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Abstract

Antiprogestins constitute a group of compounds, developed since the early 1980s, that bind progesterone receptors with different

affinities. The first clinical uses for antiprogestins were in reproductive medicine, e.g., menstrual regulation, emergency contraception,

and termination of early pregnancies. These initial applications, however, belied the capacity for these compounds to interfere with cell

growth. Within the context of gynecological diseases, antiprogestins can block the growth of and kill gynecological-related cancer cells,

such as those originating in the breast, ovary, endometrium, and cervix. They can also interrupt the excessive growth of cells giving rise

to benign gynecological diseases such as endometriosis and leiomyomata (uterine fibroids). In this article, we present a review of the

literature providing support for the antigrowth activity that antiprogestins impose on cells in various gynecological diseases. We also

provide a summary of the cellular andmolecular mechanisms reported for these compounds that lead to cell growth inhibition and death.

The preclinical knowledge gained during the past few years provides robust evidence to encourage the use of antiprogestins in order to

alleviate the burden of gynecological diseases, either as monotherapies or as adjuvants of other therapies with the perspective of allowing

for long-term treatments with tolerable side effects. The key to the clinical success of antiprogestins in this field probably lies in selecting

those patients who will benefit from this therapy. This can be achieved by defining the genetic makeup required – within each particular

gynecological disease – for attaining an objective response to antiprogestin-driven growth inhibition therapy.
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Introduction

Antiprogestins represent a family of compounds
developed with the purpose of antagonizing the effect
of progesterone on progesterone receptors (PR). Most
derivatives are steroidal in nature and have mixed
activities on the PR, ranging from pure antagonism to
various degrees of agonistic effects contingent on the
target tissue and the intracellular environment. Owing
to these mixed activities on the PR, antiprogestins have
been comprehensively categorized as PR modulators
(PRMs). The degree of antagonistic or agonistic activity
of the PRMs seems to depend on the balance among
co-activators and co-repressors regulating the transcrip-
tional activity of the PR, the intracellular molecular
environment accounting for post-translational modifi-
cations, and the ratio of PR isoforms – i.e., PR-A vs PR-B,
with PR-B having a strong transcriptional activation
activity and PR-A being mostly transcriptionally inactive
(Chabbert-Buffet et al. 2005, Hagan et al. 2012, Hagan &
Lange 2014, Knutson & Lange 2014).
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Paradoxically, the first compound with antiprogestin
activity, originally termed RU-38486, was introduced to
the scientific community in 1981 as a potent antigluco-
corticoid agent (Philibert et al. 1981). RU-38486, or
mifepristone, is a derivative of 19-nortestosterone with
a dimethylaminophenyl moiety in position C11 that
confers antagonistic properties. Its synthesis was part of
an effort to develop an efficient antagonist against the
glucocorticoid receptors (GR), which could be used to
alleviate the consequences of excess glucocorticoid
activity in patients with hypercortisolism (Baulieu 1997).
During preclinical studies, it was rapidly discovered that
mifepristone caused termination of pregnancy (Spitz &
Bardin 1993, Baulieu 1997). This outcome was attrib-
uted to the fact that the compound was equally potent
in antagonizing PR and GR (Cadepond et al. 1997). The
lack of discrimination by mifepristone between PR and
GR was not surprising considering the similarities
between the structures of both steroid hormone
receptors (Baulieu 1991). Additionally, it has been
shown that mifepristone can also bind androgen
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receptors (ARs; Song et al. 2004), and further increase
the complexity of the intracellular biochemistry of
mifepristone; it has been recently shown that the steroid
binds not only to the ligand-binding domain favoring
repressor interaction and hindering receptor transactiva-
tion, but also to a second site representing the
coactivator-binding domain of the ancestral 3-keto-
steroid receptor, which is the ancestor of PR, GR, AR,
as well as the mineralocorticoid receptor (Colucci &
Ortlund 2013).

A large volume of studies explored the effect of
mifepristone on different aspects of the mammalian
reproductive axis. The contraceptive potential of mife-
pristone was extensively assessed in terms of its capacity
to prevent ovulation, block implantation of a fertilized
egg, and terminate early pregnancies (reviewed in
Spitz et al. (1996)). The first human trial conducted with
mifepristone in women with up to 8 weeks of amenorrhea
led to termination of pregnancy in 80% of the cases
(Herrmann et al. 1982). Shortly thereafter, it was shown
that the efficacy of mifepristone abrogating early
pregnancies by blocking PR was significantly enhanced
when combined with a prostaglandin analog that
potentiates uterine contractions (Bygdeman & Swahn
1985). Thus, the combination of mifepristone with a
prostaglandin analog was adopted in many countries for
medical termination of pregnancies at the first trimester
(Spitz & Bardin 1993). In the USA, the combination of
mifepristone and misoprostol was approved in 2000 for
interrupting gestations of up to 49 days since the last
menstrual period (Ellertson & Waldman 2001).

The antiglucocorticoid effect of mifepristone has been
amply documented (reviewed in Agarwal (1996)), with
the main application being the mitigation of the clinical
manifestations of endogenous hypercortisolism (Nieman
et al. 1985). After a successful multicenter trial (Fleseriu
et al. 2012), mifepristone was approved in 2012 by the
US Food and Drug Administration (http://www.fda.
gov/newsevents/newsroom/pressannouncements/ucm
292462.htm) to control hyperglycemia in patients with
endogenous Cushing’s syndrome associated with type 2
diabetes. As mifepristone does not differentiate between
PR and GR, a series of efforts were conducted to develop
compounds capable of modulating either receptor with-
out impinging on the other. The group of PRMs with a
potent antiprogesterone activity and a minimal antiglu-
cocorticoid effect includes ZK-98299 (onapristone),
ZK-230211 (lonaprisan), CDB-2914 (ulipristal),
CDB-4124 (telapristone), ORG-31710, ORG-33628,
and J-867 (asoprisnil) (reviewed in Chabbert-Buffet et al.
(2005), Spitz (2006), and Lanari et al. (2012)), and, more
recently, a 17-fluorinated steroid termed EC304 (Nickisch
et al. 2013). Conversely, compounds with more
antiglucocorticoid properties than antiprogesterone
properties are also under development. They are termed
GR modulators, are steroidal or non-steroidal in nature
(Ray et al. 2007, Clark 2008, Belanoff et al. 2010,
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De Bosscher 2010, Gross et al. 2010), and are geared
toward treating Cushing’s syndrome as well as other
conditions in which excess GR activity needs to be
depressed without affecting PR-mediated physiological
processes. Examples of such conditions are psychotic
depression (reviewed in Benagiano et al. (2008)), weight
gain (Belanoff et al. 2010), and glaucoma associated with
high-dose glucocorticoid therapy (reviewed in Kersey &
Broadway (2006)).

Herein, we review the current evidence supporting the
efficacy of antiprogestins in attenuating the proliferation
of cells encompassing a spectrum of benign and
malignant gynecological diseases characterized by
excessive cell division. We further describe the molecu-
lar mechanisms demonstrated and proposed that explain
the growth-inhibitory properties of antiprogestins in cells
of different genetic backgrounds and tissues of origin.
The antiproliferative properties of antiprogestins are not
always justified by a mere blockage by the compounds
of the transactivation activity of the PR. Consequently,
the term ‘antiprogestins,’ when stating the antigrowth
activity of the compounds, is misleading. Yet, we have
used the term to permit the allocation, under a unique
chemical framework, of all compounds mentioned in
this article. Timely, when the mechanisms driving the
antigrowth effect of these synthetic steroid derivatives
become widely understood, a better descriptor to
represent this family of compounds will certainly arise.
Breast cancer

Breast cancer is second only to lung cancer as the most
common cause of cancer-related death in women (Siegel
et al. 2013). Estrogen and progesterone have both been
involved in breast carcinogenesis and progression
(reviewed in Knutson & Lange (2014)). While antiestro-
gen therapy reached clinical application with the use of
blockers of estrogen receptors (ER; e.g., tamoxifen and
fulvestrant) or inhibitors of estradiol (E2) synthesis known
as aromatase inhibitors (exemestane, anastrozole, and
letrozole) (reviewed in Journe et al. (2008)), the
antagonism of progesterone activity has not yet reached
clinical practice. Nevertheless, evidence accumulated
over the past 20 years suggests that antiprogesterone
therapy for breast cancer has a large potential to be soon
included within the armamentarium of approaches to
treat breast cancer (reviewed in Horwitz (1992), Lanari
et al. (2012), Giulianelli et al. (2013), Knutson & Lange
(2014), and Muti (2014)). For instance, as monotherapy,
mifepristone was demonstrated to block the proliferation
of breast cancer cells carrying PR and ER, such as T-47D
and MCF-7 cells in the absence or presence of estrogens
(Bardon et al. 1985, Horwitz 1985, Gill et al. 1987,
Musgrove et al. 1997). However, because mifepristone
also blocked the proliferation of ER-negative/PR-
negative MDA-MB-231 breast cancer cells (Liang et al.
2003), the relevance of PR as a mediator of the
www.reproduction-online.org
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antiproliferative action of mifepristone in breast cancer
cells is controversial. Contrasting this large volume
of evidence for an inhibitory effect of mifepristone
on breast cancer cell growth, growth stimulation by
mifepristone in T-47D and MCF-7 cells was also
timely reported (Bowden et al. 1989, Jeng et al. 1993),
suggesting that the concentration of mifepristone used,
and the presence or absence of progesterone and E2 in
the culture media to name some variables, may justify
such different outcomes in otherwise similar cell lines.

Mifepristone also had an additive interaction
leading to the death of MCF-7 cancer cells when
coupled with antiestrogens such as tamoxifen (El Etreby
et al. 1998) or 4-hydroxytamoxifen (Schoenlein et al.
2007); it also inhibited the growth of and killed
MCF-7 cells in combination with the Chk1 inhibitor,
7-hydroxystaurosporine (Yokoyama et al. 2000), and
the aromatase inhibitor anastrozole (Gil et al. 2013).
Mifepristone also interrupted the proliferation of MCF-7
sublines that were made resistant to 4-hydroxytamoxifen
(Gaddy et al. 2004). More recently, mifepristone pre-
treatment has been reported to potentiate the toxicity
of paclitaxel in mammary fat pad xenografts of
ER-negative/PR-negative/GR-positive MDA-MB-231
cells (Skor et al. 2013).

Growth inhibition of PR-positive T-47D cells was
reported with other antiprogestins, such as onapristone
(Classen et al. 1993), ORG-31710 (Musgrove et al. 1997),
lonaprisan (Afhuppe et al. 2010, Busia et al. 2011),
telapristone (Gupta et al. 2013a), and EC304 (Nickisch
et al. 2013).

Valuable information on the anti-breast-cancer effect
of antiprogestins was generated from mouse models of
breast cancer. For instance, mice genetically engineered
to lack expression of p53 and BRCA1 tumor suppressors
in their mammary glands develop spontaneous aggres-
sive PR-overexpressing breast tumors, which can be
prevented by the administration of mifepristone (Poole
et al. 2006). Breast tumors induced by continuous
administration of medroxyprogesterone acetate (MPA)
in BALB/c mice and expressing a high PR-A to PR-B
ratio respond to antiprogestins mifepristone, onapris-
tone, or lonaprisan with inhibition of tumor growth
and apoptosis (Montecchia et al. 1999, Helguero et al.
2003, Simian et al. 2006, Wargon et al. 2009). The
response of these tumors to mifepristone is associated
with an increase in tumor stroma and microvasculature,
which allows better access to other chemotherapeutic
agents such as paclitaxel or doxorubicin when provided
in nanoparticle formulations, leading to a better
therapeutic outcome (i.e., further growth inhibition
than that caused by paclitaxel or doxorubicin alone)
(Sequeira et al. 2014). In mammary gland tumors
induced in rats by 7,12-dimethylbenzanthracene
(DMBA), concomitant administration of mifepristone
significantly delayed tumor development (Bakker et al.
1987), whereas administration of mifepristone to
www.reproduction-online.org
animals with pre-established DMBA-induced tumors
abrogated tumor progression. This latter effect was
additive to tamoxifen, leading to further growth inhi-
bition (Bakker et al. 1989). DMBA-induced mammary
tumors in rats were also significantly inhibited by
onapristone, ulipristal, and ORG-31710 (Michna et al.
1989, Kloosterboer et al. 2000, Wiehle et al. 2007).

In patients with breast cancer, clinical trials with
antiprogestins have had only partial responses. In one
study, 200 mg mifepristone given daily for 3 months in
tamoxifen-resistant breast tumors generated a positive
response in 18% of patients (Romieu et al. 1987). In
another study in patients with metastatic breast cancer
resistant to tamoxifen, daily doses of 200–400 mg
mifepristone led to an objective response in seven out
of 11 patients (Klijn et al. 1989), whereas in another
study with 28 patients treated with daily doses of 200 mg
mifepristone, only three patients showed a response
(Perrault et al. 1996). In a clinical trial using onapristone,
75% of patients responded to the treatment with an
objective response; yet, the compound prompted liver
toxicity, which discouraged further use (Robertson et al.
1999). A recent clinical trial with lonaprisan has
reported limited efficacy in advanced stage IV, PR-posi-
tive, HER2-negative, metastatic breast cancer (Jonat et al.
2013). In summary, the apparent lack of robust objective
responses reported in patients with breast cancer when
receiving antiprogestins has been attributed to the lack of
patient stratification according to their molecular profile,
in particular the proportion of expression of PR-A relative
to PR-B (Lanari et al. 2012, Giulianelli et al. 2013),
and the lack of assessment of PR target gene signatures
in responders vs non-responders (Hagan & Lange 2014,
Knutson & Lange 2014). As breast cancer comprises
four major subtypes with specific molecular drivers
and histological characteristics (Cancer Genome Atlas
Network 2012), new clinical trials should be tailored only
to select groups of patients whose tumor genetics and
PR target gene signatures make them suitable candidates
to likely benefit from antiprogesterone therapy.

In terms of breast cancer prevention, antiprogestin
therapy also has potential application. For instance,
when antiprogestin mifepristone was provided to pre-
menopausal women before a scheduled hysterectomy
as a consequence of a leiomyoma, needle biopsies
from mammary tissue clearly demonstrated a reduction
in epithelial cell proliferation, suggesting the chemo-
preventive nature of the drug (Engman et al. 2008).
Ovarian cancer

Ovarian cancer is the most lethal disease of the female
reproductive track. Its 5-year survival below 50% has not
changed for the past 30 years, indicating the need for
new therapeutic interventions (reviewed in Vaughan
et al. (2011), Modugno et al. (2012), Romero & Bast
(2012), and Coleman et al. (2013)). The first reported
Reproduction (2015) 149 R15–R33
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effect of antiprogestins in ovarian cancer was in 1996
when it was demonstrated that mifepristone efficiently
blocked the growth of A2780 and OVCAR-3 cells in vitro
(Rose & Barnea 1996). Thereafter, it was reported that
mifepristone potentiated the toxicity of cisplatin against
COC1 ovarian cancer cells (Qin & Wang 2002, Li et al.
2003), and that onapristone and mifepristone inhibited
cell growth and the synthesis of DNA in ML5 and ML10
human ovarian cystadenoma cells, as well as in HOC-7
and OVCAR-3 ovarian cancer cells (Zhou et al. 2002).
The OVCAR-3 cell growth block by mifepristone was
further confirmed in 2006 (Fauvet et al. 2006). Using
various ovarian cancer cell lines of different genetic
backgrounds, our laboratory additionally found that
mifepristone blocked cell growth in vitro and demon-
strated its efficacy in vivo at doses of 0.5 or 1 mg/day in
mice carrying ovarian cancer xenografts (Goyeneche
et al. 2007). We observed that when used at concen-
trations likely achievable in the clinic (i.e., pharma-
cological), mifepristone, ulipristal, and ORG-31710 all
had cytostatic effects, with cells returning to the cell
cycle upon drug removal; however, if used at supra-
pharmacological doses, the antiprogestins, instead,
killed the cells (Goyeneche et al. 2007, 2012). We
further reported that adding antiprogestin mifepristone
following a platinum agent potentiates platinum lethality
and improves overall treatment efficacy (Freeburg et al.
2009a), and that resistance to platinum and/or paclitaxel
does not affect the sensitivity of ovarian cancer cells to
antiprogestin-mediated cytotoxicity (Freeburg et al.
2009b, Gamarra-Luques et al. 2014). The repopulation
of ovarian cancer cells that escaped platinum or
platinum/paclitaxel therapy was also blocked by chronic
presence of antiprogestin mifepristone (Freeburg et al.
2009a, Gamarra-Luques et al. 2012), providing evidence
for a long-term use of antiprogestins as antirepopulation
therapy from a minority of cells that escaped otherwise
effective chemotherapies (Telleria 2013).

Despite the evidence of antiprogestins being efficient
in blocking ovarian cancer cell growth, clinical studies
on the subject have been very limited. In 2000, in a
phase II clinical trial, 34 patients with recurrent ovarian
cancer no longer responsive to cisplatin–paclitaxel
chemotherapy were treated daily with 200 mg oral
mifepristone in courses of 28 days. Nine patients had a
response to mifepristone showing a decrease in tumor
size by at least 50%, or a 50% decline in antigen CA-125
used to assess disease recurrence (Rocereto et al. 2000).
However, a second phase II clinical trial including 24
patients with advanced ovarian cancer that recurred
from standard chemotherapy within 6 months showed
that only one patient had an objective response to a
28-day course of 200 mg mifepristone given daily
(Rocereto et al. 2010). This clinical evidence is highly
limited in terms of the number of patients, the lack of
predictive biomarkers of response, and the fact that the
studies consider ovarian cancer as a single disease.
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There is growing consensus that ovarian cancer is a
very heterogeneous disease, not only from the histo-
logical standpoint, but also genetically and within their
different histological subtypes (Cancer Genome Atlas
Research Network 2011, Vaughan et al. 2011). For
instance, the value of patient stratification by disease
subtype has been recently evidenced in a study by the
Ovarian Tumor Tissue Analysis (OTTA) consortium
including almost 3000 women worldwide with invasive
epithelial ovarian cancer (Sieh et al. 2013). The study
provided a significant positive association between
expression of PR and survival advantage in patients
with high-grade serous and endometrial ovarian cancers,
but not in patients with mucinous, clear cell, or low-
grade serous ovarian carcinomas. Then, it became clear
that new clinical studies should be conducted stratifying
patients by disease subtype and PR expression status,
with the overall goal of defining the genetic backgrounds
of the ovarian cancers that would likely respond to
antiprogestin therapy. Moreover, clinical studies using
antiprogestins other than mifepristone are required.
Finally, the dynamic of expression of PR in the ovarian
cancer cells and the cells encompassing the accom-
panying tumor stroma is crucially needed in order to
define whether direct or paracrine cancer–stroma
interactions explain the antiproliferative actions of
antiprogestins.
Endometrial cancer

Endometrial carcinoma is a frequent malignancy of the
female reproductive track (reviewed in SGO Clinical
Practice Endometrial Cancer Working Group et al.
(2014a,b)). Information on the putative therapeutic
benefit of antiprogestins for these patients, however, is
scarce. Mifepristone was shown to bind estrogen-
independent PR in the human endometrial cell line
IK-90 and prevent the growth inhibition induced by the
synthetic progestin R5020 (Terakawa et al. 1988). By
contrast, mifepristone blocked growth and promoted cell
death in EM-42 endometrial cells established from a
benign endometrium (Han & Sidell 2003). Similarly, in
the well-differentiated human endometrial adenocarci-
noma Ishikawa cells, which express a functional PR
(Lessey et al. 1996), mifepristone blocked their growth
(Li et al. 2005, Navo et al. 2008, Moe et al. 2009).
Clinically achievable doses of mifepristone also inhib-
ited the growth of three endometrial cancer cell lines
(Hec-1A, LEK, and RL95-2), while inducing a decline in
the abundance of GR (Schneider et al. 1998).
Cervical cancer

Cervical cancer is highly frequent worldwide and its
development almost always is associated with previous
infection with human papillomavirus (HPV; reviewed in
Haie-Meder et al. (2010), and Meijer & Snijders (2014)).
www.reproduction-online.org
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In the cervical adenocarcinoma cell line C4-1, mifepris-
tone sensitized the cells to the toxicity of gamma
irradiation by reversing dexamethasone-induced HPV
E6/E7 mRNA expression, p53 inhibition, and survival
effects, all opposing the deleterious effects of radiation
therapy (Kamradt et al. 2000). Mifepristone also blocked
the growth of HeLa cervical adenocarcinoma cells
in vitro and in vivo, synergizing with cisplatin-induced
toxicity (Jurado et al. 2009). More recently, a reversal
of the resistance to mitomycin-C by mifepristone has
been described in HeLa cells (Chen et al. 2014).
Leiomyoma

Uterine leiomyoma, also known as uterine fibroid,
represents a benign tumor of the smooth muscle cells
of the myometrium that relies on estrogen and
progesterone to grow (Murphy & Castellano 1994,
Shimomura et al. 1998, Yoshida et al. 2010). The
utilization of PRMs to interrupt leiomyoma growth has
been quite successful. For instance, patients receiving
25 or 50 mg mifepristone daily for 3 months exhibited
a decrease in the size of the leiomyomata by 50% after
concluding the treatment and without displaying any
significant side effect (Murphy et al. 1993, 1995).
Mifepristone reduced growth and ameliorated
the symptoms in premenopausal women with large
leiomyomata (Eisinger et al. 2003). Women with
leiomyoma, who were treated with low doses of
mifepristone for 6 months, showed a significant
reduction in their uterine volume, bleeding, and pain,
which resulted in an increase in their overall quality of
life (Eisinger et al. 2009). In another study, 30 women
with uterine leiomyomata scheduled for surgery
received 50 mg mifepristone for 3 months before the
operation and showed a significant reduction in the
leiomyoma volume concurrently with reduced bleeding
(Engman et al. 2009). A meta-analysis of 11 clinical
trials performed using treatment with mifepristone
ranging from 2.5 to 25 mg/day for 3–6 months
concluded that the antiprogestin was globally effective,
resulting in the decline of the volume of the uterus and
the leiomyoma, as well as the alleviation of leiomyoma
symptoms, including blood loss, pelvic pain, and
pressure, without any evidence of causing endometrial
hyperplasia or atypia (Shen et al. 2013). Finally, a
phase II clinical trial performed in women with
symptomatic uterine leiomyomata reported that vaginal
mifepristone given at a dose of 10 mg daily for 3 months
was a safe and effective way of controlling bleeding
and reducing the volume of the fibroids (Yerushalmi
et al. 2014).

Ulipristal also was shown to be effective in reducing
the number of viable primary cultured leiomyoma cells
in a dose-dependent manner (Xu et al. 2005). The
reduced antiglucocorticoid effect of ulipristal, when
compared with mifepristone, might be beneficial for
www.reproduction-online.org
long-term treatment schedules. For instance, in a
randomized controlled trial, administration of ulipristal
for 3 months led to a reduction in the volume of the
tumors and improved the quality of life without any
serious side effects; these would have included the lack
of antiglucocorticoid effects and uterine hyperplasia
observed, sometimes, as a consequence of prolonged
mifepristone activity that precludes estrogenic effects
from being counteracted by progesterone (Levens
et al. 2008). A clinical trial comparing ulipristal
given at doses of either 5 or 10 mg daily to patients
with symptomatic uterine fibroids before surgery
against a once-a-month injection of the gonado-
tropin-releasing hormone (GnRH) agonist leuprolide
acetate used as a standard of care demonstrated
similarities with the approaches in controlling uterine
bleeding, with the advantage that ulipristal-treated
patients were less likely to have hot flashes, very
commonly induced by GnRH agonists due to suppres-
sion of E2 (Donnez et al. 2012).

The antiproliferative effect of ulipristal on primary
leiomyoma cells was also mimicked by asoprisnil (Chen
et al. 2006). Both asoprisnil- and ulipristal-treated
primary leiomyoma cells produced less extracellular
matrix proteins, usually responsible for the fibrotic
nature of the tumor, when compared with matched
normal endometrial cells (Yoshida et al. 2010). A
controlled clinical trial demonstrated that asoprisnil
reduced the volume of leiomyoma, suppressed
uterine bleeding, and improved patient’s quality of
life without causing hypoestrogenism (Chwalisz et al.
2007) and the consequent bone loss associated
with other non-surgical treatment(s) that blocks the
pituitary–ovarian axis (e.g., usage of GnRH agonists).
Telapristone has also shown promise in inhibiting cell
proliferation in primary cultures of uterine leiomyoma
smooth muscle cells isolated from premenopausal
women undergoing hysterectomy due to leiomyoma-
associated symptomatology; this effect occurred without
affecting the growth of control myometrial smooth
muscle cells collected from adjacent corresponding
uteri (Luo et al. 2010).
Leiomyosarcoma

Leiomyosarcoma is a rare malignant tumor from
smooth muscle cells most commonly originating in the
uterus. Some sporadic cases of low-grade uterine
leiomyosarcoma have been reported as responding to
mifepristone therapy. For instance, daily administration
of 200 mg mifepristone in a patient with low-grade
leiomyosarcoma with osteolytic metastasis showed a
5-year regression of the bone tumors (Baulieu 1997).
Another patient with PR-positive, low-grade leio-
myosarcoma displayed a 3-year regression response to
50–200 mg of mifepristone daily (Koivisto-Korander
et al. 2007).
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Endometriosis

Endometriosis is a condition characterized by the
presence of endometrial glands and stroma outside the
uterus. It is a common cause of infertility and affects up
to 17% of women of reproductive age (reviewed in
Giudice & Kao (2004), Hansen & Eyster (2006), and
Bernardi & Pavone (2013)). In 1991, the efficacy of
mifepristone on this disease was first explored by
administering a dose of 100 mg/day for 3 months to six
cycling women diagnosed with endometriosis. The
treatment showed improved relief of pelvic pain in all
subjects (Kettel et al. 1991). A study by the same group
confirmed the finding in another cohort of subjects
3 years later (Kettel et al. 1994), and the overall data
were timely reviewed (Murphy & Castellano 1994).
Further studies using 50 mg/day mifepristone concluded
that endometriosis regressed by half after 6 months of
treatment (Kettel et al. 1996).

In a rat model of experimental endometriosis gener-
ated by implanting endometrium into the peritoneal
cavity, animals receiving mifepristone for 8 weeks did
not show any blockage of disease progression (Tjaden
et al. 1993). Onapristone, on the other hand, when
tested in another model of surgically induced endome-
triosis in intact rats reduced the growth of endometrioid
foci by 40% without affecting the proliferation of the
eutopic endometrium (Stoeckemann et al. 1995). More
recent studies with mifepristone have shown that when
the drug was administered in slow-release pellets to rats,
it was able to slow the growth of endometrial explants
used as a model of endometriosis in vivo (Mei et al.
2010). Another recent study using a rat model of
surgically induced endometriosis has provided evidence
that ulipristal, given as oral daily doses of 0.1 mg for
2 months, reduced the size of endometrioid foci by at
least 50% and was associated with a decline in the
number of cells showing expression of the proliferation
marker Ki67 (Huniadi et al. 2013). Finally, in a study on
monkeys with surgical induction of endometriosis,
mifepristone caused thinning of the pelvic endometrioid
lesions similar to that caused by GnRH agonists, yet with
the benefit of not causing hypoestrogenism and the
consequent bone loss (Grow et al. 1996).
Mechanisms of growth inhibition driven by
antiprogestins

The molecular mechanisms triggered by antiprogestin(s)
while blocking cell growth are multiple and not yet fully
understood. In the following section, we describe the
molecules and pathways that either directly or indirectly
have been reported to be involved in antiprogestin-
induced cell growth inhibition. The section is not limited
to the gynecological diseases described previously: it
expands on mechanisms uncovered while antiprogestins
block the growth of non-gynecological-related cancer
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cells including prostate (El Etreby et al. 2000, Liang et al.
2002), meningioma (Matsuda et al. 1994, Grunberg
et al. 2006), glioblastoma (Pinski et al. 1993), osteo-
sarcoma (Tieszen et al. 2011), and gastric adenocarci-
noma (Li et al. 2004a).
Antiprogestin-induced cell cycle arrest

A large number of studies support the concept that, when
antiprogestins block cell growth, one key mechanism
involved is the arrest of the cell cycle. Such arrest mostly
occurs in the G1 phase and involves upregulation of
cyclin-dependent kinase (Cdk) inhibitors p21cip1 and/or
p27kip1 and their re-localization to the nuclear compart-
ment and inhibition of the G1/S kinase Cdk2, thus not
allowing DNA synthesis and cell division to proceed
further.

The tumor-promoting capacity of progesterone, the
role of PR, and the effect of antiprogestins on mammary
tumor development were in part drawn from a series of
studies using a mouse model in which chronic exposure
of female BALB/c mice to MPA induces ductal mammary
adenocarcinoma (reviewed in Lanari et al. (2009)).
In vivo, in these MPA-induced tumors, daily treatment
with mifepristone or onapristone led to tumor growth
retardation in association with increased expression of
p21cip1 (Peters et al. 2001). Furthermore, lung and
axillary metastases caused by the MPA-induced tumor
line termed C7-2-HI, which expresses high levels of PR
and ER, underwent complete regression when the
animals received estrogens in combination with
mifepristone; a reduction in metastatic growth was
associated with increased expression of p21cip1 and
p27kip1 (Vanzulli et al. 2005). In vitro, in two metastatic
cell lines originated from MPA-induced mouse ductal
mammary adenocarcinomas, mifepristone or onapristone
reduced the number of mitosis and cell growth, while
increasing expression of p21cip1, p27kip1, and p53
(Vanzulli et al. 2002). Concordant with these data from
mice, in DMBA-induced experimental mammary tumors
in rats, treatment with antiprogestins induced accumu-
lation of cells in the G0/G1 phase of the cell cycle with a
concomitant reduction in cells transiting the S and G2/M
phases (Michna et al. 1992). This outcome is consistent
with a phenotype of differentiation as the number of
mitotically active cells is reduced in association with a
cell phenotype resembling that of non-proliferative
secretory cells (Michna et al. 1989).

In human MCF-7 breast cancer cells, mifepristone
showed synergistic cytotoxicity with 4-hydroxytamoxifen
in association with downregulation of retinoblastoma
(Rb) tumor suppressor (Schoenlein et al. 2007). When
treated only with mifepristone, MCF-7 cells were
arrested at the G1 phase of the cell cycle (Fjelldal et al.
2010). In T-47D and BT-474 breast cancer cells,
mifepristone and ORG-31710 reduced the number of
cells transiting the S phase and increased the abundance
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of hypo-phosphorylated (inactive) Rb, thus arresting
the cells at the G1 phase of the cell cycle in association
with an increase in p21cip1 expression and reducing
cyclin E/Cdk associated kinase activity (presumably
Cdk2) (Musgrove et al. 1997). Lonaprisan, on the other
hand, also halted proliferation of T-47D breast cancer
cells blocking the S phase entry induced by E2 (Afhuppe
et al. 2010), inducing G1 cell cycle arrest, which
required the upregulation of p21cip1 triggered by
lonaprisan-bound PR to the p21cip1 promoter (Busia
et al. 2011).

Endometrial Ishikawa cancer cells treated with
mifepristone underwent cell cycle arrest with a decline
in the proportion of cells transiting G2/M and an increase
in cells in the S phase (Li et al. 2005); yet, other reports
with the same cells indicate that cell cycle arrest
occurred in G1 in a manner likely depending on the
induction of p53 (Navo et al. 2008, Moe et al. 2009).
Cell cycle arrest by mifepristone involving upregulation
of p21cip1 was also shown in Hec-1A endometrial cancer
cells (Schneider et al. 1998).

In ovarian cancer cells, mifepristone used at con-
centrations likely to be achieved in vivo induced G1 cell
cycle arrest and inhibition of synthesis of DNA as
measured by BrdU incorporation (Goyeneche et al.
2007). In agreement, inhibition of DNA synthesis as
measured by 3H-thymidine incorporation was observed
after mifepristone treatment in cultured macrophages
(Roberts et al. 1995). We also observed that mifepris-
tone-treated cells had low expression of E2F transcrip-
tion factor required for S phase transit and reduced
activity of Cdk2 required for Rb hyper-phosphorylation
and consequent activation (Goyeneche et al. 2007).
A decline in Cdk2 activity by ORG-31710 associated
with increased p21cip1 was also reported in T-47D breast
cancer cells (Musgrove et al. 1997).

Cdk2 activity is necessary to promote S phase entry
(Conradie et al. 2010). As such, Cdk2 triggers the tran-
sition in the cell cycle from G1 by stimulating histone
gene transcription (Zhao et al. 2000). To be active and
available, Cdk2 should bind to cyclin E, be allocated in
the nuclear compartment, and not be bound to the Cdk
inhibitors p21cip1 and p27kip1 (Lents et al. 2002, Brown
et al. 2004, Conradie et al. 2010). Thus, by promoting
p21cip1/p27kip1 upregulation and favoring their nuclear
localization, antiprogestins promote the decline in Cdk2
nuclear activity and, consequently, the progression of
the cell cycle. We have shown in ovarian cancer cells
that mifepristone, ORG-31710, ulipristal, telapristone,
17a-hydroxy CDB-4124, and CDB-4453 (a demethyl-
ated derivative of CDB-4124) all increase p21cip1 and
p27kip1 (Goyeneche et al. 2012, Gamarra-Luques et al.
2014). We have also established that, with a potency of
mifepristoneOORG-31710Oulipristal, these antipro-
gestins increased p21cip1 and p27kip1 levels in the
nuclear compartment while reducing cyclin E levels,
consequently leading to an abrupt reduction in the
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nuclear activity of Cdk2 (Goyeneche et al. 2007, 2012).
Reduction in the activity of Cdk2 by antiprogestins is
relevant from a therapeutic standpoint because Cdk2
is often upregulated in ovarian cancer cells (Sui et al.
2001) and has been shown to be a valuable targetable
molecule in ovarian (Etemadmoghadam et al. 2013)
and breast (Achille et al. 2012), as well as other
human cancer cells (Molenaar et al. 2009, Long et al.
2010). It is feasible that antiprogestins contribute to
the recalibration of the activity of Cdk2 to that of
normal cells.

Another cell fate phenotype that was reported to be
associated with cell cycle arrest induced by antipro-
gestins is cellular senescence. Cellular senescence is a
cell fate program described as permanent cell cycle
arrest but with a very active and unique secretion
phenotype termed senescence-associated secretory
phenotype (SASP; reviewed in Perez-Mancera et al.
(2014)). We have shown in LNCaP prostate cancer cells
that exposure to mifepristone for 3 days caused a
permanent cell cycle arrest that was not reversible
upon the removal of the drug, yet was not associated
with cell death. Instead, cells remained alive but
irreversibly arrested, expressing the senescence marker,
senescence-associated beta-galactosidase (SA-b-gal).
This phenotype was not evident, however, in other
cancer cells treated similarly, such as SKOV-3 (ovarian),
U87MG (glioblastoma), or MDA-MB-231 (breast)
(Brandhagen et al. 2013), suggesting that the senescence
program requires a particular genetic underpinning.
LNCaP cells, for instance, but not the other cells studied,
express the tumor suppressor CDKN2A (p16INK4), which
is a critical mediator of the senescence program (Alcorta
et al. 1996). Alternatively, LNCaP cells express AR
(Tieszen et al. 2011), which also bind mifepristone (Song
et al. 2004), suggesting that AR may be mediators of
mifepristone-induced senescence. Similarly, a senes-
cence-like phenotype was reported in T-47D breast
cancer cells exposed to lonaprisan (Busia et al. 2011).
These data are highly relevant as pro-senescence
therapy in cancer is undergoing intense scrutiny
(Nardella et al. 2011).
Antiprogestin-induced cell death

When antiprogestins are used at high enough concen-
trations or for prolonged periods of time, cells that
initially arrest in the cell cycle trigger their own death.
A large body of evidence indicates that antiprogestin-
induced cell death is associated with the following:
i) morphological features of apoptosis; ii) downregula-
tion of antiapoptotic Bcl2 family members (e.g. Bcl2 and
BclXL) and inhibitors of apoptotic proteins (e.g. XIAP);
iii) upregulation of pro-apoptotic Bcl2 family members
(e.g., Bax); iv) nuclear and DNA fragmentation; and
v) downstream activation of caspase 3. For instance,
in ovarian cancer, micromolar concentrations of
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mifepristone, ORG-31710, ulipristal, telapristone, 17a-
hydroxy CDB-4124, and CDB-4453 caused cell death
with morphological features of apoptosis, accumulation
of fragmented hypodiploid DNA, and activation of
the executer of apoptosis, caspase 3 (Goyeneche et al.
2012, Gamarra-Luques et al. 2014). Cleavage of poly
(adenosine 5 0-diphosphate-ribose) polymerase (PARP), a
substrate for active caspase 3, was observed in ovarian
cancer cells after exposure to mifepristone, ORG-31710,
and ulipristal. Ulipristal, however, at the same time
upregulated PARP, a phenomenon that has been
previously shown in cultured human uterine leiomyoma
cells (Xu et al. 2005). In addition, ulipristal upregulated
antiapoptotic proteins XIAP and Bcl2, yet cell death
ensued with less effectiveness than that caused by
mifepristone or ORG-31710, in which XIAP and Bcl2
were downregulated (Goyeneche et al. 2012).

In cultured human uterine leiomyoma cells, ulipristal
was shown to downregulate the antiapoptotic protein
Bcl2 (Xu et al. 2005). In the cholangiocarcinoma cell line
FRH-0201, mifepristone blocked growth, induced
apoptosis, and upregulated pro-apoptotic Bax with a
simultaneous downregulation of Bcl2 (Sun et al. 2012).
In endometrial HEC-1A and Ishikawa cancer cells, Bcl2
levels decreased in response to mifepristone in associ-
ation with the increase in tumor suppressor p53 (Navo
et al. 2008). An increase in pro-apoptotic Bax and FAS
ligand, and a concomitant decrease in antiapoptotic
Bcl2 and activation of caspase 3, was also observed in
Ishikawa cells upon treatment with mifepristone (Li et al.
2005). Potentiation of apoptotic cell death was observed
after exposing Ishikawa endometrial cancer cells to the
combined treatment of mifepristone and progesterone
(Moe et al. 2009). An increase in Bax levels and a
decrease in Bcl2 levels were also observed in endo-
metrial Hec-1A, KLE, and RL95-2 when treated with
doses of mifepristone that caused apoptosis (Schneider
et al. 1998). In the endometrial cell line EM42,
mifepristone stimulated the activity of the transcription
factor nuclear factor kappa B (NFkB) and induced
apoptosis mediated by the induction of pro-apoptotic
Bax and downregulation of antiapoptotic Bcl2, in a
NFkB-dependent manner (Han & Sidell 2003). In HeLa
cervical adenocarcinoma cells resistant to mitomycin C,
mifepristone increased BAX expression while decreasing
expression of BCL2 (Chen et al. 2014). In prostate cancer
cells, presence of mifepristone sensitized the cells to
apoptosis induced by TNFa-related apoptosis inducing
ligand (TRAIL) by promoting activation of caspase 8
and truncation of pro-apoptotic Bcl2 family member
Bid (Eid et al. 2002). Finally, in human SGC-7901 gastric
adenocarcinoma cells, mifepristone blocked cell
proliferation and induced morphological features of
apoptosis in a dose-dependent manner in association
with downregulation of pro-survival BclXL and increased
caspase 3 activity (Li et al. 2004a).
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PR and antiprogestin-induced antiproliferation

As several tumors of both gynecological and non-
gynecological origin are steroid hormone-dependent
and express PR, antiprogestins have been investigated as
potential anti-cancer therapeutic agents largely based on
their capacity to modulate such receptors. However, the
role of PR in the antiproliferative effect of antiprogestins
is not without complexity and apparent discrepancies.
For instance, mifepristone inhibited the growth of
ER-negative/PR-negative MDA-MB-231 breast cancer
cells (Liang et al. 2003). In another study, mifepristone
showed an agonistic effect potentiating progesterone-
mediated growth retardation and apoptosis (Moe et al.
2009). Such potentiation of cytotoxicity of progesterone
by mifepristone was reported also in PR-positive MCF-7
breast cancer cells as well as in PR-negative C4-I cervical
carcinoma cells, suggesting that the presence of PR may
not be essential for the antigrowth properties of both,
progesterone and mifepristone (Fjelldal et al. 2010).
In the aforementioned studies, however, mifepristone
was utilized at micromolar concentrations, suggesting
that at such doses the antigrowth effect may utilize a
PR-independent mechanism as the concentrations
needed to saturate intracellular PR are in the nanomolar
range (Nardulli & Katzenellenbogen 1988).

The expression of PR in antiprogestin-responsive
cancer cells is also controversial, probably as a con-
sequence of the complex variables involved in PR
actions, including the following: i) tissue-specific effects;
ii) the presence of two isoforms (PR-A and PR-B) with
distinct properties; iii) difficulties in tailoring the mRNA
expression levels with that of protein receptor levels
due to the scarcity of specific antibodies for each PR
isoform; and iv) the differential kinetics of the isoforms,
with PR-A being more stable than PR-B, because the
latter undergoes post-translational modifications inclu-
ding phosphorylation, ubiquitination, acetylation, and
SUMOylation, all contributing to its rapid turnover, and,
probably, the difficulty in its detection. These factors
contributing to the complexity in PR activity have been
recently addressed in a comprehensive review (Hagan &
Lange 2014).

In ovarian cancer, the majority of cell lines reported
in the literature lack or show very low levels of the
canonical PR (Hamilton et al. 1984, Keith Bechtel &
Bonavida 2001, McDonnel & Murdoch 2001, Akahira
et al. 2002). Using an antibody that detected PR-A and
PR-B isoforms in MCF-7 breast cancer cells, we reported
that such receptor isoforms were not found in ovarian
(SKOV-3 and OVCAR-3), breast (MDA-MB-231), pros-
tate (LNCaP and PC-3), bone (U-2OS and SAOS-2), and
meningioma (IOMM-Lee) cancer cell lines cultured
under similar conditions (Tieszen et al. 2011). However,
these cells lines, regardless of PR expression, responded
to the growth inhibitory properties of micromolar doses
of mifepristone. Furthermore, the abundance of PR-A
www.reproduction-online.org



Antiprogestins and gynecological disorders R23
and PR-B proteins in MCF-7 was highly reduced upon
treatment with mifepristone, which retained its growth
inhibition properties, discouraging the role of these
nuclear receptors as mediators of the growth inhibitory
effect of mifepristone. Similarly, in T-47D breast cancer
cells made resistant to aromatase inhibitors, which
express high levels of aromatase and grow in response
to testosterone, telapristone caused growth arrest in
association with downregulation of PR-B mRNA and
protein levels (Gupta et al. 2013a).

The requirement for PR as a mediator of the antigrowth
effect of antiprogestins, however, has been shown in
other experimental models. For instance, in vivo studies
on mice with MPA-induced mammary carcinomas,
antisense oligodeoxynucleotides against PR that leads
to in vivo knockdown of the receptor caused inhibition
of tumor growth similar to that of mifepristone (Lamb
et al. 2005). In this model system, PR-A appears as a
critical PR isoform conferring sensitivity to antipro-
gestins, as antiprogestin-resistant variants of the
MPA-induced mammary tumors depict a heightened
downregulation of PR-A when compared with antipro-
gestin-sensitive tumors (Wargon et al. 2009, Lanari et al.
2012). Using primary cultures of cells isolated from the
MPA-induced mouse mammary carcinomas, mifepris-
tone blocked MPA-induced growth at nanomolar
concentrations (Lamb et al. 1999). More recently, it has
been demonstrated that in these cells the antiprogestin
increased tissue remodeling, which favored the efficacy
of nanoparticle carrying chemotherapeutic agents
(Sequeira et al. 2014). Notably, in this latter work,
mifepristone-induced tissue remodeling involved the
increase in the vascularity of the tumor and the increase
in the ratio of stromal tissue to tumor tissue, indicating
the tumor microenvironment as an evident target of
antiprogestin therapy. From this mouse model of breast
cancer, it has been suggested that tumors with levels of
PR-A higher than PR-B should be the ones to be targeted
with antiprogestin therapy (Lanari et al. 2012).

In human breast cancer cells, PR-B seems to be a
critical determinant of the responsiveness to the
antiproliferative effect of antiprogestins (reviewed in
Knutson & Lange (2014)). The development of T-47D
cells overexpressing either PR-A or PR-B led to the
conclusion that, in the presence of mifepristone, there is
inappropriate transactivation of PR-B but not of PR-A
(Sartorius et al. 1994). In the presence of a ligand, PR-B is
phosphorylated at Ser294 and translocated to the
nucleus where it operates as a highly active transcription
factor triggering gene expression encoding for proteins
needed for cell cycle progression, proliferation, and
survival (cyclin D1, Myc and Bcl2 respectively).
However, when activated, PR-B has a very short half-
life as phospho-Ser294-PR-B is recognized for
degradation by the ubiquitin–proteasome system making
activated PR-B difficult to detect by western blotting
(Knutson & Lange 2014). Thus, in the studies described
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earlier using mifepristone as a growth inhibitor in human
cancer cell lines, the fact that PR is undetectable by
western blot (Tieszen et al. 2011) does not rule out its
presence as, under the culture conditions used, it could
have had a heightened turnover that did not allow for
its detection with the antibodies utilized.

Early in 1987, experimental evidence using breast
cancer cells suggested that the antihormone and
antiproliferative activity of antiprogestin mifepristone
are dissociated (Bardon et al. 1987). Our previous
analysis of the literature has suggested that such
statement is still valid and further studies need to be
conducted to find out the role of PR in antiprogestin-
mediated antiproliferative activity.
Membrane PR

The antitumor effect of antiprogestins may well be
mediated by non-cognate PR, such as membrane PRs
(mPRa, b, g, d, and 3; Thomas et al. 2007, Gellersen
et al. 2009, Dressing et al. 2011). This hypothesis is
supported by studies on Xenopus oocytes in which
progesterone promotes germinal vesicle breakdown
(GVBD) – an indicator of meiotic maturation – probably
due to the interplay of cognate intracellular PR and
mPR (Josefsberg Ben-Yehoshua et al. 2007). In this
model system, antiprogestin mifepristone depicted a
progesterone-like effect at micromolar concentrations
(Sadler et al. 1985). When these mPRs were expressed
in yeast, antiprogestin mifepristone also had an agonist
effect (Smith et al. 2008). Curiously, Xenopus intra-
cellular PR lacks the glycine residue considered
essential for intracellular PR binding to mifepristone
(Benhamou et al. 1992), suggesting that the membrane-
linked but not the classical intracellular PR mediates the
progesterone-like mifepristone-induced GVBD. Thus,
effects of antiprogestins mediated via mPR might need
to be differentiated from those controlled via the
classical PR.

Membrane PRs have been shown in human breast
biopsies, in cognate PR-positive MCF-7 and SKBR3
breast cancer cell lines, in cognate PR-negative MDA-
MB-468 breast cancer cells, in HeLa cervical cancer
cells, and in ovarian cancer biopsies (reviewed in
Dressing et al. (2011)). Ovarian cancer cell lines
(SKOV-3 and ES2) express the mRNA of the three
mPRs, which regulate PKA, p38, and JNK signaling
pathways (Dressing et al. 2011).

Another non-cognate PR, termed PR membrane
component 1 (PGRMC1), was shown to increase in
advanced ovarian cancer in association with an absence
of the classical PR. Furthermore, it was shown that
overexpression of PGRMC1 interfered with cisplatin-
induced cytotoxicity, which suggests that PGRMC1 has
a survival role in this particular gynecological cancer
(Peluso et al. 2008).
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In summary, the roles of mPR and PGRMC1 in
antiprogestin-mediated antiproliferation in cells
involved in gynecological diseases represent an attrac-
tive area of research that could lead to novel therapeutic
interventions.
Growth factors and signaling pathways involved in
antiprogestin-mediated growth inhibition

Transforming growth factor beta 1 (TGFb1) is induced by
mifepristone and triggers apoptosis in LNCaP-C4 pros-
tate cancer cells (Liang et al. 2002). In ER-negative/PR-
negative MDA-MB-231 breast cancer cells, mifepristone
and 4-hydroxytamoxifen potentiated one another’s effect
in inducing apoptosis associated with DNA fragmenta-
tion and cytochrome c release from the mitochondrial
compartment and activation of downstream executer
of apoptosis, caspase 3, mediated via upregulation of
TGFb1 (Liang et al. 2003). Furthermore, MCF-7 and
T-47D PR-positive breast cancer cell lines produce more
TGFb when incubated in the presence of onapristone
in association with growth inhibition (Dannecker et al.
1996). Conversely, for insulin-like growth factor1 IGF1),
it was shown that it attenuates antiprogestin-mediated
apoptosis in ER-positive breast cancer cells (Periyasamy-
Thandavan et al. 2012). Ulipristal was shown to block
the expression of fibronectin and VEGFA mRNA induced
by activin A in cultured leiomyoma cells, thus blocking
cell growth (Ciarmela et al. 2014) and the substantial
angiogenesis required by these tumors to proliferate (Xu
et al. 2006). In MPA-induced mouse mammary tumor
line C4-HD, mifepristone was able to block the
proliferation induced by bFGF alone or the combination
bFGF/MPA (Lamb et al. 1999). Mifepristone blocked the
secretion of IGF1 induced by progesterone and E2 in
ex vivo explants of ER-positive/PR-positive breast
cancers (Milewicz et al. 2005).

In MDA-MB-231 breast cancer cells transfected with
PR, mifepristone arrested the cells in the G0/G1 phase of
the cell cycle while activating p44/p42 MAPK (Lin et al.
2001). In another study, MAPK inhibitors and antipro-
gestins blocked the growth of BT-474 breast cancer cells
upon induction with EGF and progestins (Knutson et al.
2012). In cultured mouse cancer cells isolated from
mammary tumors induced by MPA, mifepristone,
onapristone, and lonaprisan blocked proliferation
induced by MPA or FGF2 while increasing phosphoryl-
ation of ERK via rapid mechanisms (reviewed in Lanari
et al. (2012)). When cells from previous tumors were
maintained in 3D cultures, lonaprisan induced cell
death more efficiently in MPA-dependent cells having a
low AKT activity, suggesting the survival role of the
PI3K/Akt pathway in these cancer cells (Polo et al.
2010). In ovarian cancer cells cultured either in 2D or
3D, cytostatic doses of mifepristone caused synergistic
lethality when combined with an inhibitor of the
PI3K/Akt survival pathway, in association with
Reproduction (2015) 149 R15–R33
downregulation of antiapoptotic proteins BCL2 and
XIAP, and cleavage of PARP (Wempe et al. 2013).

Another pathway involved in antiprogestin-mediated
growth inhibition is the Wnt pathway, which is critically
involved in cancer development (reviewed in Veeck &
Dahl (2012) and Gupta et al. (2013b)). For instance,
Wnt1 was blocked by mifepristone in MCF-7 cells, while
overexpression of Wnt1 prevented mifepristone-induced
growth inhibition (Benad et al. 2011).

Mounting evidence demonstrates the role of cyto-
plasmic pro-proliferative protein kinases such as MARK,
CK2, and Cdk2 in controlling the phosphorylation status
of classic PR (reviewed in Trevino & Weigel (2013)).
Cdk2 is a cell cycle kinase critically important for the
hyperphosphorylation of Rb, thus allowing the detach-
ment of E2F transcription factor from Rb, and making
E2F available to regulate the expression of genes driving
DNA synthesis during the S phase (Conradie et al. 2010).
Thus, small molecules are under development for the
blockage of Cdks, among them Cdk2, to treat cancer
(reviewed in Esposito et al. (2013)). In human cells
spanning many cancer types, we have shown that
alongside blocking proliferation, mifepristone strongly
inhibited the activity of Cdk2 (Tieszen et al. 2011). In
ovarian cancer cells, we also reported that mifepristone
promoted the upregulation of p21cip1 and p27kip1 and
their association with Cdk2 in the nuclear compartment,
thus blunting the activity of Cdk2 otherwise required to
drive G1/S cell cycle progression (Goyeneche et al.
2007, 2012). Cdk2 is critically important to phosphor-
ylate PR at Ser400, thus activating the transcriptional
activity of PR in a ligand-independent manner during the
cell cycle. As Cdk2 activity is blocked by p27kip1

overexpression (Pierson-Mullany & Lange 2004), we
propose that mifepristone-induced cell cycle arrest in
G1 is mediated by p27kip1-induced Cdk2 inhibition
upstream of PR activation, thus preventing ligand-
independent PR transcriptional activity required for cell
cycle progression.
Glucocorticoid receptors

Except for the new generation of antiprogestins that bind
GR with a much less affinity than PR, older antiprogestins
such as mifepristone bind GR with a high affinity (Mao
et al. 1992). Furthermore, GR are ubiquitously expressed
in normal as well as cancer cells (Agarwal 1996)). Our
laboratory reported abundant expression of GR isoforms
alpha (GRa) and beta (GRb) as measured by western blot
in ovarian, breast, prostate, bone, and brain cancer cells
(Tieszen et al. 2011, Telleria & Goyeneche 2012). All
such cell lines studied responded to mifepristone with
growth inhibition, whereas the relative expression of
GRa and GRb was very variable, yet did not show any
significant correlation with the growth inhibition
potency of mifepristone (Tieszen et al. 2011). In
OV2008 cancer cells, mifepristone, ORG-31710, and
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ulipristal increased p21cip1 and p27kip1 and caused cell
cycle arrest without major changes in the expression of
the GR isoforms. Yet, under the same experimental
conditions, equimolar concentrations of the GR agonist
dexamethasone did not cause growth arrest or upregula-
tion of p21cip1 and p27kip1, but blunted the expression of
GR (Telleria & Goyeneche 2012). By contrast, in three
endometrial cancer cell lines (Hec-1A, LEK, and RL95-2),
mifepristone inhibited cell proliferation while causing a
decline in the abundance of GR (Schneider et al. 1998).
Mostly, on GRa, mifepristone has an antagonistic
activity; yet, it was shown to have an agonistic potency
depending on the concentration of GR in the cell (Zhang
et al. 2007). On the other hand, although GRb has been
considered a dominant negative regulator of GRa
(Oakley et al. 1999, Yudt et al. 2003, Taniguchi et al.
2010), it was also reported to function, in the absence of
GRa, as a receptor for mifepristone, leading to nuclear
translocation and transcriptional activity (Lewis-Tuffin
et al. 2007). All cancer cell lines we exposed to
mifepristone undergo proliferation inhibition with
IC50s – concentrations that reduce growth by 50% –
ranging from 9 to 30 mm, and all cells had high
expression of GRb, yet variable abundances of GRa
fluctuating from no expression (LNCaP) to high
expression (SKOV-3 and MDA-MB-231) (Tieszen et al.
2011, Telleria & Goyeneche 2012). These evidences
suggest to us that the role of mainly GRb on
antiprogestin-mediated cell growth inhibition deserves
further exploration.
Antioxidation

Early in 1994, it was reported that mifepristone, when
used at micromolar doses, operates as an antioxidant
and that such activity resided in the dimethylaminophe-
nyl side chain of the molecule (Parthasarathy et al. 1994),
which is present in most of the antiprogestins developed
to date. In support of this action connected with the
antiproliferative effect of mifepristone, two reports
attributed such a mechanism in endometrial cells and
macrophages (Roberts et al. 1995, Murphy et al. 2000).
More recently, in a study in which the administration of
50 mg mifepristone every other day for 12 weeks
before surgery led to leiomyoma volume reduction,
when tissues were studied after surgery, it was clear that
the glutathione pathway was the most clearly altered
pathway. In particular, the antioxidant enzyme
glutathione-S-transferase mu1 (GSTM1), reported to
offer protection against free radicals and products of
oxidation stress (Sharma et al. 2004), was significantly
overexpressed among the good responders compared
with the non-responders (Engman et al. 2013). The
authors suggest that this enzyme might be important in
the regulation of pathways leading to inhibition of cell
cycle progression or to facilitate apoptosis. GSTM1 can
be a potential molecular marker of objective response to
www.reproduction-online.org
mifepristone therapy. Furthermore, G1 arrest and p21cip

upregulation were shown to be amplified in response
to antioxidants in a p53-independent manner (Liu et al.
1999, Liberto & Cobrinik 2000). This mechanism can
explain our results in which mifepristone blocked
the growth of ovarian cancer cells regardless of their
p53 expression background (Goyeneche et al. 2007,
Freeburg et al. 2009b).
Endoplasmic reticulum stress

Cancer cells, when compared with non-cancer cells,
operate with increased expression of endoplasmic
reticulum stress-related proteins, a phenomenon termed
‘endoplasmic reticulum aggravation’ as a consequence of
the environment within which cancer cells usually
proliferate: reduced nutrients, acidosis, energy defici-
ency, and hypoxia (reviewed in Schonthal (2013)). First,
in 2007, it was shown that asoprisnil triggered
endoplasmic reticulum stress-induced apoptosis in
cultured human uterine leiomyoma cells (Xu et al.
2007). Secondly, a serendipitous study carried out in
2010 reported that mifepristone induced endoplasmic
reticulum stress in non-small cell lung carcinoma cells
(Dioufa et al. 2010). Using genomic and proteomic
screenings, we have recently reported that cytostatic
concentrations of antiprogestin mifepristone trigger the
unfolded protein response (UPR; Hapon et al. 2013). The
UPR is a mechanism geared to compensate for the stress
and to promote cell survival, but, if overwhelmed, it
triggers a cell death pathway (Hetz 2012, Urra et al.
2013). We showed that the master chaperone involved
in the UPR and associated with cell survival, glucose-
regulated protein (GRP) of 78 KDa (GRP78) increased in
response to mifepristone in a dose- and time-dependent
manner, and independently of p53 tumor suppressor
and sensitivity to chemotherapeutic agent cisplatin. In
addition, we found the transcription factor C/EBP
homologous protein (CHOP) to be highly upregulated,
the induction of which is usually linked to cell death.
We hypothesize that the UPR integrates the cytotoxicity
of antiprogestins toward cancer cells when used as
monotherapy or in combination therapies triggering,
respectively, cell cycle arrest (cytostasis) or cell death
(lethality) depending on the degree of cellular stress
generated.
Cytoskeleton, adhesion, migration, and invasion

One key component of cancer metastasis is the
detachment or de-adhesion of cancer cells from one
tissue, migration, and invasion through the extracellular
matrix, and re-adhesion to a nearby or distant location.
Considering that progestins regulate metastasis-related
molecules, it was proposed that antiprogestins could be
relevant to fight metastatic diseases (Shi et al. 1994).
Reproduction (2015) 149 R15–R33



Table 1 Current active interventional clinical trials using antiprogestins
for gynecological diseases registered in ClinicalTrials.gova.

Antiprogestin Gynecological disease Phase Clinical trial ID

Mifepristone
(RU-38486)

Leiomyoma III NCT00133705
I NCT00579475
II NCT00881140

II/III NCT00712595
Breast cancer I NCT01493310

II NCT01898312
Breast and ovarian

cancers
I NCT02046421
I NCT02014337

Endometrial cancer II NCT00505739
Ulipristal

(CDB-2914)
Leiomyoma II NCT00044876

III NCT02147158
III NCT01642472
III NCT01629563

Telapristone
(CDB-4124)

Endometriosis II NCT01728454
Breast cancer II NCT01800422

Onapristone
(ZK-98299)

PR expressing cancers I NCT02052158

aData obtained August 5, 2014.
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In breast cancer cells expressing PR-B, it was shown
that mifepristone blocked the migration induced by
IGF1 (Ibrahim et al. 2008). We have recently reported
using SKOV-3 ovarian cancer cells, MDA-MB-231
breast cancer cells, U87MG glioblastoma cells, and
LNCaP prostate cancer cells that a concentration of
antiprogestin mifepristone sufficient to block cell
proliferation caused changes in the cellular structure
with cells developing a thin cytoplasm with neurite-like
protrusions. Such changes were associated with redis-
tribution of cytoskeletal actin fibers that mainly form
non-adhesive membrane ruffles, which are sheet-like
membrane folds that do not attach to the extracellular
matrix, leading to a decline in the capacity of the cell to
adhere to extracellular substrates (Brandhagen et al.
2013). This morphological phenomenon was associated
with diminished cellular migration and invasion
capacities toward extracellular matrix (A A Goyeneche,
B N Brandhagen, R Srinivasan, and C M Telleria,
unpublished observations). In the human gastric
MKN-45 adenocarcinoma cells, mifepristone, in a
dose-dependent manner, inhibited their adhesion to
extracellular matrix and reduced migration through
8 mm pore size membrane filters; in vivo, 8 week
treatment with mifepristone reduced the number of
distant lung foci in nude mice carrying subcutaneous
tumor xenografts (Li et al. 2004b). Consistent with these
data, in Ishikawa endometrial cancer cells receiving
mifepristone for 12 h, it was shown by RNA sequencing
that mifepristone downregulated genes associated with
cell–cell contact and adhesion (Tamm-Rosenstein et al.
2013). More recently, a monodemethylated metabolite
of mifepristone termed metapristone (RU-42633) has
been shown to block the adhesion of human colon
cancer HT-29 cells to endothelial cells (Wang et al.
2014). These initial data provide the basis for
further studies on the antimetastatic properties of
antiprogestins.
Antiprogestins in clinical trials for
gynecological diseases

Table 1 depicts the ongoing clinical trials registered
in the public access database maintained by the US
National Library of Medicine at the National Institutes of
Health (NIH) (http://ClinicalTrials.gov). Of notice is the
number of ongoing studies using mifepristone for
conditions such as leiomyoma, breast, ovarian, and
endometrial cancers; ulipristal for leiomyoma; and
telapristone for endometriosis. The results of these trials
will be essential in moving forward the utilization of
antiprogestins as adjuvant treatment for gynecological
diseases should they confirm their potentiality reflected
in the preclinical and clinical studies detailed above.
The progress made in the past years exploring the
treatment of gynecological conditions such as endo-
metriosis and leiomyoma has been remarkable; yet, the
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consequence has been of a less emphasis on treating
gynecological cancers. However, as new information
evolves on the pathogenesis of gynecological cancers
and the mechanisms of action of available antiproges-
tins, there is optimism for quick developments in
bringing these compounds to the clinic. Antiprogestins
can ameliorate the signs and symptoms, and prevent (as
monotherapy) or trigger chronic remission (as adjuvant
to standard chemotherapeutic agents) of gynecological
malignancies.
Concluding remarks

Since the synthesis of mifepristone in 1981, much
progress has been made in understanding the
mechanisms whereby antiprogestins act at the tissue,
cellular, and molecular levels in both normal cells and in
cells with a derangement of their proliferation capacity.
There has been a concurrent development of new
compounds, major progress in understanding the
biology of PR and GR isoforms, their cellular localization
within the context of the molecular environment, and
their involvement in driving cell cycle progression and
cell death. As the basic molecular biology of steroidal
compounds evolves, the applications of compounds
designed to bind PR should be recalibrated continuously.
For instance, as reviewed herein, we should exploit their
potential for treating gynecological conditions related to
unbalanced cell proliferation. The timeframe for their
usage on such conditions, as well as their effective
dosage, should be addressed to prevent undesired side
effects. The analysis of the molecular genetics of the
disease will be critical for identifying the cohort of
individuals who more probably will benefit from
antiprogestin treatment and, by doing so, prevent the
inclusion of patients not likely to respond. Inappropriate
inclusion of patients can highly contribute to derailing
www.reproduction-online.org
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the success of the clinical studies. With the current
ongoing clinical trials, special attention should be given
to patients that present an objective response to the
treatment despite the fact that they may not represent a
significant group within the trial. Such responders should
guide the identification of the optimal conditions for
objective responses of disease cells with respect to
normal cells, such as the ratio of expression of PR-A/PR-B,
levels of GRa and GRb, intracellular signal transduction
environment, oxidative stress, and excess or lack of
critical cell cycle regulatory proteins to mention some.
Thus, for instance, despite that the clinical trials for the
usage of antiprogestin mifepristone against ovarian and
breast cancers have not been as encouraging as
originally envisioned, the knowledge gained on the
molecular underpinning of such patients should lead to a
better patient selection while more closely bridging
basic and translational research.
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