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Abstract

Previous research in spatial cognition has often relied on simple spatial tasks in static envi-

ronments in order to draw inferences regarding navigation performance. These tasks are

typically divided into categories (e.g., egocentric or allocentric) that reflect different two-sys-

tems theories. Unfortunately, this two-systems approach has been insufficient for reliably

predicting navigation performance in virtual reality (VR). In the present experiment, partici-

pants were asked to learn and navigate towards goal locations in a virtual city and then per-

form eight simple spatial tasks in a separate environment. These eight tasks were organised

along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allo-

centric, and distance/direction). We employed confirmatory and exploratory analyses in

order to assess the relationship between navigation performance and performances on

these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving

object) is capable of predicting navigation performance in a familiar virtual environment bet-

ter than several categories of static tasks. These results have important implications for

studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given

that our dynamic tasks required efficient interaction with the human interface device (HID),

they were more closely aligned with the perceptuomotor processes associated with locomo-

tion than wayfinding. In the future, researchers should consider training participants on

HIDs using a dynamic task prior to conducting a navigation experiment. Performances on

dynamic tasks should also be assessed in order to avoid confounding skill with an HID and

spatial knowledge acquisition.

Introduction

Researchers in spatial cognition have frequently relied on virtual reality (VR) in order to con-

duct experiments on human navigation [1, 2]. Some researchers have investigated the use of

different human interface devices (HIDs; e.g., joystick, mouse and keyboard) with respect to

navigation performance in virtual environments [3–6]. However, the specific aspects of spatial

behaviour that mediate the relationship between skill at manipulating the HID and navigation

performance have yet to be determined. Interaction with an HID may be related to navigation
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differently than natural walking through a real environment because the HID involves an addi-

tional layer of abstraction between an intended action and its perceptual consequences [7, 8].

This mapping between action and perception may be learned incrementally in a similar way as

movements in real environments [9], but people generally have more experience with natural

walking than with manipulating an HID. In addition, experience with a specific HID may

explain performance differences for various navigation tasks [3, 6]. The present study assesses

the manner in which participants’ skills with an HID relates to navigation performance in a

virtual environment.

According to Montello [10, p. 258-260], navigation can be decomposed into locomotion

(i.e., manoeuvring through a large-scale environment) and wayfinding (i.e., spatial decision-

making). Traditionally, spatial cognition research has focused on the importance of spatial

memory for wayfinding tasks and may have overlooked the importance of locomotion for

large-scale navigation. Following Gibson [11], Heft [12] has characterized the process of navi-

gation as apprehending the invariant structure of an environment during locomotion through

a sequence of vistas (i.e., the features available to an observer from a particular viewpoint) sep-

arated by transitions (i.e., points along a route at which a previously occluded vista gradually

comes into view). However, there is insufficient evidence to suggest that a locomotion-based

theory can explain navigation more generally (but see [13]).

Spatial behaviour has also been characterised along other dichotomies, including percep-

tion-action and cognitive components [14–17], fine-grained and categorical spatial representa-

tions [18–20], coordinate and categorical spatial representations [21–24], taxon and locale

systems [25–28], online and offline processes [29], and egocentric and allocentric reference

frames [30]. Allen and Haun [31] have ascribed some of these distinctions to the same two spa-

tial processing systems but note that alternative theories with more systems may be appropri-

ate (cf., [8]). Rather than presuming the alignment of different two-systems theories, the

framework used for the present study constructs several orthogonal dimensions based on

existing systems in order to predict navigation performance. These dimensions consist of static

and dynamic stimuli, perceived and remembered information, egocentric and allocentric ref-

erence frames, and distance and direction judgements.

In VR, the user tends to be dynamic, but distinct stimuli (i.e., buildings, trees) in the virtual

environment can be either static or dynamic. For example, a parked car can be considered a

static stimulus, and a car moving down the street can be considered a dynamic stimulus. With

respect to optic flow, static stimuli result in invariant spatial information in the visual field rel-

ative to their surroundings [11]. In contrast, dynamic stimuli can move through the visual

field independently of changes in optic flow that result from self-motion [11]. Previous

research in VR has often employed static stimuli in order to investigate navigation [1]. These

studies have successfully demonstrated the role of spatial memory for navigation through static

environments. For example, spatial memory may be assessed in terms of participants’ abilities

to shortcut [32], build models [33], and conduct judgements of relative direction [34] How-

ever, the focus on static environments may have resulted in a bias towards tasks that rely on

the integration of spatial information over time in memory [35, 36] and neglected the potential

importance of dynamic stimuli perceived during navigation ([37]; but see [38, 39]). Responses

to dynamic stimuli in VR may require more skill at manoeuvring the HID than responses to

static stimuli when the stimuli move in an unpredictable manner. Thus, tasks with dynamic

stimuli may tap previously unidentified individual differences in locomotion behaviour during

navigation.

The static/dynamic dimension may also be disentangled from a perceived/remembered

dimension during navigation because the perception (and not necessarily representation) of

static objects is critical for many spatial behaviours [33, 40, 41]. Indeed, these spatial
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behaviours are often used to infer differences in mental representations but could also indicate

difference in the initial perception of the objects, even when they are no longer visible. This

distinction between perceived and remembered spatial information has important conse-

quences for spatial reasoning with respect to immediate and remote environments [14, 42],

especially when perception and memory are considered along a continuum. In this context,

recently learned environments would lie between immediate and remote environments. For

example, Waller and Hodgson [42] found that the representation of a remote environment

can be relatively less accurate and less precise than the representation of an immediate envi-

ronment [42]. However, in aggregate, less precise representations may lead to more accurate

localisations [18]. On the other hand, responses to recently learned information tend to be rel-

atively more precise [42] and more accurate (depending on response modality; [14]) than very

familiar information.

According to Avraamides and Kelly [29], perceived information typically involves an ego-

centric reference frame, but remembered information may be egocentric (e.g., during scene

recognition; [43]; [44]; as during pointing responses; [45]) or allocentric (whether intrinsic;

[46]; or environmental; [47]; for a review, see [30, 48]). However, some researchers claim that

remembered information is also primarily egocentric [49, 50]. During navigation, individuals

may rely on external representations that are either egocentric (e.g., route instructions; [51])

or allocentric (e.g., maps; [52]) and may be employed to enforce a navigator’s choice of refer-

ence frame. The ease with which one uses either type of external representation during naviga-

tion can also indicate the format of the corresponding internal representation [52].

Distance and direction estimates have been used to infer egocentric representations based

on a static, perceived environment (e.g., [14, 40, 53]); egocentric representations based on a

static, remembered environment (e.g., [14, 42, 45, 47, 53–55]); egocentric representations

based on a dynamic, perceived environment (e.g., [36, 38, 39]); and allocentric representations

based on a static, remembered environment (e.g., [42, 47, 52, 54, 55]. In addition, distance and

direction judgements may also reflect two different spatial abilities because of differences in

how translations and rotations are perceived and remembered (e.g., [4, 40, 56–59]). For exam-

ple, Easton and Sholl [56] found that rotations and translations led to different performance

profiles in regularly (but not irregularly) structured arrays of objects. Thus, this distinction

between direction and distance may represent an additional dimension of spatial task and

may be orthogonal to static/dynamic, perceived/remembered, and egocentric/allocentric

dimensions.

The present study investigates the manner in which these four orthogonal dimensions of

spatial tasks can be used to predict navigation through a virtual environment. Specifically, we

expect tasks with dynamic stimuli to be the best predictors of navigation behaviour in a famil-

iar virtual environment because these tasks are closely associated with participants’ skills when

using an HID. Towards this end, we designed eight simple tasks that systematically assess dif-

ferent points along these dimensions. We related performance on these eight tasks to naviga-

tion through a virtual reality replica of a university campus [33]. To anticipate, we found that

an egocentric task in which participants chased a moving object predicted goal-directed navi-

gation better than all four dimensions taken together.

Methods

Participants

Twenty-three participants were recruited for the experiment from the University Registration

Center for Study Participants (https://www.uast.uzh.ch/) via the ETH Decision Science Labo-

ratory (DeSciL). Three participants (two female) experienced simulator sickness and were
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excluded from the analyses. Of the remaining 20 participants, 11 were female. The age of the

participants ranged from 18 to 28 years (M = 21.8, SD = 3.01).

Ethics statement. The experiment was approved by the ETH Zurich Ethics Commission

(EK 2013-N-73). Prior to starting the experiment, written informed consent was obtained

from all participants. The participants were paid 30 CHF per hour. Participants that aborted

the experiment due to simulator sickness were compensated with 20 CHF.

Materials

Hardware. The technical setup for the experiment consisted of a WorldViz CAVE setup

with three computers. Each system was equipped with a Core i7-3820 at 3.6 GHz with 12 GB

of RAM and an Nvidia Quadro K4000 with 3 GB RAM. The CAVE consisted of three ultra

short throw projectors NEC U310W running at a 1680 x 1050 resolution during 3D projection.

To enable 3D perception, alternate frame sequencing shutter glasses of the type Volfoni 3DGE
RF were used. The WorldViz PPT Real-Time Motion Tracking System was used for tracking

head position and orientation. The tracking system was connected to a separate computer to

reduce the computational load on the main machines. Participants were seated in a chair that

was located in the middle of the CAVE facing towards the middle screen. A small table was

mounted on the arm rests to comfortably place the joystick (Logitech Extreme 3D Pro) for the

participants.

The motion sensors attached to the participants’ head provided the orientation of the par-

ticipant in relation to the CAVE and was used to determine the participants’ orientation in

the virtual environment. The head orientation together with the joystick was used to turn

and move within the virtual environment. Translational movements were executed by push-

ing the joystick in the desired direction (i.e., forward, backward, left, and right) while rota-

tions were performed by twisting the joystick left or right and turning the head. However,

there was a subtle difference in how the joystick and head trackers were used to control rota-

tion. When using the joystick, the projected virtual environment rotated to display the

desired view direction. In contrast, turning the head merely changed the virtual direction

from which we recorded the observer’s viewing direction. A visual “catchment area” was pro-

vided in order to facilitate the interaction with elements in the environment. This catchment

area consisted of a yellow semi-transparent circle on the ground that moved with the partici-

pant’s position and head rotation (yaw axis) to indicate the location where we consider an

interaction to occur. All translational movements were performed relative to the viewing

direction (i.e., pushing the joystick forward always resulted in the expansion of optic flow

from the point of focus).

Software. We used custom-designed software [60] for conducting experiments with a

Vizard CAVE system. This software provided automatic data storage (i.e., logging the position

of the observer and static/dynamic elements) and logic units to setup the experiment. The

obtained data was stored in a MySQL database (version 5.6.16) and subsequently exported to

Matlab 8.2.0.29 (R2017a) for further processing and analysis.

Virtual environments. Two different virtual environments were used in this experiment.

One environment (the Sphere Environment) consisted of a small meadow (40 meters x 40

meters) with randomly placed spheres. Each sphere had a radius of 0.25 meters, floated 0.25

meters above ground, and had a minimum distance of 2 meters to the nearest sphere. The

other environment (the Virtual SILCton Environment) consisted of a small road network, 22

buildings, and some additional structures (e.g., statue, benches). Six locations were selected for

the navigation task. A sign with each location’s name was placed in front of each target (Fig 1).

The digital model of Virtual SILCton has been used in previous spatial navigation research
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[33]. The model was originally created in Sketchup and then exported to Vizard as a collada

file.

Procedure

Upon arriving at the lab, participants were presented with a document describing the main

goals and experimental procedure (see S1 File on page 21) and were asked to complete the con-

sent form. Participants then completed the Santa Barbara Sense of Direction scale (SBSOD)

[61]. Before each phase, they were given written instructions regarding each of the VR tasks

(see S1 File). A small set of written questions was also given to the participants in order to

ensure that they read and understood the instructions. At this stage, participants were also

given time to ask questions about the experiment and procedure. Participants were then seated

in the middle of the CAVE and given the joystick. The full protocol of the experiment is avail-

able online on protocol.io [62].

Participants completed a Training phase in the Sphere Environment, a Navigation Phase in

the Virtual SILCton Environment and a Simple Tasks Phase in the Sphere Environment. Dur-

ing the training task, participants were also allowed to ask questions regarding the joystick and

follow-up tasks but were asked to refrain from asking questions during testing. A video repre-

senting the entire experimental procedure is available online as supplementary material (see

S1 Video).

Training Phase. The training phase was used to familiarise the participants with the VR

setup and joystick. Participates were asked to use the joystick to move around and collect 10 of

40 randomly coloured and placed spheres. The visual “catchment area” was provided in order

to facilitate the collection task (Fig 2a). To collect a sphere, participants were asked to place the

sphere within the catchment area and press the trigger button on the joystick. A counter at the

top of the screen indicated when they collected a sphere.

Fig 1. Overview of the Virtual SILCton Environment and the target locations. A top-down perspective of Virtual SILCton with the six

target locations (red). The ID of each location does not correspond to the order of visits during the experiment.

https://doi.org/10.1371/journal.pone.0184682.g001
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Navigation Phase. In this phase, participants were asked to find a series of goal locations

in the Virtual SILCton environment. Participants were unfamiliar with this virtual environ-

ment at the beginning of the Navigation Phase, so the first block of trials constituted a search

task. During navigation, participants could press the trigger button on the joystick in order to

call up a 3D arrow that pointed in the straight-line direction of the target locations (ignoring

any potential obstacle along the way). The arrow did not guide the participants along a prede-

fined route to the target location. An energy bar was used to limit participants’ interactions

with the arrow (Fig 2b). Energy was consumed as the participants pressed the trigger. When

the energy was depleted, participants were required to wait 10 seconds before they could trig-

ger the arrow again. This mechanism prevented participants from continuously pressing the

trigger but allowed them to use it primarily when they were disoriented.

The process of visiting all target locations was repeated over four blocks. During each of the

first three learning blocks, participants were asked to visit the six locations in a random order.

At the beginning of each trial, a large text appeared at the centre of the middle screen of the

CAVE that indicated the name of the destination. Once displayed, the name of the destination

remained at the top-left corner of the middle screen until participants reached the destination.

During the fourth testing block, participants were asked to find the six target locations but

without the help of the arrow. During testing, the visiting order of the target locations was

fixed. This fixed order was designed to allow for comparisons across participants.

Simple Tasks Phase. Participants performed a set of eight different tasks in random order

in each of five blocks. Twenty white floating spheres were used for each of the simple tasks.

For each task, target spheres were coloured blue. A pause screen appeared before each task and

displayed a short description of the upcoming task. After each task, participants were rotated

by a random angle and the spheres moved to new random locations. Participants used the joy-

stick trigger to indicate that they completed the task to the best of their ability. No other feed-

back was provided to the participants. The name of the current task was displayed at the top-

left corner of the main screen. Similar to the training task, a catchment area indicated the par-

ticipants’ positions and head directions. For some tasks, an additional top-down map of the

environment was displayed at the top-right corner of the middle screen that occupied 20% of

the width and height of that screen.

Fig 2. Training and navigation. (a) Screenshot of a participant collecting a sphere during the training phase. The yellow catchment area

surrounds the intended target. For this figure, the catchment area appears slightly brighter than in the actual experiment. (b) Screenshot of a

participant calling the arrow during the navigation phase. The destination (Tobler Museum) is indicated in the top-left corner of the screen.

The energy bar is placed at the top of the screen.

https://doi.org/10.1371/journal.pone.0184682.g002

Predicting navigation performance in virtual reality

PLOS ONE | https://doi.org/10.1371/journal.pone.0184682 September 15, 2017 6 / 22

https://doi.org/10.1371/journal.pone.0184682.g002
https://doi.org/10.1371/journal.pone.0184682


Below are descriptions of each of the eight simple tasks. Fig 3 includes images of selected

exemplary tasks.

Rotate (ROT): Participants were asked to rotate to a target blue sphere. A successful trial

consisted of turning until the blue sphere was in front of the participant’s head. Translations

were disabled throughout this task.

Move (MOV): Participants initially faced a target blue sphere and were asked to walk

towards it as accurately as possible.

Rotate with map (RWM): A north-facing, top-down map was displayed at the top-right

corner of the middle screen. This map did not provide any indication of the participant’s posi-

tion in the virtual world. Participants were asked to turn towards the target sphere that was col-

oured blue on the map. The white spheres were also visible on the map. The target sphere was

blue only on the map and was not visibly distinguishable from the other (white) spheres from

the first-person perspective. Translations were disabled throughout this task.

Move with map (MWM): A north-facing, top-down map was displayed at the top-right

corner of the middle screen. The map did not provide any indication of the participant’s posi-

tion in the virtual world. Participants were asked to walk to the location of the blue-coloured

Fig 3. Simple task example trials. Images representing examples of the different tasks from the participant’s perspective. (a) Image of the

Rotate (ROT) task from a first-person perspective. (b) Image of the Move (MOV) task from a first-person perspective. (c) Image of the Rotate

with map (RWM) task from a first-person perspective with a north-up, top-down map. (d) Image of the Chase with map (CWM) task from a

first-person perspective with a north-up, top-down map. This selection exhibits different components present in all tasks. For this figure, the

catchment area appears slightly brighter than in the actual experiment and the size of the spheres on the map has been increased to be

more visible to the reader.

https://doi.org/10.1371/journal.pone.0184682.g003
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target sphere on the map. The white spheres were also visible on the map. The target sphere

was blue only on the map and was not visibly distinguishable from the other (white) spheres

from the first-person perspective.

Rotate from memory (RFM): Participants were asked to rotate sequentially to two blue tar-

get spheres. After the second rotation, all the spheres disappeared, and participants were asked

to rotate back towards the direction of the first target sphere. Translations were disabled

throughout this task.

Move from memory (MFM): Participants started the task facing a blue-coloured target

sphere. Once participants started moving, all the spheres disappeared. Participants were asked

to stop moving when they reached the previous location of the target sphere.

Chase (CHA): All spheres moved randomly within the virtual field. Participants were asked

to move and intercept the blue target sphere as quickly as possible.

Chase with map (CWM): All spheres moved randomly within the virtual field. A north-

facing, top-down map was displayed at the top-right corner of the middle screen. The map

indicated the participant’s position in the virtual world with a red arrow. The location on the

map was continuously updated. Participants were asked to move and intercept the blue target

sphere shown on the map. The white spheres were also visible on the map. The target sphere

was blue only on the map and was not visibly distinguishable from the other (white) spheres

from the first-person perspective.

Design and analysis

The eight simple tasks were designed to represent different combinations of the static/

dynamic, perceived/remembered, egocentric/allocentric, and distance/direction dimensions

described above.

Static versus Dynamic Stimuli. In each task with static objects, no spheres in the environ-

ment could be moved or move on their own. In contrast, tasks with dynamic objects contained

spheres that moved independently of participants’ actions.

Perceived versus Remembered Information. Each task was defined as to whether partici-

pants could complete the task based on the immediate environment or based on a mental

representation of the environment.

Egocentric versus Allocentric Reference Frame. Tasks that emphasised egocentric refer-

ence frames only presented information from a first-person perspective. In contrast, tasks that

emphasised allocentric reference frames included a map of the environment from a top-down

perspective.

Direction versus Distance. Tasks were also defined as to whether participants performed

translations or rotations towards the target sphere.

Task selection. The relationships among the eight simple tasks in terms of the four

orthogonal dimensions can be visualised as a tree (see Fig 4).

Out of 16 possible variants of the four orthogonal dimensions, eight variants are not suit-

able. First, the combination of dynamic stimuli and remembered information is not suitable

because it is unclear how participants could predict the movement of a randomly moving

sphere. Second, the combination of remembered information and allocentric reference frame is

not suitable because participants could use either egocentric or allocentric mental representa-

tions to complete the task.

Measurements. Participants’ performances in the Navigation and Simple Task Phases

were measured with respect to the time required to complete each task and deviation in terms

of angle and distance from the correct path. For the Navigation Phase, this required logging of

the participant’s position and orientation within the virtual environment and the ID of each
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location in the scene. We also recorded the number of trigger presses (calling the arrow) as a

measure of learning during navigation. For the Simple Task Phase, we logged the participants’

positions, orientations, and trigger presses (indicating task completion). Here, we also logged

the position(s) of the sphere(s) with which participants were interacting. Over 600,000 data

points were collected throughout the experiment and were directly logged into the database.

Analysis. Data from the SBSOD and virtual environments was imported to Matlab and

SPSS for analysis. For details on the database, refer to S1 Data. In a first preprocessing step, the

raw data was grouped by participant and experiment scene. This data was then split according

to indicator variables that marked the beginning and end of each task. For the dynamic sphere

tasks, the data points were resampled at a fixed time step to obtain uniform samples. Weighted

linear interpolation between two objectively measured points was used to obtain a complete

sample at the required time steps (see S1 Code). We next computed error measures for both

Navigation and Simple Task Phases. We also conducted a Regularised Exploratory Factor

Analysis (REFA) [63, 64] for assessing the relationships among the various tasks and attempted

to predict navigation performance using both the four orthogonal dimensions and the REFA

factors. Additional statistical analyses were performed with SPSS (see S2 Data)

Task errors. As a metric for performance in the Navigation Phase, we used ArcGIS [65]

to measure the optimal route distance dr between target locations and compared them to the

actual distances dp walked by participants in the virtual environment. The ratio rd was consid-

ered the error measure as shown in Eq (1).

rd ¼
dp

dr

ð1Þ

Four error measures were devised to account for the participants’ overall performance and

their accumulated error within each of the eight simple tasks. Good performance was indicated

by a score close to or equal to 0, and bad performance was indicated by a score close to or

equal to 1.

Error measures were deviations in either rotation or distance from the optimal choice. To

score the performance at the end of a static task, we computed the final deviation to the

Fig 4. Task classification tree. This tree represents the variable assignments for each of the eight tasks. Independent variables are inner

nodes, and tasks are presented as leaves.

https://doi.org/10.1371/journal.pone.0184682.g004
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optimal outcome (e.g., looking in the target direction or standing at the target location). Scores

on the dynamic tasks were computed by accumulating error at each time step based on

whether the participants’ action was optimal (e.g., bringing them closer to view the target

direction or moving them closer to the goal location; see S1 Code).

In order to calculate the final error of a participants’ rotation, we defined the absolute value

for the angle εr between the participants’ viewing direction αp and the direction towards the

goal from their location αg. In addition, we mapped degrees onto the interval [0, 1] as shown

in Eq (2). The error measure semantically defines 0 as looking directly at the goal and 1 as

looking in the exact opposite direction of the goal.

εr ¼
absðap � agÞ

180
ð2Þ

To measure a term εΔrt of the cumulative direction error εΔr, a simple sign function δr
returned 1 if the participants rotated towards the goal, −1 if they turned away from the goal,

and 0 if they remained static. Here again, we map the sign function results onto the interval

[0, 1]. This refers to the rotation in degrees that participants performed between two sequential

measures in time [t, t + 1] as shown in Eq (3). To obtain the cumulative direction error, the

direction error at each time step εΔrt is summed and divided by the number of time steps T in

a task, as shown in Eq (4).

εDrt ¼
dtr þ 1

2
Dap ð3Þ

εDr ¼
1

T

XT

t¼1

εDrt ð4Þ

The final distance error is the ratio of the participant’s start distance to the goal ds (i.e., the

location at the beginning of the task) to their end distance to the goal de (i.e., the location at the

time when the participant pressed the trigger to indicate the completion of a task). The starting

point refers to the participants’ location at the beginning of the task, and the end point refers

to the participants’ location at the time when they pressed the trigger indicating that they com-

pleted the task. In addition, an offset of δc = 4m (equivalent to the distance between the partici-

pant and the centre of the catchment area) was used to account for the catchment area. The

resulting error measure εd, as shown in Eq (5), was also mapped onto the interval [0, 1]. An

error of 1 indicated that the participants kept a distance equal to or larger than the start dis-

tance ds to the goal. An error of 0 indicated that a participant reached the goal up to the preci-

sion of the catchment area.

εd ¼ min 1; abs
de � dc

ds � dc

� �� �

ð5Þ

To measure the term εΔdt in the cumulative distance error εΔd, the optimal distance dopt
that participants’ could have reached with Δdp was compared to the actual distance d0p that they

reached in the following time step. Here, Δdp refers to the distance in meters that the partici-

pant moved between two sequential measures in time. The results are mapped onto the inter-

val [0, 1] by dividing by 2Δdp (see Eq (6)). To obtain the cumulative direction error, each εΔdt
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is summed up and divided by the number of time steps T in a task (see Eq (7)).

εDdt ¼
d0p � dopt

2Ddp
ð6Þ

εDd ¼
1

T

XT

t¼1

εDdt ð7Þ

Regularised Exploratory Factor Analysis. Developed by Jung and Takane [63], Regu-

larised Exploratory Factor Analysis (REFA) can be used with small sample sizes (n < 50)

that may cause erratic behaviour in other types of Exploratory Factor Analysis (EFA) or

Principal Component Analysis (PCA). With small sample sizes, the sample covariance

matrix tends to be near singular and numerically ill-conditioned, which makes the applica-

tion of EFA difficult. Furthermore, PCA is not always appropriate because it does not model

measurement errors [64, 66]. For REFA, it is assumed that the unique variance C is propor-

tional to a tentative estimate of C. This estimate is adjusted via the regularisation parameter

λ [63]. For the present study, we adopted the one-parameter maximum likelihood (ML) esti-

mation method under the anti-image assumption (ML REFA) [64]. ML REFA produces bet-

ter results for small samples than other approaches [63] including unbiased estimates of

factor loadings, smaller standard deviations, and smaller mean squared errors (MSEs). To

estimate the number of factors, permutation tests (equivalent to parallel analysis) were

employed [64, 67]. The resulting factors were then rotated using an oblique geomin rotation

[68].

We applied REFA in order to identify the underlying factors of participants’ perfor-

mance in the eight tasks. For each of the eight simple tasks, a standard score zpi was

aggregated for the five repetitions. The error εpi (see Eq (8)) was used to compute the stan-

dardised score (see Eq (9)). For purely directional tasks, the sum of the final direction error

and cumulative direction error equals zero. Thus, those tasks were divided by 2 rather

than 4.

εpi ¼
εr þ εDr þ εd þ εDd

4
ð8Þ

zpi ¼
εpi � m

s
ð9Þ

We used the standardised scores across all eight tasks as input to the REFA Matlab library

provided by [64] and computed communalities to assess the quality of the factor analysis. The

communality hi indicates the variance of a task i explained by the loading lj i in all m factors

[69] (see Eq (10)). We then computed the total communality ht (see Eq (11)) and the mean
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communality hm (see Eq (12)) that indicate the total variance that the factors can explain.

hi ¼
Xm

j¼1

l2ji ð10Þ

ht ¼
Xm

j¼1

hi ð11Þ

hm ¼
ht

m
ð12Þ

Results

The results are divided into three sections. First, we present the results of the Navigation and

Simple Tasks Phases. Then, we relate performance from the Simple Tasks Phase to perfor-

mance in the Navigation Phase using both REFA and regression analysis.

Navigation Phase

Given that we deliberately randomised the order of trials during learning (but not testing), we

could not compare navigation performance across blocks in terms of time or deviations from

the optimal path. To test for learning in the Navigation Phase, we performed a repeated

measures ANOVA with a Greenhouse-Geisser correction [70] for a violation of sphericity

and found a difference among the three blocks in terms of the number of trigger presses,

(F(1.39, 26.35) = 53.86, MSE = 2324.42, p< .001). Two-tailed pairwise contrasts revealed sig-

nificant differences between trigger presses in block 1 (M = 24.15, SD = 8.88) and block 2

(M = 12.10, SD = 7.75; F1,19 = 40.48, MSE = 71.73, p< .001, d = 1.45) and between trigger

presses in block 2 and block 3 (M = 6.60, SD = 7.38; F(1, 19) = 28.81, MSE = 21.00, p< .001,

d = 0.73).

Participants required a mean of 65.69 seconds (SD = 4.85) to complete the testing block

with a mean distance error ratio of 1.13 (SD = 0.09). A two-tailed, one-sample t-test comparing

the average distance error ratio to one revealed a significant difference (t19 = 6.86, se = 0.02,

p< .001, d = 1.53).

The two-tailed correlation between SBSOD and mean distance error ratio from the testing

block was not significant (r18 = .22, p = .35).

Fig 5 presents the best and worst performing participants’ routes in the testing phase.

Simple Tasks Phase

In order to obtain a better estimate of participants’ performances for the eight simple tasks, we

consider performance aggregated across all trial types (see Table 1).

In terms of both performance and time, participants tended to have more difficulties (i.e.,

less accurate and slower) with the allocentric and memory tasks than with the egocentric and

perceptual tasks. However, these differences must be interpreted with caution because there

are exceptions. For example, performance on the rotate task was lower than the rotate with

map task, although participants were fastest when completing the rotate task overall. In addi-

tion, the rotate, move, and chase tasks were very similar in terms of completion time but

exhibit very different spatial error patterns (see Fig 6). For this reason, we will focus the
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remaining analyses on performance error. Rather than comparing these tasks directly, we will

assess them with respect to their abilities to predict navigation performance.

Relationship between navigation and simple tasks

We performed REFA to attempt to reduce the dimensionality of the data from the eight simple

tasks. Permutation tests [64] suggested that the first three factors of the REFA were significant.

A simple structure [71, p. 140ff] for a factor analysis reduces dependency between the factors

by rotating all of them by the same amount. A rotated factor is considered simply structured if

some dimensions are zero (or close to zero in a more relaxed form), and better rotations pro-

duce the higher number of zero elements in all factors [72, p. 115ff]. With a geomin rotation

[68], we obtained three sets of factors that satisfy the simple structure assumption. All three

sets equally represent the underlying factor solution [72], but we focus on Set 1 for two rea-

sons. First, following the goal of Thurstone’s simple structure assumption [71], we can provide

a theoretical interpretation for the underlying factors in Set 1. Second, Set 1 was the only set of

Fig 5. Paths of best and worst participants during testing. The blue line traces the path of the best-

performing participant. No wrong turn was taken and nearly no deviations occurred on straight paths. The red

line traces the path of the worst-performing participant. Many wrong turns and unnecessary deviations from

straight paths can be observed.

https://doi.org/10.1371/journal.pone.0184682.g005

Table 1. Descriptive statistics for simple tasks.

Task Performance Time

Mean Median SD Mean Median SD

Rotate .203 .186 .069 7.00 6.81 1.73

Move .074 .024 .078 8.73 8.57 2.05

Rotate with map .186 .180 .101 50.08 49.03 1.73

Move with map .208 .171 .103 53.96 51.95 15.96

Rotate from memory .209 .201 .065 21.00 19.16 6.72

Move from memory .136 .135 .057 10.00 10.03 1.13

Chase .191 .149 .107 9.58 9.52 1.41

Chase with map .321 .309 .101 15.17 15.75 3.72

Means, medians, and standard deviations for both performance (i.e., the combined spatial error measure; see Eq 8) and time for each of the eight simple

tasks.

https://doi.org/10.1371/journal.pone.0184682.t001
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factors that produced a significant result under robust regression. See Table 2 for the commu-

nalities of all three sets, and Table 3 for the results of the robust regressions.

We considered loading strengths above a conservative threshold of.6 [73, p. 101]. Accord-

ing to Jung and Lee [64], the factor analysis resulted in a relatively wide range of communali-

ties (from .339 to .746; see Table 2). Total communality (ht = 4.567) indicated that our factors

explain 57.1% of overall variation in participants’ performance. Three of the tasks resulted in

high communality (rotate with map, move with map, and rotate from memory) above the high

threshold of .6, and four of the other tasks resulted in communalities above the low threshold

of .4 (rotate, move, move from memory, and chase with map). The chase task was the only task

with a communality below .4 (.339), suggesting a low correlation with each of the other tasks.

The REFA results for Set 1 exhibit two notable patterns that are also reflected in the correla-

tion matrix of performances on the eight simple tasks (Fig 7). First, the rotate from memory

and chase with map tasks both have high loadings for the second factor for each REFA set. The

Fig 6. Three exemplary trial results from the simple task phase. The blue circle indicates the target sphere. The green circle/line

indicates the position of the participant. The orange line indicates the viewing direction via the location of the catchment area. If a participant

or sphere moves, the S indicates the starting location and the E indicates the end location. (a) Rotation from Memory (RFM): The participant

rotates back and forth between two spheres. (b) Move with Map (MWM): The participant rotates in the beginning, moves towards the target,

and then rotates again. In the end, the participant is slightly inaccurate with respect to the target’s location. (c) Chase (CHA): The participant

rotates in the beginning to find the sphere and then intercepts it.

https://doi.org/10.1371/journal.pone.0184682.g006

Table 2. Communalities and factors of REFA.

Task Set 1 Set 2 Set 3 C

F1 F2 F3 F1 F2 F3 F1 F2 F3

ROT −.042 −.392 .522 .705 .096 .265 −.406 −.081 .484 .424

MOV .592 −.024 −.322 −.547 .478 .045 .619 .431 −.016 .593

RWM .536 .546 −.252 −.768 −.039 .201 .827 −.066 −.198 .746

MWM .715 .440 .020 −.546 .047 .458 .841 −.119 .083 .709

RFM .043 −.680 −.374 .012 .712 −.406 −.172 .788 .013 .641

MFM .831 −.032 .325 −.066 .377 .624 .609 .061 .501 .599

CHA −.166 −.086 −.610 −.430 .203 −.538 .017 .438 −.434 .339

CWM .356 −.619 −.043 .135 .717 −.004 .025 .610 .316 .516

The REFA produced three sets, each composed of three significant factors (F1, F2, F3) with wide communalities. Loading strengths above a conservative

threshold of .6 [73, p. 101] are in bold. The communalities (C) for the three sets were identical because each set represents the same underlying unrotated

factor under a geomin rotation.

https://doi.org/10.1371/journal.pone.0184682.t002
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correlation between rotate from memory and chase with map performances is also significant

(r18 = .549, p = .012). Second, the chase task is the only task that did not correlate with any

other tasks (all ps> .16) and is also the only task with a high loading for factor three of the first

REFA set. Move from memory is the only task with a high loading for factor three of the third

REFA set, although move from memory was significantly correlated with move (r18 = .466,

p = .039) and move with map (r18 = .517, p = .017).

We then performed separate regressions for predefined categories of tasks (e.g., egocentric,

perceived) and each of the REFA factors on the mean distance error ratios from the Navigation

Phase. White’s test for heteroscedasticity [75] revealed that the residuals resulting from the

regression of the third REFA factor from the first set on mean distance error ratios was hetero-

scedastic (r2 = .37, White = 7.47, p = .02). Individual White’s tests on the residuals of all other

predefined and REFA factors (for all three sets) were not significant (all ps> .2). For consis-

tency, we used robust regressions to test for relationships between each predefined and REFA

factor and mean distance error ratios. Robust regressions for the effects of seven of the eight

predefined factors on the mean distance error ratios were not significant (see Table 3). How-

ever, a robust regression for the effect of mean performance for the dynamic tasks on the

mean distance error ratios was significant (w2
1
¼ 5:47, β = 0.80, p = .019, uncorrected for multi-

ple comparisons). Additional robust regressions for the effects of each REFA factor of each set

were not significant (see Table 3), except for the third factor of the first set (w2
1
¼ 10:55,

β = .85, p = .001). This relationship survives a Šidák correction [76] for alpha inflation

(α = .016). Consistent with the significant effect of dynamic tasks on mean distance error

ratios, this REFA factor represents only the chase task.

Discussion

In this study, we investigated the relationships between eight spatial tasks and navigation per-

formance in virtual reality (VR). These eight tasks were designed in accordance with four

Table 3. Performance measures for participants.

Type Factor χ2 β p-value

Confirmatory Egocentric 2.291 0.810 .130

Allocentric 0.019 0.051 .890

Distance 0.050 −0.091 .822

Direction 0.026 −0.087 .872

Perceived 0.950 0.485 .330

Remembered 0.113 0.152 .737

Static 0.055 −0.124 .815

Dynamic 5.473 0.800 .019

Exploratory Set 1 F1 0.399 −0.110 .527

Set 1 F2 .968 −0.212 .325

Set 1 F3 10.550 −0.850 .001

Set 2 F1 0.716 −0.142 .397

Set 2 F2 0.900 0.183 .343

Set 2 F3 0.880 −0.442 .348

Set 3 F1 0.009 −0.009 .923

Set 3 F2 1.082 0.213 .298

Results of the robust regressions for both confirmatory (i.e., theoretically defined) and exploratory (i.e., derived using REFA) analyses. With a Šidák

correction (p < .006), only Set 1 F3 (composed of only the chase task) significantly predicts the mean distance error ratios.

https://doi.org/10.1371/journal.pone.0184682.t003
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orthogonal dimensions based on previous research (static/dynamic, [37]; perceived/remem-

bered, [14]; egocentric/allocentric, [30]; distance/direction, [56]). This approach was adopted

in order to provide evidence for or against particular two-systems theories and to determine

whether theories of navigation can be reduced to one predictor or require additional factors.

Together with this confirmatory analysis, we also attempted to reduce the dimensionality of

the model by conducting a regularised exploratory factor analysis (REFA). Both the confirma-

tory and exploratory factors were then used to predict the participants’ navigation perfor-

mance with robust regressions. The confirmatory analysis determined that only the dynamic

factor (composed of chase and chase with map tasks) significantly predicted navigation

(uncorrected for multiple comparisons). In addition, the exploratory analysis revealed that the

Fig 7. Correlations and REFA factors. This visualisation exhibits the first set of REFA factor loadings at the

top and the correlation matrix at the bottom. Each column in the top part corresponds to the same column in

the matrix. The loading strengths of each factor are colour-coded according to whether they are positive (blue)

or negative (orange). The conservative loading threshold of .6 [73] is shown as a dashed line, and any loading

above that threshold is considered meaningful. In the correlation matrix, any significant correlation (p < .05,

abs(ρ20) = .42) is coloured. The visualisation is based on [74] (see S2 Code).

https://doi.org/10.1371/journal.pone.0184682.g007
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chase task by itself was the only significant predictor after a Šidák correction. These results

suggest that navigation in VR may be best explained by a dynamic, egocentric task that

requires the perception of distances and directions.

Unlike previous studies [77], we explicitly devised an error score that accounts for both

accumulated and final errors for all eight simple tasks, see Eq 8. This error score includes accu-

mulated error as a means of revealing the process of solving the task. For example, participants

sometimes accumulated large errors in the static direction tasks by rotating in place more than

was necessary before responding. Such behaviour would not have been detected by consider-

ing only the final error. Because we weighted the various error score components (see Eq 8),

no advantage was given to the dynamic tasks. At the same time, cumulative error was neces-

sary for scoring the dynamic tasks given that they required the continuous integration of dis-

tance and direction information.

Previous research has largely neglected dynamic spatial tasks and has focused instead on

tasks in static environments in which only the user moves [1, 32–34]. This work has been criti-

cal for investigations of spatial memory but may overemphasise the role of representation

(compared to the role of direct perception) during navigation [12]. Our results suggest that,

even in a familiar environment, a dynamic chase task that relied primarily on locomotion was

a better predictor of navigation performance than typical measures of spatial memory (e.g.,

distance and direction estimation). Because participants could not have predicted the direction

of the target sphere’s movement, the chase task did not rely on spatial memory. Rather than

implying that spatial memory is not important for navigation (as in [12]), participants most

likely developed representations that were relatively basic but consistent with each other. At

the same time, participants’ performances on the chase task required the coordination of visual

input with the manipulation of the HID and may have been more variable. Similar to homing

in aviation, the interception of a randomly moving sphere required the observer to orient so

that the target was at the centre of the expanding optic flow [36]. Instead of spatial memory,

the chase task relied on a combination of perceived distances and directions, which is typical

of locomotion in real environments.

The extent to which a chase task may predict navigation through a real environment has yet

to be investigated independent of spatial memory. Conceptually, such a chase task could

resemble the avoidance of other people in crowded environments during locomotion (e.g.,

[78, 79]). For example, Moussaid and colleagues [79] have developed a cognitively inspired

model of pedestrian dynamics in order to explain crowd phenomena such as spontaneous lane

formation. These experiments constitute an important aspect of research in spatial cognition

but have not been studied in the context of large-scale navigation. Future studies could relate

the avoidance of crowds to navigation behaviours (e.g., route choice) in a large public space

(e.g., a shopping mall).

In real environments, locomotion is nearly automatic because walking is typically learned

at an early age and continuously reinforced. However, the interaction between the user and a

virtual environment is mediated by a human interface device (HID). Indeed, this additional

layer of abstraction must be learned before users can efficiently interact with the virtual envi-

ronment [5, 80]. For example, McKinley, McIntire, and Funke [80] found that expert video

game players can control a virtual unmanned aerial system to a similar level as trained pilots

and better than people with little to no gaming experience. This pattern of performances sug-

gests that prior experience with an HID (for both pilots and gamers) can facilitate interaction

with a virtual environment.

In the context of navigation, individual differences in users’ abilities to mannoeuvre with an

HID may confound differences in spatial learning. In other words, inferences regarding the

development of spatial representation with navigation experience in VR may sometimes be
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attributable to participants’ abilities to interact with an HID. The relationship between HID

interaction and navigation performance may be especially relevant when the virtual environ-

ment is over-learned. In the present study, participants were highly familiar with the virtual

environment before the beginning of the testing block of the Navigation Phase. This is indi-

cated by the monotonic decrease in trigger presses across training blocks. Indeed, some partic-

ipants were able to complete the third training block without calling the guiding arrow.

Future studies should ensure that participants are well-trained with the HID and that their

abilities to use the HID is properly assessed. Training may reduce the HID’s impact on naviga-

tion performance in VR, while assessment can allow researchers to draw inferences regarding

spatial learning. Here, our chase task and cumulative error may be especially useful. This

approach may also be used for ambulatory VR setups (e.g., treadmills, [81]; large-tracking

spaces, [82]). These setups have the advantage of more realistic control over the observer’s

movement by providing proprioceptive feedback [83]. For example, Kearns and colleagues

[83] found that optic flow can be sufficient for solving a triangle completion task with a joy-

stick, but proprioceptive feedback during walking reduced variability in participants’

responses. Despite this advantage, most ambulatory VR setups are limited in space or still

require the user to adapt their gait (e.g., walking in place, [84]; redirected walking, [85]). As

such, training and assessment with an HID may be necessary for any experiment involving

navigation in VR.

Supporting information

S1 File. Instructions for participants. Text handed out to the participants before the experi-

ment.

(ODT)

S1 Video. Summary of tasks in all phases. In four minutes, we show extract of all the phases

the participants completed and show exemplary tasks within the phases.

(MP4)

S1 Data. Database export. Export of the participant data, ready for loading into Matlab.

(MAT)

S2 Data. CSV data set. Transformed data ready for analysis in statistical software such as R or

SPSS.

(CSV)

S1 Code. Matlab code. Code used for data processing in Matlab.

(ZIP)

S2 Code. R script for correlation/loading visualisation. Short script to visualise the factor

loadings and correlation matrix based on the design used by [74] and adapted for our purpose.

Detailed instructions on how to create such a visualisation can be found at http://rpubs.com/

danmirman/plotting_factor_analysis.

(R)

Acknowledgments

We thank Dario Meloni for running most of the participants involved in the study. The scripts

for the REFA analysis were kindly provided by Sunho Jung and are available on request [63,

64, 66]. We also thank William G. Jacoby for discussing the analysis and presentation of the

factors with us.

Predicting navigation performance in virtual reality

PLOS ONE | https://doi.org/10.1371/journal.pone.0184682 September 15, 2017 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184682.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184682.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184682.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184682.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184682.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0184682.s006
http://rpubs.com/danmirman/plotting_factor_analysis
http://rpubs.com/danmirman/plotting_factor_analysis
https://doi.org/10.1371/journal.pone.0184682


Author Contributions
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Supervision: Jascha Grübel, Tyler Thrash, Christoph Hölscher, Victor R. Schinazi.
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