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Abstract

The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to
some of the most biologically challenging waters on Earth. In this study, we employed meta-
genomic shotgun sequencing to generate a microbial profile of the depositional environ-
ment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality
reads generated, 0.25 M were mapped to protein features, which in turn provide new in-
sights into the metabolic function of this community. In particular, 45 diverse genes associ-
ated with sulfur metabolism were identified, the majority of which were linked to either the
conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite
or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) sys-
tem. This is the first metagenomic study of an acidic, hypersaline depositional environment,
and we present evidence for a surprisingly high level of microbial diversity. Our findings also
illuminate the possibility that we may be meaningfully underestimating the effects of biology
on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of
past geobiological conditions that may have been present on Earth as well as early Mars.

Introduction

Acidic brine lakes are not common, and those that occur naturally are relatively new to scientific
study [1, 2]. While the microbial communities in saline environments have been characterized
many times [3-7], as have those in environments associated with acidic hot springs and acid mine
drainage [8-11], much work remains to be done in understanding the microbial communities in
acid salt lakes, where organisms must contend not only with tremendous salinity but also with
extreme proton pressure [12, 13]. In addition, acid salt lakes are often associated with complex
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geochemistry, water stress due to desiccation, dramatic diurnal temperature changes, and high
levels of solar radiation. These environments are of particular interest as a source of novel genetic
diversity and the understanding of life in conditions of relevance to Earth’s past. For instance, evi-
dence of ancient and widespread acid salt lake and groundwater systems has been recently uncov-
ered over much of the North American mid-continent [14, 15]. These discoveries have prompted
a reevaluation of how past surface conditions can be reconstructed along with further investiga-
tions into the geochemistry and ecology of acid saline systems in general [14, 16].

One of the few places that acid salt lakes occur naturally is within the Yilgarn Craton of
Western Australia. The craton is comprised primarily of deeply weathered Achaean rocks,
with red siliciclastic and reworked chemical sediment hosting ephemeral saline lakes [1, 17,
18]. The host rocks include granites, granodiorites, gneisses, anorthosites, quartzites, and iron-
stones along with some mafic and ultramafic rocks which are present as greenstone belts [1].
Amid this Precambrian bedrock, a regional acid brine groundwater system supplies water to
dozens of shallow and ephemeral lakes [18]. The lakes range from several square meters to sev-
eral square kilometers in size with pHs as low as 1.5 and salinities as high as 32% of total dis-
solved solids [1]. Here we focus on the physical and biological characteristics of one such
inland lake in the Yilgarn Craton, located at 33° 25.567 S, 121° 41.343 E, just east of Grass
Patch, Western Australia (Fig 1). Like others in the region, it is marked by abundant aluminum
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Fig 1. Sampling context. (a) A map of the Yilgarn Craton in Western Australia showing the location of the acid salt lake sampled. (b) At the time of sampling,
the acid salt lake was at a stage of evapoconcentration with a maximum depth of 20 cm. (c) Bedding plane of the sampling site, below a 5mm efflorescent
halite crust. (d) Within the bulk sediment sample, three distinctive layers were subsampled for VNIR spectroscopy and SEM analysis (orange, green, and

black). Arrow indicates stratigraphic up.

doi:10.1371/journal.pone.0122869.g001
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phyllosilicates, chloride, sulfate (including alunite) and iron oxide minerals as well as an ab-
sence of carbonates [18, 19]. The lake sediment provides an intriguing matrix of nutrients and
solid surfaces for microbial growth. The silicate sediments contain quartz and a variety of clays,
and cements coating the silicates include variable iron oxides, chloride, and calcium and mag-
nesium sulfates, as described further herein. Previous geochemical measurements on lake
water and groundwater at this lake indicate high levels of dissolved major ions and elements
(up to 28,900 mg/L sodium, up to 2720 mg/L magnesium, up to 42,300 mg/L chlorine, up to
5000 mg/L sulfate, up to 399 mg/L potassium, up to 436 mg/L calcium, up to 136 mg/L bro-
mide, up to 220 mg/L silica, up to 331 mg/L aluminum, up to 42 mg/L iron, and an undetect-
able level of bicarbonate) [20]. In 2005 and 2006, the lake water pH was recorded at 2.7 and 3.3
[20]; field measurements indicated that the lake water pH was 3.6 at the time of our sample col-
lection, similar to field measurements taken in 2001.

While many studies of extreme environments have focused on 16S rRNA gene analysis, ad-
vances in sequencing technology, metagenomic approaches, and analytical tools provide a
more detailed look into the environmental gene pool and potential functions of biogeochemical
relevance within a microbial community. While metagenomics has its limitations—laboratory-
based experiments can provide more definitive information on the relative importance of
specific genes and organisms in an environment—the approach nevertheless illuminates the
functional coding potential of microbes within an ecosystem, especially important in light of
the fact that the vast majority of prokaryotes are thought to be uncultivable in the laboratory
[21]. Here we use high-throughput DNA sequencing and analysis to examine the taxonomic
structure of the microbial community of this acid salt lake as well as its metabolic potential. In
order to provide a robust geologic context for the energy harvesting and cell building pathways
available to microorganisms living within the sediment matrix, we also analyze the mineralogy
of siliciclastic sediments with visible/near-infrared (VNIR) spectroscopy, x-ray diffraction
(XRD), and scanning electron microscopy (SEM).

Materials and Methods
Ethics statement

No endangered or protected species were involved in this investigation. Field studies permissions
were obtained from the Geological Survey of Western Australia (First Floor Mineral House, 100
Plain Street, East Perth WA 6004), and samples collected complied with all provisions of the
Australian Commonwealth Government Protection of Movable Cultural Heritage Act (1909).
The importation of rocks and sediment into the United States was permitted under the United
States Department of Agriculture’s APHIS guidelines (Permit Number P330-10-00014).

Sample collection

Sediment samples were collected from saline sandflat/mudflat facies flanking the lake during the
austral fall when the lake was in an evapoconcentration stage. The lake water was approximately
20 cm deep at maximum depth, with pH and salinity measured at 3.6 and 46 g/1 respectively.
The lake is fed by a combination of acid saline groundwater and meteoric waters [20], and al-
though the shallow groundwater was not specifically measured, the pH and salinity of the
groundwater have been shown in previous studies to be similar to that of the lake water in the
evapoconcentration stage [1, 20]. At the time of sampling, much of the lakebed was covered by
millimeter-scale efflorescent evaporite halite crystals, forming a crust ranging from a few milli-
meters to several centimeters in depth that was broken into polygonal expansion ridges. The
sediment we sampled consisted of sand and mud-sized grains located below approximately five
millimeters of subaerial halite crust at the groundwater table interface (Fig 1). The sediment was

PLOS ONE | DOI:10.1371/journal.pone.0122869 April 29, 2015 3/19



@'PLOS ‘ ONE

The Metagenome of an Acid Salt Lake

split into a bulk sample for biological and XRD analysis and into three discrete subsamples of
layers whose colors varied over a depth of approximately one centimeter (an orange sample, a
green sample, and a black sample) for VNIR spectroscopy and SEM analysis. The sediment for
biological analysis was collected in Nasco (Fort Atkinson, WI, USA) whirl-pak bags using sterile
techniques. It was frozen immediately upon collection and during transit to the United States,
and then promptly transferred to a -80°C laboratory freezer.

Mineralogy

The physical properties and chemical composition of the sediment were determined using a
combination of techniques. VNIR spectroscopy using reflected light from 0.4-2.5 pm was used
to assess subsample mineralogy by diagnostic absorptions in spectra [22]. Samples were mea-
sured for reconnaissance in the field and then remeasured in the laboratory relative to a spec-
tralon reflectance standard using an Analytical Spectral Devices (ASD) (Boulder, CO, USA)
FieldSpec3 with contact probe attachment. XRD of the bulk sample was used to determine
both quantitative bulk mineralogy and clay mineralogy. Analyses were performed under con-
tract with K-T Geoservices Company (Gunnison, CO, USA) for both the bulk sample and the
fine (<4 um) fraction. Ethylene glycol treatment was used to search for the presence of swelling
clays. Bulk mineralogy of crystalline and non-swelling phases was estimated using Rietveld
refinement. Finally, a 1550 VP Field Emission SEM from Zeiss (Oberkochen, Germany)
equipped with an X-Max SDD X-ray Energy Dispersive Spectrometer system from Oxford In-
struments (Abingdon, United Kingdom) was used, operating the beam at 10 kV, to study mi-
cron-scale textures along with the chemistry of the three subsamples.

DNA extraction and sequencing library construction

DNA was extracted in triplicate from the sediment using a modified PowerLyzer PowerSoil
protocol for DNA from low biomass soil from MO BIO Laboratories (Carlsbad, CA, USA).
Throughout the DNA extraction, preparation, and sequencing processes, a negative control
without DNA was employed to monitor for contamination. Starting with the dry glass bead
tube from the PowerLyzer PowerSoil Kit from MO BIO Laboratories (Carlsbad, CA, USA),
0.25 g of sediment was added to 500 pl of Bead Solution and 200 ul of phenol:chloroform:isoa-
myl alcohol pH 7-8 from Amresco (Solon, OH, USA). Next, 60 ul of Solution C1 was added,
vortexed, and centrifuged at one minute full speed to obtain a pellet. The supernatant was re-
moved and added to the new tube and combined with 100 pl of Solution C2. Then 100 pl of
Solution C3 was added and mixed, then incubated at 4°C for 5 minutes. The mixture was cen-
trifuged at one minute full speed to obtain a pellet. The supernatant (~650 pl) was transferred
to a new tube and combined with 650 ul of Solution C4 and 650 ul of 100% ethanol. The lysate
was loaded 650 pl at a time and bound to the spin column in three steps, alternating with cen-
trifugation. The membrane was then washed with 650 pl of 100% ethanol and then 500 ul of
Solution C5. The spin column was centrifuged at two minutes full speed, then transferred to a
clean tube. The DNA was eluted in 60 pl of Solution C6.

The DNA was quantified using a Qubit dsDNA High Sensitivity Assay from Life Technolo-
gies (Carlsbad, CA, USA). 130 pl of DNA was sheared to a size of 300-500 bp in a Covaris Inc.
(Woburn, MA, USA) microtube using a Covaris Inc. (Woburn, MA, USA) LE220 instrument
(fill level: 10; duty cycle: 15, PIP: 500, cycles/burst: 200, time: 58 sec). A solid-phase reversible
immobilization (SPRI) was performed using AMPure XP beads from Beckman Coulter (Brea,
CA, USA) with a 1x volumetric ratio [23]. After ethanol washes, DNA was end repaired “with-
bead” with a 100 pl master mix including 88 ul of 1x T4 DNA ligase buffer from New England
Biolabs (NEB) (Ipswich, MA, USA), 2 pl of 25 mM dNTP mix, 5 ul of 10 U/ul T4 PNK (NEB),
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4 pl of 3 U/pul T4 DNA polymerase I (NEB), and 1 ul of 5 U/ul Klenow fragment of DNA poly-
merase I (NEB). The DNA library/bead suspension was incubated at room temperature for 30
minutes. Again, a 1x SPRI was performed with a “with-bead” A-tailing 100 pl master mix in-
cluding 90 pl of 1x NEBuffer 2 (NEB), 5 pl of 10 mM dATP, and 5 pl of 5 U/ul Exo-Minus Kle-
now DNA Polymerase (NEB) and left to incubate at 37°C for 30 minutes. A 1x SPRI cleanup
was performed with an elution in 100 uL of 1x NEB ligation buffer (NEB). Next, 2 ul of NEB
DNA Quick Ligase (NEB) and 3 pl of indexed DNA adapters (Illumina, San Diego, CA, USA)
were added and mixed thoroughly. The mixture was incubated at room temperature for 15
minutes. Finally, a 1.0x SPRI was again performed with an elution in 50 pL of 1x Tris buffer
(10 mM Tris-Cl, pH 8).

The library was amplified using a TruSeq DNA HT Sample Preparation Kit (Illumina, San
Diego, CA USA) following the TruSeq DNA Sample Preparation Guide (#15026486 Rev. C,
July 2012). PCR conditions were as follows: denaturation at 98°C for 30 sec; 10 cycles of 98°C
for 10 sec, 60°C for 30 sec, and 72°C for 30 sec; and final extension at 72°C for 5 min. After am-
plification was complete, a 1:5 dilution of DNA was run on a 2% agarose gel to verify that the
amplification was successful.

A 0.5x volume of AMPure XP beads (Beckman Coulter, Brea, CA, USA) were incubated
with the sample to selectively bind fragments >~600 bp. A 0.13x SPRI using 40 pL of fresh
beads was performed on the previous supernatant to remove the excess adapter with an elution
of 25 uL of 1x Tris buffer. After incubation at room temperature for 5 minutes and separation
using a magnet, the solution—the final DNA library, ready for sequencing—was transferred to
a fresh 1.5 ml tube.

Sequencing

The DNA library was sequenced on an Illumina (San Diego, CA, USA) MiSeq platform at the
Broad Institute in Cambridge, Massachusetts using a MiSeq Reagent Kit 300 v2 (Illumina, San
Diego, CA, USA) to generate paired-end, 2x100 bp reads. The sequences are publicly available
on the NCBI server under project ID PRJNA260488.

Taxonomic characterization

Generated reads were processed via the metAMOS assembly and analysis pipeline [24]. Reads
were filtered for quality by metAMOS (1,495,660 out of 1,953,351, or 76.6%, passed QC)

and were assembled using SOAPdenovo [25] and mapped by Bowtie2 [26]. Open reading
frames were predicted by FragGeneScan [27]. Repeats were identified and consolidated by
Repeatoire [28]. The remaining contigs were annotated via BLAST [29], and MetaPhyler [30]
was used to assign taxonomic classifiers. Different thresholds were used for each of these pa-
rameters, which were automatically learned from the structure of the reference database, re-
flecting the fact individual bacterial genomes and proteins can have different evolutionary
rates, and that metagenomic reads contain gene fragments of different lengths [30]. Scaffolds
were created by Bambus2 [31] and functional annotation was again processed using BLAST.
Full-length rRNA sequences were used, and chimeric sequences were filtered out as described
in [24] during Bambus2 assembly. Taxonomic information was visualized using Krona [32].

Pathway annotation and analysis

Raw sequencing reads with quality scores lower than 20 were removed by Fastq Groomer and
Fastq Quality Trimmer on the GALAXY webserver [33]. Sequences were then error-corrected
by Musket [34] and extended by FLASh [35]. Extended and non-extended reads were aligned
to the KOBAS Orthology (KO) database [36] (based on the Kyoto Encyclopedia of Genes and
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Genomes database; KEGG [37]) by BLASTX with an e-value cutoff of 1e-5. Results were ana-
lyzed by the KOBAS 2.0 webserver annotation pipeline [36]. These annotations were used to
map reads to KEGG pathways and to functionally profile reads mapping to genes involved in
sulfur reduction and oxidation by custom perl scripts (freely available at http://github.com/
chevrm/kopilot). Pathways were totaled, characterized according to their KEGG functional
designation, and visualized as fraction of total reads. For additional genes that have recently
been identified as important in sulfur turnover [38], protein sequences were retrieved from the
NCBI nr database and built into a protein BLAST database. A 6-frame translated query of
reads was queried against this database by BLASTX with an e-value cutoff of le-5. Results were
searched against the UNIPROT/SWISSPROT [39] database, and top hits were used to confirm
search specificity. Confirmed hits were assigned taxon designations via KRAKEN [40].

Results and Discussion
Mineralogy

Silicate minerals, which could be detrital or authigenic, comprised half the sediment with the
remainder composed of clearly authigenic iron oxides, sulfate salts, and chloride salts (Fig 2).
Grain sizes ranged from the hundreds of microns to ~10 microns. Chloride, sulfate, and iron
oxide minerals occurred on and around the surfaces of the silicates (Fig 3). SEM analysis sug-
gested some of the silicates could have feldspar-like chemical compositions, but XRD and
VNIR spectroscopy analyses instead indicated secondary minerals, such as the phyllosilicates
kaolinite and illite. Smectite clays were absent based on a lack of swelling behavior upon ethyl-
ene glycol treatment (Fig 2b). Though detected with XRD, no discrete grains of quartz were ob-
served in SEM; these may have been obscured by coatings of precipitated phases.

Iron oxides coated surfaces and also appeared as precipitates (Fig 3b). Interestingly, the
composition of the iron oxides appeared to vary by sample. XRD identified goethtite in the
bulk sample, though very fine-grained iron oxides often precluded detection by XRD. VNIR
spectroscopy showed clear variation in the presence and type of iron oxide between the differ-
ent subsamples. Absorptions in the bulk sample and black sample were consistent with the
presence of hematite, while the orange sample had a hydroxylated iron oxide like goethite, feri-
hydrite, or lepidocrocite (Fig 2c). Interestingly, there were some small sharp absorptions from
0.6-0.7 um that did not correspond to absorption features in minerals and may be consistent
with pigments in microbes [41]. Approximately half the sediment sample was comprised of
evaporite minerals, and sometimes evaporite minerals were observed to entomb all other sili-
cate grains, as with sodium chloride (Fig 3c). Laths of precipitated gypsum, less abundant, were
found in all the subsamples. Magnesium sulfates, not detected in XRD, were found in the black
sample with SEM but were not observed in other samples. Collectively, phyllosilicates and
chlorides were quite similar across samples. Variability in sulfate cation and iron oxide phases
may be recording chemical reactions occurring within the upper centimeter of sediment near
the sediment-water interface.

DNA sequencing

The DNA sequencing from the lake’s surface sediment generated 1.9 million sequence reads
(201 Mbp) (Table 1). Of these, 255,531 corresponded with alignment-identified protein features,
and 45 diverse genes associated with sulfur metabolism were detected. Reads were functionally
annotated by MG-RAST to the NOG, KO, and COG functional databases (Fig 4) [36, 42, 43].
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Fig 2. XRD results. (a) XRD pattern from the bulk sediment sample with derived bulk mineralogy is shown in the pie chart. (b) XRD pattern after sieving to
the <4 uym fraction showed no change upon ethylene glycol treatment, pointing to an absence of smectite clay minerals. (c) VNIR spectra showed aluminum
phyllosilicate in all three discrete layers in the sample with variations in the type and quantity of iron oxides. Small sharp absorptions from 0.6—-0.7 pm may be

due to pigments in microbes.

doi:10.1371/journal.pone.0122869.9002

Taxonomy

Within our dataset, 1,674 rRNA features were identified by mapping to the MG-RAST M5NR
database [44]. S1 Fig. shows a rarefaction curve of annotated species richness, a plot of the total
number of distinct species annotations as a function of the number of sequences sampled. The
alpha diversity of the taxonomic population, a summary of the diversity of organisms in a
sample, which can be estimated from the distribution of species-level annotations, was 529 spe-
cies. The detection of both aerobic and anaerobic species suggests the bulk sample spanned the
oxic/anoxic interface.

The microbial community of the sediment was dominated by Gammaproteobacteria
(145,398 reads), followed by Betaproteobacteria (40,832 reads), Alphaproteobacteria (38,899
reads), Deltaproteobacteria (11,978 reads), Actinobacteria (9,480 reads), and Archaea (7,524
reads), followed by a smaller number of Firmicutes (3,327 reads), Planctomycetes (2,103 reads),
Deinococcus (2,008 reads), Bacteroidetes (1,890 reads), Acidobacteria (178 reads), and Cyano-
bacteria (14 reads) (Fig 5). For both the Archaea and Bacteria, 5% of the sequences could not
be assigned to a known phylum. Of the Proteobacteria sequences, 29% could not be assigned to
a known class; 30% of Gammaproteobacteria sequences, 18% of Betaproteobacteria sequences,
and 14% of Alphaproteobacteria sequences could not be assigned to a known order.

PLOS ONE | DOI:10.1371/journal.pone.0122869 April 29, 2015

7/19



" ®
@ ' PLOS | ONE The Metagenome of an Acid Salt Lake

Fig 3. SEM results. (a) Gypsum and chloride precipitates on a silicate substrate (bulk sample). (b) Iron oxide precipitates (orange sample). (c) Magnesium
sulfates on a silicate substrate surrounded by precipitated chloride (black sample).

doi:10.1371/journal.pone.0122869.9003

Our taxonomy results suggest the presence of a number of halophiles, and in many cases,
they also indicate a potential extension of their known range to include acidic conditions. For
instance, Chromohalobacter salexigens (4,081 reads), a halophilic and highly halotolerant,
gram-negative, aerobic, chemoorganotrophic Gammaproteobacterium whose salt requirements
can be met by a wide variety of ions, including potassium, rubidium, ammonium, and bromide

Table 1. Read statistics.

Parameter

Base pair count 201,350,619 bp
Total sequence count 1,958,351
Sequences passing QC 1,495,660
Mean sequence length 103 +/- 2 bp
GC percentage 55 +/- 7%
Alignment identified protein features 255,531
Alignment identified rRNA features 1,674
Alignment identified functional categories 218,083

doi:10.1371/journal.pone.0122869.1001
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[45, 46], was abundant within our dataset. C. salexigens has been shown to have one of the wid-
est salinity ranges for growth found in nature, and it is known for its ability to cope with ther-
mal stress via transcriptional regulation [46-49]. Our results also indicate the presence of
Spiribacter Salinus (7,132 reads), a newly named aerobic, heterotrophic, halophilic Gammapro-
teobacteria unable to grow in the absence of NaCl [50], as well as Halorhodospira halophila
(3,032 reads), a recently reclassified halophilic purple bacterium, also within the family
Ectothiorhodospiraceae and also known to oxidize sulfide to sulfur, which is deposited outside
the cell via metabolic pathways that are not yet fully resolved [51, 52]. While other Ectothiorho-
dospiraceae have been found in acidic conditions (including Acidiferrobacter thiooxidans, pre-
viously known as Thiobacillus ferrooxidans, an acidophilic iron-oxidizing bacterium first
described 25 years ago [53]), our data suggests that that capacity for acid tolerance may also be
held among these recently reclassified organisms, though it is not possible to entirely rule out
inputs to the metagenome from the surrounding sandflats, soils, and dunes. Also among the
Proteobacteria, we detected Halomonas elongata (1,151 reads), a wide-ranging halophile that
synthesizes and accumulates the compatible solute ectoine to protect proteins from desiccation
and temperature extremes [54].

The Archaea were dominated by several clades of Halobacteria, an extremely halophilic or-
ganism that inhabits salt lakes and salterns that can grow on or within salt crystals; while they
do not produce chlorophyll like true phototrophs, species of Halobacteria contain light-
sensitive pigments that can absorb light and trigger ATP synthesis [55]. While most halophilic
Archaea grow optimally at neutral to slightly alkaline pH, or only at alkaline pH, exceptions
are known, including the newly classified Halarchaeum acidiphilum, recently isolated from a
commercial solar salt [56]. Most abundant in our dataset were the species Halobacterium sali-
narum (561 reads), known for its extreme salt tolerance, bioenergetic flexibility, and presence
in mass culture the Great Salt Lake [57, 58], Halorubrum lacusprofundi (367 reads), with its ad-
aptations to increase structural flexibility and protein function at low temperature [23], Halo-
microbium mukohataei (342 reads), of interest for its relatively isolated position in the tree of
life [57], and Haloferax volcanii (411 reads), the most common microorganism in the sediment
of the Dead Sea [59].

In addition to acid and salt tolerance, a number of geochemically relevant species were
detected in our data. For instance, Acidithiobacillus ferrivroans (3,903 reads) of the class Acid-
ithiobacillia, which has recently been proposed to be placed outside of the Gammaproteobac-
teria as a separate lineage, grows by autotrophically utilizing energy derived from the oxidation
of elemental sulfur and reduced inorganic sulfur compounds and generates a great deal of sul-
furic acid (i.e. hydrogen ions, H, and sulfate ions, SO, %) asa product of its metabolism [60].
In addition, among the Betaproteobacteria were Thiomonas intermedia (718 reads), a moder-
ately acidophilic, gram-negative, aerobic sulfur oxidizer [61], and Albidiferax ferrireducens
(2,684 reads), of note as a facultative anaerobe whereas most Fe(III) reducing microorganisms
are strict anaerobes [62].

The Deltaproteobacteria were dominated by Desulfobulbaceae (7,988 reads), a family of
sulfate-reducing bacteria that consume sulfate in large amounts to obtain energy and expel the
resulting sulfide as waste [63]. This is particularly interesting, as to date very few extremely aci-
dophilic sulfur- or sulfate-reducing bacteria have been characterized. It is possible that these
organisms grow primarily in consortia, as suggested by a Desolfosporosinus-like isolate from
the island of Montserrat that has been demonstrated to grow in mixed culture at pH 3.2 and
above [64]. Two novel, spore-forming, obligately anaerobic sulfidogens have also been recently
isolated, one from a bioreactor at pH 2.4 and most closely related to an uncultured Desulfito-
bacterium [65], and the other from an acidic river, with reported growth as low as pH 3.8, and
for which the species name Desulfosporosinus acididurans has been proposed [66]. It may be,
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however, that these organisms are acid-tolerant as opposed to truly acidophilic, growing equal-
ly well or better in less acidic environments.

Sulfur metabolism

We discovered a total of 5,814 reads, mapping to 45 diverse genes, to be linked to sulfur metab-
olism (Table 2). A large number of genes were associated with the conversion of sulfate to ade-
nylyl sulfate (APS) and the subsequent production of sulfide from sulfite. In this assimilatory
pathway, sulfate is initially activated by reaction with ATP to form APS (primarily via sulfate
adenylyltransferase, Sat, as well as sulfate adenylyltransferase subunit 1, CysN, and sulfate ade-
nylyltransferase subunit 1, CysD). APS is then converted to 3'-phosphoadenylyl sulfate (PAPS)
(via adenylylsulfate kinase, CysC) and reduced to sulfite (via phosphoadenosine phosphosul-
fate reductase, CysH), and sulfite is further reduced to sulfide by the assimilatory sulfite reduc-
tase (Cysl, Cys], and Sir).

Although the sediment nearest to the surface was at least partially aerobic, we nevertheless
detected some genes associated with dissimilatory sulfate reduction for which sulfate or sulfur
serves as the terminal electron acceptor of the respiratory chain producing inorganic sulfide. In
this pathway, APS is directly reduced to sulfite (via adenylylsulfate reductase subunit alpha,
AprA, and adenylylsulfate reductase subunit beta, AprB), and sulfite is further reduced to sul-
fide by the dissimilatory sulfite reductase (DsrA). Since assimilatory sulfate reduction leads to
the biosynthesis of sulfur-containing amino acids instead of the direct excretion of sulfide, the
paucity of sulfides in our mineralogical results suggests this dissimilatory pathway may be lim-
ited. It is interesting to note, however, that some chemolithoautotrophic sulfur oxidizers, such
as the Thiobacillus denitrificans detected at low levels in our acid salt lake sediment (15 reads),
are thought to be capable of utilizing these enzymes in the reverse direction, forming a sulfur
oxidation pathway from sulfite to APS and then to sulfate [67]. Sulfur-oxidizing proteins asso-
ciated with the Sox system, a sulfur oxidation pathway found in both photosynthetic and non-
photosynthetic sulfur-oxidizing bacteria, were also found in abundance. The detection of these
specific genes linked to processes involved with sulfur oxidation suggests that microbial activity
is in fact generating acidity, particularly in the local environment surrounding the microbes,
thereby affecting mineral formation and mineral stability fields.

Implications for understanding past geobiological environments

Although acidic saline depositional environments are rare today, they may have played an im-
portant role in Earth history. In 1998, the first ancient acid lake and groundwater system, the
Opeche Shale in the Williston Basin, was identified in the rock record; the formation dates to
the Permian, covers more than 200,000 km?, and is believed to have formed under similar con-
ditions as those present in modern-day Western Australia [14, 68]. Another formation of
roughly the same age, the Nippewalla Group of Kansas, has been found to host siliciclastics
and evaporites that record the evolution from a perennial freshwater lake system to a ephemer-
al acid salt lake system [15].

These two geologic units, covering a vast part of the North American mid-continent, have
given rise to a new paleogeographic and paleoclimatic model for understanding western Pan-
gaea [15]. Understanding what kind of microbial populations may have inhabited these acidic
environments and how they affected nutrient cycling, climate, and the minerals preserved in
the geologic record thereby stands to generate a more global view of the evolutionary forces
that have shaped life on Earth.

The Western Australian acid salt lakes and associated mudflats, sandflats, dunes, and soils
also provide a modern-day analog for understanding the past conditions on Mars. In 2004, the
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Table 2. Sequences associated with sulfur metabolism.

Total reads  Unique taxa Pipeline KEGG Description Gene Most specific taxon Clade
assigned assigned orthology assignment
1,536 6 BLAST, K00958 Sulfate adenylyltransferase sat Acidithiobacillus Acidithiobacillia
nr¥*
Prokaryotae Unclassified
Halobacteriaceae Halobacteria
Leifsonia Actinobacteria
Sphingobium Alphaproteobacteria
Mycobacterium Actinobacteria
763 4 BLAST, K00303 Sulfur oxidation protein soxB soxB  Bacillus Bacilli
nr
Actinomycetes Actinobacteria
Rhizobium Alphaproteobacteria
Burkholderia Betaproteobacteria
761 7 BLAST, K17230 Fumarate reductase flavoprotein fccA Purple photosynthetic Gammaproteobacteria
nr subunit bacteria
Prokaryotae Unclassified
Halobacteriaeaceae Halobacteria
Sphingomonadaceae Alphaproteobacteria
Geodermatophilus Actinobacteria
Rhodothermus Bacteroidetes
Archaea Unclassified
557 0 BLAST, K17229 Sulfide dehydrogenase fccB
nr [flavocytochrome c]
554 1 KOBAS K00381 Sulfite reductase (NADPH) cysl/ Sphingomonadaceae Alphaproteobacteria
hemoprotein beta-component
469 0 KOBAS K00380 Sulfite reductase (NADPH) cysJ
flavoprotein alpha-component
366 2 BLAST, K17218 Sulfide:quinone oxidoreductase sqr Halobacteriaceae Halobacteria
nr
Rhodobacteraceae Alphaproteobacteria
349 0 KOBAS  K10764 O-succinylhomoserine metZ
sulfhydrylase
338 1 KOBAS K12339 Cysteine synthase B cysM  Cenibacterium Betaproteobacteria
228 0 KOBAS K01738 Cysteine synthase A cysK
226 1 KOBAS K00640 Serine O-acetyltransferase cysE  Acidithiobacillus Acidithiobacillia
202 8 KOBAS K00390 Phosphoadenosine cysH  Halorhabdus Halobacteria
phosphosulfate reductase
Natronomonas Halobacteria
Halomicrobium Halobacteria
Haloferax Halobacteria
Halobacteriaeaceae Halobacteria
Geodermatophilus Actinobacteria
Natrialba Halobacteria
Halopiger Halobacteria
168 0 BLAST, K01362 Adenylylsulfate reductase aprM
nr membrane anchor
147 0 KOBAS K00860 Adenylylsulfate kinase cysC
132 0 KOBAS K01082 3'(2"), 5'-bisphosphate cysQ
nucleotidase
(Continued)
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Table 2. (Continued)

Total reads  Unique taxa Pipeline KEGG Description Gene Most specific taxon Clade
assigned assigned orthology assignment
103 3 KOBAS K01011 Thiosulfate/3-mercaptopyruvate sseA Natrinema Halobacteria
sulfurtransferase
Modestobacter Actinobacteria
Haloterrigena Halobacteria
89 1 BLAST, Glutamate synthase (NADPH) dsrL Purple photosynthetic Gammaproteobacteria
nr small subunit bacteria
67 0 BLAST, K00394 Adenylylsulfate reductase subunit  aprA
nr alpha
42 0 BLAST, K17225 Sulfite dehydrogenase soxC soxC
nr
35 0 BLAST, K00395 Adenylylsulfate reductase subunit  aprB
nr B
31 0 BLAST, Sulfur oxidation V protein soxV
nr
20 0 BLAST, Cytochrome c oxidase subunit Il soxH
nr
19 0 BLAST, Sulfocyanin, blue copper protein soxE
nr
19 0 BLAST, K16887 Quinone-interacting membrane- gmoC
nr bound oxidoreductase complex,
subunit C
16 0 BLAST, Intracellular sulfur oxidation dsrK
nr protein DsrK
13 0 KOBAS K00955 Bifunctional enzyme CysN/CysC cysN/
(o}
12 0 BLAST, Quinol oxidase-2, Rieske iron- soxF
nr sulfur protein-2
10 0 KOBAS K15555 Sulfonate transport system ATP- ssuB
binding protein
10 0 BLAST, Thioredoxin SoxW soxW
nr
9 0 BLAST, K16885 Quinone-interacting membrane- gmoA
nr bound oxidoreductase complex,
subunit A
8 1 KOBAS K11180 Sulfite reductase alpha subunit dsrA Asakusa Gammaproteobacteria
8 0 BLAST, K07235 Intracellular sulfur oxidation dsrE
nr protein DsrE
6 0 BLAST, K11179 Dissimilatory sulfite reductase dsrC
nr complex, gamma subunit
6 0 BLAST, K16886 Quinone-interacting membrane- gmoB
nr bound oxidoreductase complex,
subunit B
5 0 KOBAS K00956 Sulfate adenylyltransferase cysN
subunit 1
5 0 BLAST, Protein involved in sulfur oxidation dsrS
nr dsrS
4 0 KOBAS K02045 Sulfate transport system ATP- cysA
binding protein
4 0 BLAST, Intracellular sulfur oxidation dsrN
nr protein DsrN
2 1 KOBAS K10831 Taurine transport system ATP- tauB Actinoplanes Actinobacteria
binding protein
(Continued)
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Table 2. (Continued)

Total reads
assigned

2

1

Unique taxa
assigned

0

0
0

1

Pipeline

KOBAS

KOBAS
KOBAS
KOBAS

BLAST,
nr

KOBAS

* “nr” refers to the NCBI nr database.

doi:10.1371/journal.pone.0122869.t002

KEGG Description Gene Most specific taxon Clade
orthology assignment
K02046 Sulfate transport system cysU
permease protein
K01739 Cystathionine gamma-synthase metB
K03119 Taurine dioxygenase tauD
K16937 Thiosulfate dehydrogenase doxD
[quinone] large subunit
Intracellular sulfur oxidation dsrO Burkholderiales Betaproteobacteria
protein DsrO
K00392 Sulfite reductase (ferredoxin) sir Geodermatophilus Actinobacteria

Mars Exploration Rover mission discovered an ancient aqueous sedimentary system at the
Meridiani Planum landing site that was characterized by an abundance of sulfur and very high
acidity [69]. The finding was made through detection of characteristic minerals that form at ex-
tremely low pH, validating hypotheses that had been made over the years about the existence
of acid brines on Mars [19, 70, 71]. Subsequent geological, mineralogical, and geochemical or-
bital data from multiple orbiter missions (e.g. Mars Express, Mars Odyssey, and the Mars Re-
connaissance Orbiter) also suggest the presence of acid sulfate salts in diverse areas across the
planet’s surface [72-74]. It is now widely believed that some hydrated sulfates on Mars precipi-
tated from acid saline shallow surface waters and/or groundwaters under an arid atmospheric
regime [18, 19, 69, 75-77]. Thus our understanding of mineral formation and mineral stability
in these depositional environments stands to deepen our understanding of the climatic history
and surface processes preserved in the sedimentary rocks on Mars.

Perhaps most tantalizing, however, is the possibility that microbes influenced the acidity of
these sediments and/or precipitated characteristic minerals as a byproduct of their metabolism.
For example, a type of crystalline jarosite that is stable in the presence of water can be formed
by Acidithiobacillus in both aerobic and anaerobic environments, and thus its detection on
Mars, particularly in the context of persistent aqueous processes, may serve as a biomarker for
microbial sulfide oxidation [78]. Our results suggest that microbes adapted to these acidic, sa-
line depositional environments not only form sulfur minerals directly but also can affect the
chemistry of the sediments via their metabolism, thereby influencing which minerals are pre-
cipitated abiotically. This finding suggests exciting possibilities for future work in elucidating
the fine-scale biogeochemical gradients in acid salt lakes as well as investigating the preserva-
tion of biological signatures in Mars-like paleolake sediments.

Conclusions

In this study, we analyzed the taxonomic diversity and metabolic pathways utilized by the mi-
crobial community within the depositional environment of an acid salt lake, an extreme site
where life has adapted to contend with both high levels of salinity and daunting proton pres-
sure. Within the sediment matrix, we found evidence for a wide array of microbial organisms,
including many species that generate sulfuric acid as a product of their metabolism. In addi-
tion, we identified 45 diverse sulfur genes within our metagenomic data, primarily linked to
the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sul-
fite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox)
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system. Our results illuminate the possibility that we may be meaningfully underestimating the
effects of biology on the chemistry of these sulfur-rich depositional environments, thereby
influencing our understanding of acid salt lake paleoenvironments on Earth as well as Mars.
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