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Abstract

Cardiovascular disease (CVD) constitutes a major public health threat worldwide, accounting for 17.3 million deaths annually. Heart disease and
stroke account for the majority of healthcare costs in the developed world. While much has been accomplished in understanding the pathophys-
iology, molecular biology and genetics underlying the diagnosis and treatment of CVD, we know less about the role of epigenetics and their
molecular determinants. The impact of environmental changes and epigenetics in CVD is now emerging as critically important in understanding
the origin of disease and the development of new therapeutic approaches to prevention and treatment. This review focuses on the emerging role
of epigenetics mediated by insulin like-growth factors-I and -II in major CVDs such as heart failure, cardiac hypertrophy and diabetes.
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Introduction

Epigenetics is an emerging frontier of science that involves the study
of gene regulation when the DNA-primary structure remains intact.
While epigenetics refers to single genes or sets of genes, epige-
nomics denotes the global analyses of epigenetic changes across an
entire genome [1, 2]. In the early 1940s, Waddington described
epigenetics as ‘the interactions of genes with their environment,
which bring the phenotype into being’. Phenotype inheritance is gov-
erned by genetics, whereas epigenetic modifications are acquired dur-
ing life and largely reset between generations, especially at the time
of conception [3]. The modifications that bypass this reset are
referred to as ‘Transgenerational Epigenetics’ [4].

Factors that induce epigenetic modifications can be transient or
permanent and it is difficult to detect or associate them with a certain
phenotype. Epigenetic changes can be elicited by metabolic alter-

ations, environmental stress, toxicants, viruses and immunity [5–8].
The principal mechanisms underlying epigenetic inheritance are gov-
erned by DNA methylation, histone modification and the action of
non-coding RNAs (ncRNAs) [9–13]. Even the most stable epigenetic
mark which is the DNA methylation still displays plasticity during
development and ageing [14–16]. Furthermore, in early life, transient
exposures to unbalanced nutrition, endocrine abnormalities, low oxy-
gen tension, intense exercise, environmental pollutants or increasing
age can alter DNA methylation with severe health impacts including
cardiovascular disease (CVD) [17–23]. Ongoing research is expected
to clarify whether induced phenotypic traits among multiple genera-
tions operate through altered epigenetic marks in germ cells and/or
through de novo formation of epigenetic marks in each generation.
Most of the DNA methylation marks (expressed as hypo- or hyperme-
thylation clusters) are cleared during fertilization and only certain
characters are someway preserved [24]. This suggests a potential
mechanism of transgenerational inheritance that denotes a process
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whereby treatments or insults experienced by the gestating mother
(F0) and the developing foetus (F1) may cause epigenetic changes
(‘paramutations’ or ‘marks’) that are propagated to the (F3) genera-
tion through the gametes of the affected foetus, which was not
exposed to the initiating conditions [25–29]. Such inheritable traits
are not spontaneous and they appear after exposures to certain envi-
ronmental factors, bypassing the global epigenetic reprogramming
during embryogenesis, when the epigenetic clearance process man-
dates a reset of the entire parental profile. Inherited, self-propagating
epigenetic marks depend on the timing of their onset, the chemical
nature of the modification, the DNA-sequence affected, the number of
copies and finally their location (site specificity). Transgenerational
epigenetic inheritance was first observed in classical transgenic
mouse models where constitutively active and randomly integrated
transgenes, regardless of the numbers of copies, became heritably
silenced via cytosine-phospo-guanine (CpG) methylation, when the
germline was challenged by mating with a non-transgenic phenotype
[30]. In inducible transgenic models, the genes and their site-specific
integration can be precisely controlled. Thus far, it is known that sin-
gle generation epigenetic marks depend on the timing of their onset,
while their transgenerational inheritance depends on their location
(loci). Both repressive and activating chromatin modifications can be
transgenerationally inherited and their investigation has been signifi-
cantly improved by the Cas-9-based editing method [27].

Epigenetics represents crucial regulatory mechanisms in evolu-
tion, development, ageing, adaptation and disease. Therefore, mak-
ing correlations between environmental exposure, epigenetic marks
and disease should be of high priority in the near future. It is
important to elucidate how biological systems adapt or not to
environmental changes. The dynamics of epigenetic characters
show that organisms respond either reversibly or irreversibly to
environmental signals and that modifies tissue- and cell-type-spe-
cific gene programmes. During ontogenesis, epigenetic marks are
associated with high biochemical plasticity. Growth factors, cytoki-
nes and adhesion molecules govern multiple cellular processes in
response to microenvironmental changes during development. To
date, little is known about the extracellular signalling and the
mechanisms that allow adaptation in response to the changes in
microenvironment. Among all, growth factors can be critical deter-
minants of both the onset and progress of the epigenetic modifi-
cations. For example, insulin like-growth factor (IGF I) can act in
both systemic- and tissue-specific manners altering both metabolic
and non-metabolic signalling pathways that can induce epigenetic
changes for the entire life span of an organism [31–33]. There are
two IGF-molecules (IGF-I and -II) and they are both epigenetically
regulated (Table 1). Each organ or biological event has specific
histone and DNA-methylation codes as well as specific prerequi-
sites for growth factors. Effectors such as histones, micro-RNAs
or different regulators of transcription are largely unknown in epi-
genetic pathology. Thus, in Table 1, we summarized information
that suggests possible epigenetic codes for several physiologic
and physiopathologic entities that are related to IGF-signalling.
From this perspective, a few questions will soon need answers: (i)
Are the epigenetic changes preserved at key loci via germ lines?
If yes, how would IGF-fluctuations affect them? (ii) Is their main-

tenance based on the magnitude and/or the timing of the IGF-sti-
muli? (iii) Are the epigenetic marks erased and/or reset in the
presence or absence of IGFs? and (iv) What are the mechanisms
responsible for the formation of epigenetic marks and what role
do IGFs have in this process?

Implications of IGFs in cardiac
epigenetics

The IGF system is comprised of five related receptors, three ligands
(Insulin, IGF-I and -II) and six IGF-binding proteins (IGFBPs) [50–52]
(Fig. 1A). The type-I IGF receptor (IGF-IR) and the insulin receptor
(IR) are tetrameric glycoproteins that have two extracellular and two
transmembrane subunits linked by disulfide bonds. The extracellular
subunits contain the ligand binding site, whereas the carboxy-termi-
nus transmembrane subunits have tyrosine kinase (TK) domains. As
RTKs, IGF-IR and IR are overall more than 50% homologous and
share 84% resemblance in their TK domains; therefore, they can sig-
nal through similar pathways and compensate for each other’s func-
tions. In addition, for hybrid receptors which bind both insulin and
IGF-I, the transmembrane subunits play a decisive role in recruiting
intracellular mediators through their Tyr residues. This is common in
muscle progenitors but also in fully differentiated cells [53–57]
(Fig. 1B).

How important are IGF-IR and IR to cardiac
biology?

There are a few signalling mechanisms triggered by ligand-binding
to IGF-IR and IR that have the potential to mediate skeletal and
cardiac muscle epigenetics. These pathways are driven by the acti-
vation of PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase)
and AKT (protein kinase B). (i) One target of this signalling cas-
cade can be the mTOR molecule (mammalian target of rapamy-
cin). Insulin like-growth factors-I, -II and insulin bind to their
receptors by activating the PI3K/AKT/mTOR pathway and the Ras/
Raf-1/MEK/ERK signalling cascade [58, 59]. Nutrient-sensitive
PI3K–AKT–mTOR pathways have a crucial role in regulating the
balance between quiescence and proliferation of progenitor cells in
many tissues including the heart muscle [60–62]. The mTOR com-
plex integrates the input from upstream pathways, including insu-
lin and IGFs. mTOR also senses cellular nutrient, oxygen, and
energy levels and it has key-regulatory function in cardiovascular
physiology and pathology being a good candidate for epigenetic
regulation. The mTOR complex is the catalytic subunit of two
structurally distinct molecular entities: mTORC1 and mTORC2. In
general, mTORC1 regulates protein synthesis, growth and prolifer-
ation, autophagy, metabolism and stress responses (being required
for cardiovascular development and postnatal maintenance). In
addition, mTORC1 is necessary for cardiac adaptation to pressure
overload and the onset of the compensatory hypertrophy. By con-
trast, mTORC2 seems to regulate cell survival and cell polarity.
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Thus, malfunction of the IGF-system can potentially alter the heart
organ maintenance through the PI3K/AKT/mTOR signalling loop.
Multiple actions of IGF-I have been described in both cardiac and
striated muscle cells, including the well-documented anti-apoptotic
effect and the newly emerged action on regeneration [63, 64].

(ii) Another mechanism led by the IGF-I and AKT activation is
related to the functions of miR-1, a muscle regulator, lately found to
be responsible for transgenerational cardiac hypertrophy in mice
[65]. When AKT is overexpressed, IGF-I controls miR-1 levels
through Foxo3a transcription factor [69, 92, 93]. The reciprocal rela-
tionship between IGF-I and miR-1 indicates a great potential role of
the IGF-I axis in CVD-related epigenetics [94, 95]. The interplay
between IGF-I, AKT, Foxo3a and miR-1 suggests a new paradigm that
emphasizes the fashion in which IGF-I may regulate cardiac and
skeletal muscle epigenetics transgenerationally. In support of the
mouse model are several reports describing humans with acrome-
galy, a syndrome caused by GH/IGF-I overexpression that induces
cardiac hypertrophy associated with low miR-1 levels [69, 92, 93].
These effects may be explained by IGF involvement with chromatin
memory formation where IGF-I activates AKT, and in turn, AKT regu-
lates enhancer-zheste-homologue-2 (EZH2), a polycomb-group pro-
tein that was lately defined as critical in chromatin repression,
especially in progenitor cells. Given this, we suggest that IGF-I is a
strong mediator for epigenetic mark formation where micro-RNAs
such as miR-1 can be important players [59–73]. From this perspec-
tive, it is safe to hypothesize that the miR-1-induced epigenetic marks
that allow cardiac hypertrophy may be, in fact, IGF-I-dependent.

(iii) The IGF-I/AKT pathway is also involved with sugar and fat
metabolism. It is known that IGF-I, insulin and the glycolytic network
regulates the development of skeletal and cardiac muscle, including
progenitor cells [31, 74, 75]. Production of IGF-I is stimulated by GH
and it can be modulated by different environmental factors, especially
stress and nutritional insults that have been shown to have great
potential for epigenetic disease. Animal models should be very useful
to explore these features in the heart, although IGFs are difficult to
manipulate in human or animal subjects because of their temporal-
and dose-dependency. Moderate concentrations of IGF-I may stimu-
late AKT and drive adaptive/physiological hypertrophy. On the other
hand, excessive levels of IGF-stimulated p38-mitogen-activated pro-
tein kinase (MAPK) are limiting cardiac hypertrophy through myo-
statin production, negatively regulating progenitor cell differentiation
[76]. (iv) Both GH and IGF-I are widely used as performance enhanc-
ing drugs in adult or paediatric medicine and little is known about
their epigenetic implications in short or long term. Because of the
hypertrophic effects observed in both skeletal and heart muscle under
intensive IGF-I treatments, it is mandatory that its epigenetic action
should be thoroughly analysed. We suggest that future studies should
actually include the entire ‘GH/IGF axis’, which can potentially be
responsible for the regulation of histones H3 and H4 acetylation and
the activation of chromatin repressors such as EZH2. All these effects
would still be under the action of the IGF-I/AKT signalling loop
regardless of the initial trigger [31, 35, 76, 77].

How important are the interactions between IGF-IR
and other receptor-TK (RTKs)?

Many developmental growth factors such as IGF-I, insulin, vascular
endothelial growth factor (VEGF) and stromal growth factor signal

Fig. 1 Implications of the IGF system in epigenetics. (A) Schematic rep-

resentation of the receptors and ligands underlying epigenetic change.
Insulin receptor isoforms (IR-a or IR-b) bind insulin with high affinity,

while IGF-I receptor (IGF-IR) binds IGF-I and IGF-II. In cells expressing

both IR and IGF-IR, IR may heterodimerize with IGF-IR receptors, lead-

ing to the formation of hybrid (demi) receptors such as IR/IGF-IR
(HRs). HRs bind IGF-I and IGF-II with high affinity and insulin with low

affinity. (B) Diagram of the two major signalling pathways of the IR

and/or IGF-IR and their hybrid receptors (demi-receptors). ERK and

mTOR are potential candidates for initiation of epigenetic activity and
subsequent regulation of gene expression.
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through RTKs. One event that can emphasize the interference
between two important RTKs in heart physiology is ischemia/reperfu-
sion (I-R) [77]. It is highly probable that this process initiates epige-
netic effects. In I-R, the expression of VEGF is regulated by hypoxia
and cytokines but also by IGF-I by reciprocity. In isolated hemo-per-
fused pig hearts with acute ischaemia, RTKs such as IGF-IR and
VEGF-R along with foetal liver kinase (flk-1) or fms-like tyrosine
kinase-1 (flt-1) were significantly increased in comparison to normal
hearts [77]. Such data certainly suggest a possible cross-talk
between VEGF and IGF-I and their signalling partners during the initia-
tion of CVD.

Cross-talking between RTKs is probably caused because different
ligands are steering the activation of key molecules such as AKT. In
this context, AKT can act on glycogen synthase kinase 3 (GSK3),
which is a Ser/Thr kinase with important role in the regulation of an
important developmental loop led by Wnt signalling and glycogen
synthesis [78]. Glycogen synthase kinase 3 is inactivated by AKT and
this leads to glycogen synthesis and muscle development as a crucial
process in CVD. Contribution of Wnt-mediated activation of b-catenin
has been observed during skeletal development and reported by a
large number of studies, but the role of the IGF-I/AKT action on b-
catenin is still not clear, although some reports show that IGF-I can
nevertheless lead to active b-catenin [78]. The inactivation of GSK3/
Wnt signalling loop is critical for embryonic development, including
skeletal and heart muscle. Once these mechanisms will be established
in the future, they will become tremendously important to define the
epigenetic basis of the CVD onset.

Can IGFs induce or reset epigenetic
traits?

Development is controlled through a temporal and spatial sequence
of events including both activation and silencing of specific genes.
Taken together, these events contribute to genetic reprogramming
and they can be altered by environmental conditions that induce chro-
matin remodeling and/or ‘transcriptional memory’. A classic example
in this sense is the ‘fertilized egg cell’, which represents a checkpoint
in evolution because at this stage, most of the epigenetic modifica-
tions acquired by the parental lines are cleared, whereas a small
proportion of the traits are transferred across the generations
[79–81].

Nonetheless, the power of the current genomic technologies can-
not yet analyse in-depth the causes of the epidemiologic determinants
that govern the hereditary pathologies of non-Mendelian origin (such
as many CVD cases). The ‘non-Mendelian’ types of heredity result in
transmission of epigenetic features and toning of gene expression.
The first observations in mammals have been made by Dr Minoo Ras-
souzadegan who showed for first time that non-Mendelian inheritance
of an epigenetic colour variation can be reproduced in mice [66]. The
study was subsequently extended to a case of cardiac hypertrophy
[65, 69], and then to a remarkable variation in embryonic overall
growth [67]. In all three cases, the determinant epigenetic controls
were exerted by microRNAs injected into mouse fertilized eggs. These

studies could be of course furtherly extended in stem cell or animal
breeding technologies. Inspired by these findings, our projects (Iosef
Laboratory, University of Nevada) are focused on decrypting the
molecular mechanisms that insure the docking of the exogenous
micro-RNAs to the selected mRNA targets in the fertilized eggs. It is
known that in the nature there are four distinct types of RNA mole-
cules that coordinate gene expression in all cells: mRNAs, ribosomal
RNA, transport RNA and finally small non-coding RNAs (snRNAs)
which are highly conserved and particularly abundant in the nuclei of
mammalian cells where they are tightly bound to one or more pro-
teins in particles called small nuclear ribonucleoproteins. Small regu-
latory RNAs of only 22 nucleotides long such as micro-RNAs have
been also identified in creating micro-RNPs corpuscles [68]. Thus,
such complexes became the center of our attention in the context of
studying the role of the micro-RNAs in determining the inheritable
epigenetic events in fertilized egg cells. We believe that micro-RNPs
control both the translation and mRNA stability allowing epigenetic
functions. One example can be miR-1, which injected into mouse fer-
tilized eggs induced cardiac hypertrophy and slightly reduced IGF I
expression. We hypothesize that miRNPs are actually factors that help
micro-RNAs in selecting the right mRNA targets for the right cell fate
according to the microenvironmental requirements. This hypothesis
is perfectly supported by findings published by the Steintz group
(Yale) [68], which are showing that miRNPs function can indeed dock
snRNAs but this action is dependent on the cell cycle stage and the
presence of certain growth factors [68].

What is the basis for these mechanisms?

The answer is very complex. Normal and pathologic epigenetic
mechanisms are based on signalling and chromatin memory. The
diseased state is generated by abnormal signals, most induced by
the cellular microenvironment. These signals are translated into
phosphoregulatory events that precede alteration of chromatin sta-
bility, ultimately shifting gene expression. Chromatin assembly is
still largely unexplored in developing tissues where phenotypic
plasticity is high and signals sent by growth factors such as IGFs
are critical. In addition to development, during ageing, phenotypic
plasticity can be also regulated by growth factors, cytokines and
extracellular matrix fluctuations leading to new epigenetic profiles.
The questions that we suggest for future studies refer to the role
and mechanisms of IGF-mediated epigenetic remodelling in both
development and ageing. In general, gene repression is mediated
by a specific sequence of events including recruitment of poly-
comb group proteins (PcG), histone modifications and DNA methy-
lation.

IGFs and PcG recruitment
Once bound to its receptor, IGF-IR, IGF-I ligand triggers phos-
phorylation events that activate AKT/PKB signalling loop and this
targets the function of PcGs [34]. Polycomb group proteins are
highly conserved constituents of evolutionary molecular pathways
that regulate cell fate (Fig. 2 and Fig. 3). They form two multi-
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meric protein complexes (PRC-1 and -2) that are involved in the
inheritable-stable repression of genes because of the modification
of chromatin structure [34, 82]. Both PRC-1 and PRC-2 can be
regulated by RNAi or non-coding RNAs [83]. The main effectors

of the polycomb repressive complex (PRC2) are embryonic ecto-
derm development protein and EZH2 [79, 156, 158, 159]. They
act early in development to set the stage for the long-term
repressive PRC1 complex [158, 159]. The PRC2 complex specifi-
cally methylates histone H3 at lysine 27 (H3-K27), providing an
epigenetic mark for binding PRC1 complex. Enhancer-zheste-
homologue 2 protein within the PRC2 complexes can methylate
Lys 9 (H3-K9) and Lys 27 (H3-K27) of histone H3 together with
Lys 26 of histone H1 (H1-K26). Therefore, EZH2 activity may be
considered a landmark for the formation of epigenetic marks in
developing tissues as they are mediated by the growth factors
and AKT actions [34, 158, 159]. But how does it happen?
Specifically, phosphorylation of Thre350 has been linked to an in-
crease in EZH2 activity while activation of Thre492 and Ser21 has
been linked to a decrease in its activity. AKT phosphorylates
EZH2 at Ser21 and overturns its methyltransferase activity by
obstructing its binding to histone H3 [84]. This results in a
decrease in Lys27 tri-methylation in H3 and de-repression of
silenced genes. In this way, AKT regulates the DNA methylation
by acting on EZH2 and this may further contribute to develop-
ment [34]. Our labarotory is currently exploring the activity of
EZH2 at the promoters of genes that encode important develop-
mental transcription factors such as OCT-4, as initiated by AKT
post-IGF-IR-activation in muscle progenitor cells (Fig. 3). We are
also researching the possibility where NFkB becomes a develop-
mental factor implicated in endothelial formation as triggered by
IGF-I and VEGF signalling. It is known that EZH2 and NFkB
crosstalk in cancer mechanisms [84]. For example, EZH2 func-
tions as a multitasking molecule in breast cancers, where it can
either be a transcriptional activator or a repressor of the NF-jB
targets depending on the cellular micro-environment (where IGF-I
may be a key-factor) [84]. We assume that IGF-I can signal
through the IGFIR/PI3K/Raptor/mTOR loop that may possibly de-
repress the NFkB promoter through EZH2. Based on the above
hypothesis, we investigated the role of IGF-I in transcription of
the OCT4 gene which directly changes stem cell fate [85]
(Fig. 3). Our preliminary (unpublished) studies show that IGF-I
but not IGF-II mediates the binding of the EZH2 repressor to the
promoter of the gene encoding the OCT4 transcription factor
[85]. This study may contribute in the future to a better under-
standing of the role of IGF-I in stem cell maintenance and differ-
entiation.

IGFs and histones
Insulin like-growth factors are implicated in many post-translational
modifications mediated by histones or in those that directly affect his-
tone activity. For example, butyrate-induced IGF-II activation is corre-
lated with distinct chromatin signatures because of histone
modification. Chromatin immunoprecipitation assay indicated that
association of acetyl-histone H3 and acetyl-histone H4 with the IGF-
IIR promoter was increased in the presence of ANGII. This study
demonstrated that histone acetylation plays a critical role in IGF-IIR
upregulation during cardiac diseases and it might provide in the
future a real option for targeted gene therapy in heart failure [91].
Another example of epigenetics governed by histones and IGFs is

Fig. 2 Proposed IGF-interaction with PPAR-c signalling in CVD epigenet-
ics. Interaction between PPAR-c and MAPK/PI3K pathways happens at

different levels or time points in the cell cycle, thus in certain situations

PPAR-c reduces the expression of MEK1/2 protein expression and inhi-

bits ERK1/2 phosphorylation [60, 146, 148]. In contrast, in other cell
systems, PPAR-c may activate ERK1/2. Furthermore, the interaction

between PPAR-c and MAPK/PI3K may include pathways where ERK

mediates PPAR-c phosphorylation, MEK1/2-dependent PPAR-c nuclear

export followed by PPAR-c degradation, PI3K inhibition through PTEN,
mTOR decrease by AMPK activation and finally p70S6K phosphoryla-

tion. This signalling loop can be potentially responsible for epigenetic

activity that targets survival, proliferation and/or differentiation of car-
diac cells. Physical effort has been shown to increase levels of IGF-I in

muscle and physiological cardiac hypertrophy, thus inducing the IGF-I/

PI3K/Akt/P70S6K signalling pathway, and thereby increasing the protein

synthesis required to build muscle; all of this can be epigenetically reg-
ulated [34, 60, 153, 154]. On the other hand, PPAR-c ligands (such as

rosiglitazone) activate tuberous sclerosis complex-2 (TSC2) inhibiting

mTOR signalling [152, 155] as a possible compensatory effect to the

MEK/ERK action on PPAR-c.
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intrauterine growth restriction (IUGR), where a decrease in postnatal
IGF-I mRNA variants is associated with histone 3 tri-methylation of
lysine 36 at the igf1 gene (H3Me3K36). Even in this case, IGF-I-

dependent changes in histone H3 modifications are associated with
AKT signalling and the expression of cell survival genes [86].

In addition to the IGF-ligands, IGFBPs too are related to histone
biology. For example, the expression of IGFBP-3 is frequently sup-
pressed in liver cancers and it can be reactivated by histone deacety-
lase (HDAC) inhibition [51, 87-90]. IGFBP-1 also has epigenetic
effects through the induction of cAMP, which results in the alterations
of histone acetylation and retargeting in human endometrial stromal
cells. Another IGF-regulatory protein, IGFBP-6, was also reported to
potentially interact with histones. In this case, IGFBP-6 and H2B seem
to be involved in the development, ageing and neoplastic transforma-
tion of muscle tissues [68, 69].

IGFs and DNA methylation
DNA methylation is a covalent modification that occurs in mammals
predominantly at cytosines followed by guanines (CpG dinucleotides)
to form 5-methylcytosines. Cytosine-phospo-guanine methylation is
commonly associated with gene silencing. DNA methylation status
has fluctuations during lifetime and has been shown to regulate bio-
logical processes underlying CVD features such as atherosclerosis,
inflammation, hypertension and diabetes. Indirectly through its
actions, IGFs may contribute to changes in DNA methylation.

Can IGFs control cardiac epigenetic
traits induced by nutritional insult?

Cardiovascular disease remains the leading cause of death worldwide
despite the efforts made to reduce its incidence [96, 97]. One expla-
nation could be the multifactorial origin of this illness and the massive
distribution of the environmental conditions that may alter the genetic
[98–100] and epigenetic programming of the cardiovascular system
[14, 15, 94, 95, 101, 102]. Unfavourable lifestyle factors and diseases
such as dyslipidemia, diabetes [101, 103], obesity [104, 105], hyper-
tension, physical inactivity, alcohol consumption and cigarette smok-
ing [106] are the main risk elements for CVD. However, a smaller but
significant fraction of patients develop CVD in the absence of tradi-
tional risk factors, and evidence indicates that this type of CVD may
become an inherited disease of non-genomic origin. Therefore, the
epigenetic contribution of the risk factors and their role in CVD predis-
position are important research targets and IGFs may become one of
them in the near future [107–116].

IGFs as epigenetic determinants of nutrition-
related pathologies involved with CVD

The epigenetic modifications in the foetus can have maternal origin
(pregnancy associated challenges) or they can be originated in the
foetus itself. Development depends mainly on the maternal health
with nutrition as a major determinant [109, 110]. In particular, mater-
nal malnutrition impairs foetal development, resulting in a small pla-
centa and low birth weight. This process is IGF-dependent and
predicts chronic disease, including CVD in the adults. Inappropriate

Fig. 3 Potential epigenetic actions of IGF-I in the developing heart mus-

cle. When histone 3 (H3) is tri-methylated (me3) at lysine 27 (K27) resi-

due, it is associated with inactive gene promoters. Because of its
dramatic and predictable effect on gene expression, H3K27me3 is a

great marker for epigenetically inactivated genes. EZH2 catalyzes di- and

tri-methylation of the K27 residue of histone H3 (H3K27me2/3). High

expression of EZH2 in stem cells is associated with modified nucleo-
somes at the promoters of important developmental transcription factors

such as OCT4, thus preventing premature activation of the lineage-com-

mitting markers [158, 159]. Growth factors such as IGFs activate AKT
that in turn phosphorylates EZH2 at Ser21 residue blocking its methy-

transferase activity and consequently de-repressing gene-promoters. (1)

Based on the above principles, here we hypothesize that IGF-I and/or

vascular endothelial factor (VEGF) can activate AKT which in turn
induces pEZH2Ser-21 suppressing its methyltransferase activity and the

binding of histone H3 at the OCT4 promoter [79] in cardiac stem cells.

(2) It is known that EZH2 and NFkB crosstalk in cancer mechanisms

[84] where EZH2 functions as a multitasking molecule that can either
act as a transcriptional activator or a repressor of the NF-jB targets

[84]. This will depend on the cellular micro-environment and perhaps on

IGF-I that may be a key-factor. In fact, IGF-I can signal either through

AKT or through the IGFIR/PI3K/Raptor/mTOR loop and in both cases it
is possible that it may de-repress the NFkB promoter through EZH2

[157]. Ablation of NFkB activity with a specific inhibitor (BAY) impairs

vasculogenesis in the neonatal lung and in the same tissue chromatin
immuno-precipitation reactions showed that NFkB binds directly the pro-

moter of the VEGF-2 [59]. Here we hypothesize that either VEGF or IGF-I

signalling through AKT, activates mTOR which in turn may lead EZH2

polycomb protein to de-repressing the NFkB promoter, making possible
the remodeling of the endothelial tissue in the heart.
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nutrition targets one-third of the world’s population and out of this
fraction, ~50% is submitted to obesity—which is the promoter of
many degenerative diseases and particularly CVD. Actually, maternal
obesity leads to a specific phenotype, namely ‘Large for Gestational
Age (LGA)’ Syndrome which is a major risk factor for obesity, dia-
betes and even cancer in the offspring [110, 111]. Remarkably, mal-
nutrition can promote similar effects during foetal development. A
classic example in this sense is the population born from mothers
exposed to the Dutch Hunger Winter at the end of World War II
(1944–1945). In this group, another syndrome has been identified,
namely ‘Small for Gestational Age (SGA)’ [118, 119]. Infants with
SGA show a greater occurrence of impaired glucose tolerance, obe-
sity, hyperlipidemia, hypertension, micro-albuminuria, sometimes
psychiatric disorders and a greater mortality rate because of CVD.
However, the SGA phenotype allows a better survival rate if starvation
continues after birth compared to the situation when the offspring is
overfed. Both LGA and SGA phenotypes favour fat storage and dia-
betes (with insulin resistance) if overfed later in their post-natal life.
Large for Gestational Age and SGA phenotypes are atleast partially
caused by the malfunction of the IGF/Insulin systems. Added to this
is the fact that under nutritional insult, IGFs may interact with the
action of certain micro-RNAs. Some of these miRNAs with altered
expression are involved in the regulation of mTOR, insulin, adipo-
cytokines [120–122], leptin [120] and MAPK. These pathways that
are mainly led by the malfunction of the IGF system may contribute to
the onset of the metabolic dysfunctions responsible for CVD in the
progeny, which can be propagated in a transgenerational manner.
Another aspect of the IGF-induced epigenetics based on nutritional
insult is the bio-activity within the foetal microenvironment. This may
drive transgenerational effects founded on specific genomic and/or
epigenomic settings that can be rearranged according to the intensity
and duration of the IGF fluctuations [108]. This is important because
foetal development involves numerous morphogenetic processes
associated with cell growth, proliferation and differentiation that are
greatly influenced by IGFs [81] and factors such as nutrition can
interfere or induce foetal reprograming [110]. Nutritional insults dur-
ing pregnancy can either be caused by excessive or insufficient
maternal food [111–113]. Either way, the food intake can alter the
metabolic control in the offspring increasing the risk for metabolic
diseases and indirectly leading to CVD [110, 114–116].

In addition to global nutrition, single micronutrient deficiency has
a transgenerational impact on the offspring that can also result in dra-
matic effects [123–126]. For instance, dietary zinc (Zn) restriction
during pregnancy induces low birth weight in the newborn rats,
hypertension, kidney failure and endothelial dysfunction in adult rats
[127]. All these features show a predisposition to CVD that can be
potentially related to the biology of the IGF system. Specifically, IGF-I
and IGFBP-3 serum levels are low in children with Zn deficiency, and
increased after Zn supplementation for 3 months [128].

Deficient protein metabolism, IGFs and CVD

Red meat such as lamb, beef and pork may induce CVD through yet
unidentified mechanisms associated with high levels of methionine

[129]. It has been suggested that a diet rich in methionine can induce
CVD by oxidative stress, inflammatory manifestations and vascular
remodeling. Mice fed with methionine developed CVD with LV dys-
function marked by higher levels of superoxide dismutase-1 in the
hearts, while interleukin (IL)-1, IL-6, tumour necrosis factor a and
TLR4 (toll-like receptor 4) showed a significant inflammatory profile
[62, 129]. The upregulated levels of eNOS/iNOS and MMP2/MMP9
beside high collagen deposition indicated vascular remodeling in
same methionine fed mouse model [129]. Thus, high methionine
levels are considered to be a CVD hazard increasing the oxidative
stress, inflammatory manifestations and matrix/vascular remodelling
finally altering the cardiac function. These mechanisms are not yet
known to interfere with IGFs actions but they are open for further
studies.

Another example based on protein metabolism is given by the
high levels of the plasma homocysteine that are associated with insu-
lin resistance syndrome and this might involve IGFs actions [130–
132]. This stressor represents a risk factor of epigenetic origins for
CVD. It has been previously shown that genome-wide methylation—
as determined by investigation of LINE-1 sequences (as marker) and
CpG dinucleotides within consensus coding sequence genes—were
all associated with high levels of homocysteine [130–132]. In fact,
homocysteine impairs placental amino-acid transport producing
restricted foetal growth and possibly CVD by epigenetic mechanisms
that may interfere with insulin and IGFs signalling.

Deficient lipid metabolism, IGFs and CVD

Various examples emphasizing the IGFs action in modulating the CVD
epigenetic origins can be given by different lipid metabolism situa-
tions [133–143]. Among many, the biology of the peroxisome prolif-
erator-activated receptors (PPARc and PPARa) is potentially related
to IGFs and this is emerging as a possible interface between lipid
metabolism, epigenetic modifications, atherosclerosis and CVD [144–
148]. (i) Several target genes of PPARc transcription factors have
been identified, including GATA2 or Kr€uppel-like factor family [149].
PPARc simultaneously regulates Setdb1 and Setd8 [150], two histone
lysine methyl transferases that cause chromatin modifications which
lead to adipocyte differentiation. Furthermore, as presented by Mur
et al. in their 2003 report [151], IGFs have an important role in insu-
lin-induced brown adipocyte differentiation through PPAR-c. PPAR
transcription factors can potentially become markers for assessing
CVD risk in relation to insulin and IGFs abnormal levels. Lecka-Czernik
et al. [152] demonstrated that activation of PPAR-c by its ligand
(rosiglitazone) suppresses components of the IGF regulatory system
in vitro and in vivo (Fig.2). Developing novel adipocyte-specific
PPARc activators or setting up a complex therapy including thiazo-
lidinediones and epigenetic modulators may selectively regulate the
promoters of adipogenic genes, henceforth, fulfilling important thera-
peutic purposes including the treatment of CVD [153]. (ii) The PPAR
genetic profiling uncovers igf-1 gene as a PPAR-a target with an
important role in cardio-protection. PPARa activation in the wild-type
mouse heart resulted in up-regulation of the igf-1 gene transcription
and provided protection against cardiomyocyte apoptosis post
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ischemia or biomechanical stress. This confirms that igf-1 gene is an
in vivo target of PPARa and the involvement of a PPARa/IGF-I sig-
nalling loop in cardiomyocytes protection under ischemic and hemo-
dynamic loading conditions is a must [154]. In other cases, such as
parental exposure to high-fat-diet or obesity in F2-generation of
mouse descendants has been associated with PPARa as the main
molecular player in epigenetic transgenerational inheritance [142]. In
addition, these epigenetic modifications were associated not only with
an increase in body size but also the reduction of insulin sensitivity
which may cause IGF-malfunction and subsequently CVD.

It should be noted that IGFs do not act alone within the
PPAR circuit but in strict relationship with IGF-binding proteins.
For example, between IGF-I and insulin there is a feedback
mechanism ensured by IGFBP-1 [155]. IGFBP-1 modulates IGF-
bio-availability for glucose homeostasis and it is inhibited tran-
scriptionally by insulin. Treatments with the anti-diabetic troglita-
zone have affected IGFBP-1 production and the activity of PPARa
and PPARc [155, 156]. We thus consider it necessary, that CVD
studies targeting problems of transgenerational epigenetics
induced or mediated by IGFs should use models where the IGF
activity can be read in the context of the entire IGF-system.

Animal models for CVD based on metabolic
determinants related to IGF- biology

To further evaluate the global and single nutrient deficiencies and
their epigenetic basis as related to IGFs and CVD, we identified certain
animal models that can be very useful to this matter. These proto-
types are:

High-fat diet in mice
This model resulted in an epigenetic phenotype with increased body
weight, insulin resistance, hyperlipidaemia, hyperleptinaemia, and
hypoadiponectinaemia [120, 121, 134, 135]. The insulin resistance
feature may involve IGFs compensatory activity in cell growth.

Maternal obesity in mice
‘Western Style’-based diet induces maternal obesity and diabetes
which allowed a phenotype with metabolic dysfunction and altered
DNA methylation patterns in the mouse offspring [135, 136]. The
affected genes were more responsible for development than meta-
bolic pathways. This change in foetal development leads to diabetes
and obesity in the adult offspring [134–139] and it might be related to
IGFs and CVD.

Maternal hyperglycemia
In this case, an epipolymorphism was identified in placental leptin and
adiponectin genes linking glucose metabolism to the maintenance of
these genes. As mentioned earlier in this review, the cohort of patients
born during the Dutch Hunger Winter, exposed to famine during gesta-
tion, show timing- and gender-specific variations of methylation in a
number of genes involved in metabolic control [113]. These genes are
responsible for glucose and lipid metabolism and consequently coro-

nary artery disease in the adults which may be
IGF-dependent.

Ovine maternal obesity
The model shows a significant increase in hepatic expression of miR-
29b, miR-103 and miR-107 and a decrease in IR, phopsho-AKT and
phospho-FoxO1 levels in the first generation of its offspring [140]. In
this case IGFs can play a major compensatory role.

Diet-induced paternal obesity in mice
Molecular analyses demonstrated that diet-induced paternal obesity
in mice is associated with alteration of 414 mRNAs in the testis and
11 microRNAs in the sperm and all were associated with 25% DNA-
methylation/total DNA isolated from germ cells [134, 141]. Recently,
the transgenerational effects of paternal obesity have been also
demonstrated in humans [142]. This specific paternal metabolic dys-
function is associated with hypomethylation of the imprinted IGF-II
gene (igf2), as tested in the DNA-pull extracted from umbilical cord
blood cells [143, 147, 148].

Maternal obesity
Maternal obesity and paternal high-fat-diets induce metabolic dys-
functions and b-cell impairment in the first generation (F1) of female
rats. This last model shows a phenotype characterized by obesity and
glucose-intolerance which might be involved with IGF-biology [134,
145].

Conclusion

Epigenetics induced by IGFs fluctuations are likely linked to cardio-
vascular medicine. To date, there are no significant reports on epige-
netics as related to clinical practise or therapeutics designed for
transgenerational CVD forms associated or not to endocrine factors
such as IGFs. In contrast, in oncology, epigenetic inhibitors have
already shown curative potential [156]. Understanding the epigenetic
mechanisms induced by growth factors such as IGFs, gives assur-
ance of significant contribution to understanding CVD in both paedi-
atric and geriatric patients.
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