
Michigan Hand  
Questionnaire ACS Test 

PROMIS  
UE Score 

Simple  
Hand Score 

Patient Perception  
of Change 

%Functional 
Use 

Subject 1 39.58 28 25 20 80 0.343918
Subject 2 35.41 29.5 25 30 64 0.62412
Subject 3 37.5 28.5 23.9 25 75 0.678797
Subject 4 45.83 33.5 23.9 40 79 0.725437
Subject 5 41.67 45 26.1 40 69 0.655685
Subject 6 47.9 34 33.9 60 65 0.894273
The average correlation between PROs and %functional use was 0.578. Michigan Hand questionnaire is a self-reported, hand-specific outcome measure to evaluate 
overall hand function, ADL, pain, and work performance. ACS is a self-reported, activity participation outcome measure that evaluates activity in four domains. 
PROMIS-UE Score is a self-reported UE function outcome measure that evaluates participants’ ability to perform activities that involve the UE. Simple hand score 
is a self-reported PRO in which patients rate hand function on a scale from 0 to 100. Patient perception of change is a patient-reported outcome of UE recovery in 
which patients use a 7-point Likert scale to rate the functional status of their affected arm.
ACS, Activity Card Sort Test; ADL, activities of daily living.

Fig. 2. association between functional use by video analysis and the simple hand PRo measure. The 
simple hand score is a self-reported PRo in which patients rate hand function on a scale from 0 to 100.
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Our application of ML algorithms to accelerometry 
analysis yielded accurate predictions when compared with 
video analysis. Nevertheless, we acknowledge the limitations 
of our study, especially in the setting of a small sample size, 
no controls, and with tasks performed under observation 
and not at home. As is usually the case, especially with early 
pilot testing, performance of intrasubject is better than that 
of intersubject; however, with additional data and refine-
ment, we believe that this gap will narrow substantially.

CONCLUSIONS
Our application of ML algorithms to accelerometry 

analysis was able to reliably capture functional UE use in 
DRF patients after ORIF when compared with video analy-
sis. With refinement and more robust testing, this novel 
data science enhancement to accelerometry analysis can 
be implemented as a component of postoperative evalua-
tion of patients with DRF to better understand and track 
their progress when in unsupervised, nonclinical settings.
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