
RESEARCH ARTICLE

HSRA: Hadoop-based spliced read aligner for

RNA sequencing data

Roberto R. Expósito*, Jorge González-Domı́nguez, Juan Touriño

Computer Architecture Group, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain

* roberto.rey.exposito@udc.es

Abstract

Nowadays, the analysis of transcriptome sequencing (RNA-seq) data has become the stan-

dard method for quantifying the levels of gene expression. In RNA-seq experiments, the

mapping of short reads to a reference genome or transcriptome is considered a crucial step

that remains as one of the most time-consuming. With the steady development of Next Gen-

eration Sequencing (NGS) technologies, unprecedented amounts of genomic data intro-

duce significant challenges in terms of storage, processing and downstream analysis. As

cost and throughput continue to improve, there is a growing need for new software solutions

that minimize the impact of increasing data volume on RNA read alignment. In this work we

introduce HSRA, a Big Data tool that takes advantage of the MapReduce programming

model to extend the multithreading capabilities of a state-of-the-art spliced read aligner for

RNA-seq data (HISAT2) to distributed memory systems such as multi-core clusters or cloud

platforms. HSRA has been built upon the Hadoop MapReduce framework and supports

both single- and paired-end reads from FASTQ/FASTA datasets, providing output align-

ments in SAM format. The design of HSRA has been carefully optimized to avoid the main

limitations and major causes of inefficiency found in previous Big Data mapping tools, which

cannot fully exploit the raw performance of the underlying aligner. On a 16-node multi-core

cluster, HSRA is on average 2.3 times faster than previous Hadoop-based tools. Source

code in Java as well as a user’s guide are publicly available for download at http://hsra.dec.

udc.es.

1 Introduction

RNA sequencing (RNA-seq) [1, 2] stems from the application of Next Generation Sequencing

(NGS) technologies to complementary DNA molecules, which are obtained by reverse tran-

scription from a single stranded RNA (e.g., messenger RNA). RNA-seq analysis is mainly used

to get information about the presence and quantity of RNA in a biological sample at a given

moment. Nowadays, RNA-seq is becoming an increasingly efficient and popular tool for quan-

tifying gene expression levels and identifying variants in the transcriptome, providing much

higher resolution measurements of gene expression than other methods such as hybridization-

based microarrays [3].

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Expósito RR, González-Domı́nguez J,

Touriño J (2018) HSRA: Hadoop-based spliced

read aligner for RNA sequencing data. PLoS ONE

13(7): e0201483. https://doi.org/10.1371/journal.

pone.0201483

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: April 19, 2018

Accepted: July 16, 2018

Published: July 31, 2018

Copyright: © 2018 Expósito et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The HSRA software

is available at http://hsra.dec.udc.es. The

experimental evaluation was performed with real

datasets freely available for download from: https://

www.ebi.ac.uk/ena.

Funding: This work was supported by the Ministry

of Economy, Industry and Competitiveness of

Spain and FEDER funds of the European Union

[grant TIN2016-75845-P (AEI/FEDER/EU)] and by

Xunta de Galicia (Centro Singular de Investigación

de Galicia accreditation 2016-2019) [grant

ED431G/01].

http://hsra.dec.udc.es
http://hsra.dec.udc.es
https://doi.org/10.1371/journal.pone.0201483
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201483&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201483&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201483&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201483&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201483&domain=pdf&date_stamp=2018-07-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201483&domain=pdf&date_stamp=2018-07-31
https://doi.org/10.1371/journal.pone.0201483
https://doi.org/10.1371/journal.pone.0201483
http://creativecommons.org/licenses/by/4.0/
http://hsra.dec.udc.es
https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena


The rapid advance of high-throughput NGS technologies has led to a vast production of

short DNA sequence fragments (called reads) with dramatically low unit cost. A typical RNA-

seq data analysis begins by mapping these reads to a given reference genome to determine the

location from which the reads were originated. This early mapping step is considered a funda-

mental part to nearly all NGS workflows, and the accuracy of downstream analyses depends

heavily on it. However, optimally aligning hundreds of millions of reads to multiple gigabases

for the typical human genome (the most common use case) is one of the most computationally

intensive steps in the entire process. Therefore, the explosive growth of RNA-seq datasets

poses a big challenge to the mapping quality and the execution speed of existing spliced align-

ers. Even though state-of-the art tools can provide high accuracy and speed, the mapping step

will remain very time-consuming as NGS technologies and their associated costs are expected

to continue to improve over time, which can represent a significant bottleneck in future RNA-

seq analyses.

Such growth in the amount of genomic data can be tackled by taking full advantage of high-

performance approaches based on parallel and distributed data processing techniques that

scale efficiently with the number of computing nodes. Although most of the existing spliced

aligners for RNA-seq data include native support for multithreading to exploit the computa-

tional capabilities of current multi-core systems, their scalability is inherently limited to

a single computing node. To overcome this issue, popular Big Data technologies like the

MapReduce paradigm [4] provide efficient support for the distributed storage and processing

of massive datasets. Such Big Data frameworks are capable of composing large distributed

applications which can be executed on commodity clusters and cloud platforms in a scalable

way. In fact, the use of Big Data and MapReduce are gaining increasing attention in bioinfor-

matics and biomedical research in recent years [5–8].

In this paper we introduce HSRA, a spliced read aligner that relies on the MapReduce model

to enable scalable mapping of very large RNA-seq datasets on distributed memory systems.

Our tool is intended for those bioinformatics researchers who perform their RNA-seq analyses

using Big Data platforms and frameworks [9]. HSRA allows them to efficiently distribute their

mapping tasks over the nodes of a computing cluster or cloud platform by combining a fast and

accurate multithreaded spliced aligner (HISAT2 [10]) with the Apache Hadoop project [11],

which is the most popular open-source MapReduce framework for distributed data processing.

HSRA currently supports single- and paired-end read alignments in FASTQ/FASTA formats

and is capable of directly processing input datasets compressed with gzip and bzip2 codecs.

The remainder of the paper is organized as follows: Section 2 introduces the background of

the paper. Section 3 discusses the related work. The design and implementation of our tool is

described in Section 4. Section 5 presents the experimental results carried out on a multi-core

cluster to evaluate the performance of our proposal. Finally, Section 6 concludes the paper and

proposes future work.

2 Background

This section describes the main concepts and involved technologies that HSRA relies on: short

read alignment (Section 2.1) and MapReduce (Section 2.2), which are necessary to understand

the design and implementation of the tool.

2.1 Short read alignment of RNA-seq data

After quality control (e.g., filtering out low quality reads), the fundamental task in RNA-seq

analyses is mapping each read to a previously assembled reference genome or transcriptome.

In the context of RNA-seq, mapping to a reference genome is the preferred choice as it is

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 2 / 25

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0201483


much more effective for the identification of novel genes or transcripts [12]. So far, many algo-

rithms have been proposed in the literature to perform short read alignment to a reference

genome, such as BWA [13], Bowtie [14], Bowtie2 [15], MAQ [16], RMAP [17] and SOAP2

[18]. Nevertheless, the complexities inherent to RNA-seq data make RNA-seq alignment

much more challenging than mapping DNA-seq data. As genes in eukaryotic organisms con-

tain introns and because RNA-seq reads do not include these introns, many reads may span

two or more exons. Conventional mapping algorithms are not recommended because of their

inability to align reads to the genome across splice junctions. One approach to resolve this

issue is to supplement the reference genome with reads derived from exon-exon splice junc-

tions acquired from known gene annotations [19]. A preferred strategy is to use specialized

splice-aware aligners to perform this critical step that can recognize the difference between a

read aligning across an exon-intron boundary and a read with a short insertion [12]. Other

important ability of RNA-seq aligners must be to perform gapped alignment to handle reads

containing sequencing errors or indels [20]. Finally, it is also worth mentioning lightweight-

alignment or pseudoalignment-based approaches used by some recent RNA-seq aligners such

as Salmon [21] and kallisto [22].

2.1.1 State-of-the-art splice-aware aligners. A big challenge in RNA-seq analyses is to

choose a right mapping tool among existing ones that is capable of: (1) aligning reads across

splice junctions; (2) performing gapped alignment; (3) handling paired-end reads for higher

accuracy; and (4) running efficiently both in terms of execution time and memory consumption.

A recent comprehensive study has evaluated 14 common splice-aware aligners for RNA-

seq data [23], most of them meeting the first three requirements. Considering only open-

source tools, state-of-the-art aligners that were evaluated include GSNAP [24], STAR [25],

SOAPSplice [26], MapSplice [27], TopHat2 [28] and HISAT2 [10]. According to [23],

TopHat2 has been the most popular aligner over the last 5 years, mainly due to high sensitivity

and accuracy of mapping. However, it is among the slowest aligners in terms of mapping

speed while showing moderate memory consumption. TopHat2 is now being largely super-

seded by HISAT2, which is expected to inherit its popularity in the near future as it provides

the same core functionality in a more accurate and much more efficient way. The default

mode of HISAT2 follows a novel hybrid approach that collects splice sites as it processes the

reads, similarly to the first run of two-pass methods (e.g., TopHat2, STAR). Those splice sites

are used when aligning later reads in the same run, which allows to increase sensitivity without

the large performance cost incurred by two-pass methods. By using hierarchical indexing (i.e.,

global and local indexes) and several alignment strategies, HISAT2 is currently the fastest tool

while remarkably accurate even on the shortest anchors and without annotation [23]. In terms

of memory consumption, HISAT2 has very low memory requirements (4.3 GiB for the human

genome [10]) as it is based on an extension of the Burrows-Wheeler Transform (BWT) for

graphs [29] instead of using more memory-consuming hash-based or suffix array approaches.

Note that according to this study, other tools are either considerably slower than HISAT2

(SOAPSplice), slighlty slower but much more memory-consuming (STAR, GSNAP), or both

(MapSplice). Therefore, we have selected HISAT2 as the underlying aligner for HSRA in order

to implement the fastest and lowest memory-consuming distributed tool. HISAT2, as well as

most of the mapping tools, provides its own parallel implementation through multithreading

to support shared memory systems, so its scalability is limited to a single node.

2.2 MapReduce

MapReduce is a parallel programming model originally developed by Google [4] for the stor-

age and processing of large datasets over the nodes of distributed memory systems such as

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 3 / 25

https://doi.org/10.1371/journal.pone.0201483


clusters and clouds. In fact, it is one of the most successful paradigms for effective Big Data

processing in many industrial and scientific fields. Other popular parallel programming mod-

els such as the Message Passing Interface (MPI) [30] require developers to explicitly manage

inter-process communications. Instead, MapReduce allows transparent parallelization by

means of two explicit user-defined functions derived from functional programming: Map and

Reduce. The basic idea of this model is shown in Fig 1. The input dataset to be processed is

divided into splits or chunks, each one containing many records in a<key, value> pair for-

mat. The Map function transforms the input key-value pairs into other intermediate ones

based on any relationship specific to the application. When the input is large, many instances

of the Map function (i.e., map tasks) can execute in parallel on different input splits (i.e., one

map task per split). Once the map tasks are completed, the intermediate key-value pairs are

sorted and grouped together according to the key by the MapReduce framework. Then, the

framework shuffles all these data across the network so that all the values with the same key are

merged together into a single list, which is the input of the Reduce function. Several instances

of the Reduce function (reduce tasks) can be executed concurrently, whose number is configur-

able by the user. The reduce tasks produce the final output in the form of key-value pairs.

Unlike MPI, all the inter-process communications between mappers and reducers (i.e., data

shuffling) are completely transparent, as well as other mechanisms such as resource manage-

ment and fault tolerance. In this model, users only need to focus on implementing the Map
and Reduce functions.

MapReduce has been specifically designed for the scalable processing of very large datasets,

far beyond what can be stored in memory. In order to efficiently support this model, Google

developed the distributed Google File System (GFS) [31], designed to provide high bandwidth

by replicating and partitioning files across the locally attached disks of the computing nodes.

Fig 1. Overall workflow of the MapReduce paradigm. This workflow shows several map and reduce tasks working in parallel over different

input splits.

https://doi.org/10.1371/journal.pone.0201483.g001

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 4 / 25

https://doi.org/10.1371/journal.pone.0201483.g001
https://doi.org/10.1371/journal.pone.0201483


Basically, the number of times that GFS replicates each data block over the cluster is defined as

the replication factor. Relying on GFS, MapReduce attempts to schedule map tasks on the

nodes where the input data blocks reside, improving data locality and minimizing data move-

ments across the network. It is important to remark that the MapReduce model can support

map-only applications, where no reduce tasks are executed (i.e., no grouping-by-key operation

is performed). For these applications, the output of map tasks is the final output. Avoiding the

reduce phase eliminates sort and shuffle phases as well, which reduces disk and network over-

heads. The intermediate output of map tasks is generally written to local disk before being sent

to the reducers, but in map-only applications this output is directly written to GFS.

2.2.1 Apache Hadoop. The Apache Hadoop project [11] is the most popular and wide-

spread open-source implementation of the MapReduce model derived from the Google’s pro-

prietary one. Basically, Hadoop consists of three components or layers: (1) the Hadoop

MapReduce engine as data processing layer; (2) the Hadoop Distributed File System (HDFS)

[32] as storage layer that mimics GFS; and (3) the Yet Another Resource Negotiator (YARN)

[33] as resource management layer. Hadoop is entirely written in Java to ensure high portabil-

ity and is widely used in both academy and industry. In addition to on-premises deployments,

Hadoop is becoming a de facto standard for cloud computing platforms, where storage and

compute resources can be accessed on demand on a pay-as-you-go basis.

In order to extend the multithreading capabilities of the spliced HISAT2 aligner to distrib-

uted memory systems, HSRA has been implemented on top of Hadoop due to its interesting

features such as scalability, portability, distributed data management, fault tolerance and data-

aware scheduling, as well as its high popularity and support in the Big Data ecosystem.

3 Related work

There are in the literature some previous works that exploit parallel architectures to speed up

the performance of the alignment procedure. This section provides a state-of-the-art survey

focused on those mapping tools for DNA (Section 3.1) and RNA (Section 3.2) sequencing data

intended to be executed on distributed memory systems. The goal is to gather the major limita-

tions and main causes of inefficiency of previous tools in order to avoid them, to the extent

possible, when designing HSRA.

3.1 Distributed mapping tools for DNA-seq data

Most of the distributed tools for DNA are based on non-spliced aligners (e.g., BWA, Bowtie,

RMAP), which are not recommended for mapping RNA-seq data as mentioned in Section 2.1.

Representative examples of such tools are pBWA [34], parSRA [35], CloudBurst [36], SEAL

[37], CloudAligner [38], BigBWA [39], SparkBWA [40], Halvade [41] and Crossbow [42],

briefly described next.

pBWA is implemented following the MPI paradigm, but it is limited to a particular and

outdated version of the BWA aligner, while its scalability has proved to be rather poor [35].

parSRA is a novel framework that can work with several underlying mapping tools (e.g., Bow-

tie2, BWA, SOAP2). However, the current version does not provide support for any splice-

aware aligner. Furthermore, parSRA is based on the UPC++ [43] parallel extension of C+

+ and the FUSE kernel module, which are requirements not frequently available on clusters

(the FUSE module cannot be installed by regular users). The rest of tools are based on Big

Data technologies, mainly Hadoop, but they generally present some limitations and shortcom-

ings. CloudBurst implements the RMAP algorithm but it does not support paired-end reads

and the commonly used FASTQ format for input sequence files. SEAL only works with a par-

ticular and modified version of BWA. Regarding CloudAligner, it is an RMAP-based tool that

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 5 / 25

https://doi.org/10.1371/journal.pone.0201483


requires a preprocessing of the genome index and the input sequence files before being copied

to HDFS, incurring high overhead. Note that some kind of preprocessing or conversion of the

sequence files is generally required for all other Hadoop-based tools (i.e., CloudBurst, SEAL),

which prevents any of them from processing FASTQ/FASTA datasets (compressed or not)

directly from HDFS. This is also the case for the Hadoop-based BigBWA tool. Even worse, the

output files of the underlying BWA aligners executed by BigBWA are first stored in local disk

and then copied to HDFS, incurring high disk overhead. SparkBWA outperforms BigBWA by

using Apache Spark [44], but it cannot process compressed datasets either and does not sup-

port the FASTA format for input sequence files. Halvade follows a different approach by

implementing a whole genome analysis pipeline instead of only the alignment step. Imple-

mented with Hadoop, it performs read alignment supporting several tools (BWA, Bowtie2)

and variant calling using the appropriate modules from the Genome Analysis Toolkit (GATK)

[45]. However, the performance of the alignment step in Halvade is similar to previous tools

such as BigBWA according to [40]. The major issues that hinder its performance are: (1) Hal-

vade also requires a preprocessing of the paired-end input files to adapt them to the format

required by Hadoop-BAM [46], by interleaving both files so that paired-end reads are adjacent

to each other; (2) a preparatory step (partitioning) of the reference genome is also required;

and (3) for some aligners (e.g., Bowtie2), Halvade incurs significant disk overhead as it first

copies the input reads parsed from HDFS to local disk from which the underlying aligner will

then perform the mapping procedure. Finally, Crossbow follows a similar approach to that of

Halvade, also implementing a whole analysis pipeline using Hadoop but providing signifi-

cantly lower parallel efficiency according to [41].

3.2 Distributed mapping tools for RNA-seq data

There also exist a few distributed tools specifically intended for mapping RNA-seq data. The

most important projects are pMap [47], FX [48], Myrna [49], DistMap [50] and Halvade-RNA

[51], briefly described next.

pMap is an MPI-based tool that can use several underlying aligners. Among them, GSNAP

is the only one that can be used for RNA-seq data, although it is slower and much more mem-

ory-consuming than HISAT2 as mentioned in Section 2.1.1. Moreover, pMap suffers from

one major issue that severely limits its scalability: the overhead of the initial partitioning and

distribution of the input sequence files is significant, especially when increasing the number of

nodes, as stated in [35]. Another GSNAP-based tool is FX, implemented with Hadoop, but

currently unavailable to researchers (the website of this project is not longer accessible). Fur-

thermore, FX also requires a preprocessing step before aligning paired-end reads, which con-

verts the FASTQ input files to the custom GSNAP format [24]. Myrna is another Hadoop-

based tool that calculates the differences of gene expression in RNA-seq datasets. So, this tool

is not just an aligner, but instead integrates several functions for RNA-seq analysis such as nor-

malization and statistical modeling in a single computing pipeline. Myrna uses Bowtie [14] as

the underlying aligner, which is neither splice-aware nor performs gapped alignment.

Although Myrna is intended for RNA-seq data, its main limitation is that expression signal

may be lost as the alignment step cannot align reads across exon junctions [5, 49]. Regarding

DistMap, it provides an integrated workflow implemented in a series of Perl scripts that run

on Hadoop using the streaming interface. It supports a wide range of aligners and, among

them, GSNAP, STAR and TopHat2 are suitable for RNA-seq data, thus lacking support for the

faster and more memory-efficient HISAT2. DistMap also incurs significant preprocessing

overhead as it converts the input FASTQ files into appropriate file formats capable of being

processed with the default record readers provided by Hadoop. Moreover, it suffers from

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 6 / 25

https://doi.org/10.1371/journal.pone.0201483


significant disk overhead during the mapping procedure as it also copies the input reads from

HDFS to local disk in a similar way to Halvade. In addition to this, DistMap does not support

the FASTA format for input sequence files. Finally, Halvade-RNA is an extension of Halvade

that provides a whole analysis pipeline for RNA-seq data using STAR as the underlying aligner.

Therefore, the same limitations arise as for Halvade. In fact, a significant disk overhead is

incurred when using STAR as in the case of using Bowtie2 in Halvade.

The main goal of HSRA is to provide scalable read alignment for RNA-seq data analyses.

To do so, HSRA integrates the fast spliced aligner HISAT2 into Hadoop. Furthermore, HSRA
tries to avoid the main limitations found in previous tools. To the best of our knowledge,

HSRA is the first publicly available distributed tool that performs short read alignment based

on HISAT2.

4 Materials and methods

Section 3 has revealed the most common issues and causes of inefficiency in previous distrib-

uted mapping tools. These limitations can be converted into desirable requirements when

implementing HSRA, which can be summarized as follows:

1. The tool must be based on a fast multithreaded, but accurate enough, splice-aware aligner

with low memory requirements.

2. The tool must support both single- and paired-end read alignment of input datasets in com-

mon unaligned sequence formats (e.g., FASTQ, FASTA).

3. The tool must provide the output alignments in de facto standard formats (e.g., SAM/BAM

[52]) without any additional conversion to enable direct interoperation with downstream

analytical tools (e.g., GATK [45]).

4. The tool must work with an unmodified version of the selected aligner.

5. The tool must not be limited to working with a particular version of the aligner, and should

support any future version (to the extent possible).

6. The tool must support the processing of compressed input datasets.

7. The tool must avoid any preprocessing/conversion of the input datasets (compressed or

not) and reference genome files before being copied to HDFS.

8. The tool must be scalable, especially when processing large datasets. To do so:

a. Disk overheads should be reduced to the bare minimum (e.g., extra copies from HDFS

to local disk and vice versa).

b. Any other extra overhead incurred by the Hadoop framework (e.g., data shuffling)

should be avoided (if possible).

It is obvious that the underlying aligner plays a key role in fulfilling requirements 1-3.

Rather than implementing a short read aligner from scratch, we have integrated HISAT2 in

Hadoop in a similar way to previous tools. As mentioned before, HISAT2 has been selected

because of its memory efficiency and speed features according to [23], while it is also more

accurate than its popular predecessor (TopHat2). Furthermore, HISAT2 provides single- and

paired-end alignment of FASTQ/FASTA datasets and produces the output in SAM format.

The rest of desirable requirements heavily depend on the HSRA design on top of Hadoop and

on how HISAT2 has been effectively integrated into it. Next sections describe HSRA in more

detail to show how features 4-8 have been achieved.

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 7 / 25

https://doi.org/10.1371/journal.pone.0201483


4.1 HSRA overall design

HSRA has been designed as a command-line tool that receives as input arguments those com-

mon parameters also needed when working with any standalone aligner. For instance, the

path to the input sequence and genome index files are mandatory arguments. On the one

hand, the input sequence files in FASTQ/FASTA format must be stored in HDFS so that they

can be processed by Hadoop in a distributed way. On the other hand, the distribution of the

genome index files does not provide any performance benefit as all the aligner tasks require to

load the entire genome in memory. So, the index files can be either shared among all comput-

ing nodes using a shared file system (e.g., NFS) or stored locally in the same path of all nodes.

Another mandatory argument for HSRA is the estimated memory needed to run a single

instance of the aligner taking into account the reference genome being used. The submission

of the MapReduce jobs to the Hadoop cluster to perform the read alignment is facilitated by

the hsrarun command included in the HSRA bundle distribution. To help non-expert users,

our tool includes a user’s guide that details all the input arguments for hsrarun, provides com-

pilation and execution instructions, and describes advanced configuration options.

The HSRA design has been focused on avoiding any modification of the original HISAT2

source code (requirement 4). For this reason, HSRA executes the alignment algorithm from

the map tasks as an external process. To properly interact with the underlying aligner, our

tool needs to use some default command-line options of HISAT2 that do not usually change

between different releases. In this way, HSRA can be considered version-agnostic regarding

HISAT2, being not limited to using a particular version (first part of requirement 5). In the

unlikely event that any of the options required by HSRA were changed in future HISAT2

releases, our tool can be adapted through a specific configuration file included in the distribu-

tion, thus increasing version portability even more (second part of requirement 5).

4.2 HSRA workflow

Basically, the HSRA workflow consists of two main stages: (1) If the input datasets are not

already stored in HDFS, they must be first distributed over the nodes of the cluster by upload-

ing them to HDFS. In this stage, the datasets are partitioned into a variable number of data

blocks according to the block size configured for HDFS (e.g., 256 MiB). (2) A MapReduce job

is submitted to the Hadoop cluster using the hsrarun command provided by HSRA to perform

the read alignment. In this stage, multiple instances of the HISAT2 aligner are executed in par-

allel over the nodes of the cluster, with each aligner task processing the input split assigned to

it (by default, there is one input split per HDFS data block). Actually, the first stage is a com-

mon prerequisite for any Hadoop-based tool, so we will focus on the read alignment stage

from now on.

It is important to remark that HSRA is specifically oriented to those users who perform

their RNA-seq analysis on Big Data platforms. Consequently, they are encouraged to take

advantage of downstream analytical tools that are able to perform further data processing

directly on HDFS. Representative examples of such tools are the Spark-based implementation

of the GATK toolkit [53] and ADAM [54], which implements a variant calling pipeline on top

of Spark. Otherwise, the output files of each aligner task must be merged into a single SAM

output file by performing a copy-merge operation at the HDFS level, which is an optional step

in HSRA. Next, this file must be copied from HDFS to the local file system for further process-

ing, incurring high disk overhead. Nevertheless, note that this is not the common use case for

Big Data tools such as HSRA.

One of the the main advantages of the HSRA workflow compared to previous Hadoop-

based tools is that the input sequence files can be stored and processed directly on HDFS

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 8 / 25

https://doi.org/10.1371/journal.pone.0201483


without any previous preprocessing/conversion step (requirement 7). Moreover, these datasets

can be in compressed format supporting the gzip and bzip2 codecs (requirement 6). To do so

in an efficient way, we have developed the Hadoop Sequence Parser (HSP) library [55] that

allows to process FASTQ/FASTA datasets (compressed or not) directly from HDFS both for

single- and paired-end reads. Although the source code of this library was first strongly cou-

pled with the HSRA project, it has now been released as a standalone open-source library to

make it publicly available for other bioinformatics applications. In fact, we have also rede-

signed our MapReduce Duplicate Removal (MarDRe) tool [56] to make use of HSP for

improved performance, which shows the usefulness, applicability and flexibility of our

approach. The motivation to implement such a library and some details about its overall

design are described next.

4.3 The Hadoop Sequence Parser (HSP) library

In the context of Hadoop, the access to the input files stored in HDFS is managed by an appro-

priate implementation of the abstract InputFormat class: FileInputFormat. This class defines

how these input files are divided into logical chunks or input splits, each of them to be pro-

cessed by an individual map task. The split size is configurable by the user for each MapReduce

job, so it can be used to control the total number of map tasks that are executed. Note that a

split is a logical division of the input data whereas an HDFS block is a physical division. In fact,

the HDFS block size is used as the default split size if not specified by the user (i.e., there is one

input split per HDFS block by default). An InputFormat class must also provide the corre-

sponding RecordReader implementation to extract input records from the logical split, and is

in charge of respecting record boundaries and presenting a record-oriented view of the split to

the map tasks.

In the context of HSRA, the input sequence files must be properly parsed when processed

with Hadoop taking into account the specific structure of the FASTA/FASTQ text-based for-

mats. Unfortunately, the built-in FileInputFormat implementations provided by Hadoop for

processing text-based files (e.g., TextInputFormat) are not able to handle those sequence for-

mats straightforwardly. Hadoop is designed to process line-based text formats where identify-

ing individual records is simple as line boundaries are denoted by newline characters (i.e., one

record per line). However, FASTA/FASTQ formats are text-based files that involve multiple

lines per sequence. One simple but inefficient way to solve this issue is to convert the sequence

files into the appropriate line-by-line format required by Hadoop (i.e., one sequence per line)

and then copy the converted files to HDFS. As mentioned in Section 3, this has been the pre-

ferred approach used by most of the previous tools based on Hadoop (e.g., BigBWA, CloudA-

ligner, DistMap). Another approach consists in using specialized libraries that implement

specific routines to parse FASTQ/FASTA files in Hadoop. These libraries provide custom

implementations of the FileInputFormat and RecordReader classes, and Hadoop-BAM [46],

BioPig [57] and FASTdoop [58] are available alternatives. These Java libraries allow to read

single-end datasets in FASTQ/FASTA formats directly from HDFS. However, none of them

provide specific support for paired-end datasets and this is the reason why Halvade, which

internally uses Hadoop-BAM, still requires a preprocessing step for paired-end datasets. Fur-

thermore, Hadoop-BAM and FASTdoop do not support compressed datasets. BioPig provides

this support, but it has proved to be the most inefficient library according to [58].

To the best of our knowledge, HSP is the first library that provides specific support for both

single- and paired-end datasets (compressed or not), which allows HSRA to avoid any conver-

sion of the input files (requirements 6-7). Basically, HSP includes two abstract classes at the

top of the hierarchy that extend the FileInputFormat and RecordReader classes from Hadoop:

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 9 / 25

https://doi.org/10.1371/journal.pone.0201483


SingleEndSequenceInputFormat and SingleEndSequenceRecordReader, respectively. These clas-

ses are the templates to support single-end datasets, which are formed by a single input file,

providing specific implementations for FASTQ (FastQInputFormat, FastQRecordReader) and

FASTA (FastAInputFormat, FastARecordReader) in a similar way to previous libraries. To sup-

port paired-end datasets, HSP takes advantage of their special structure: the two ends of a

paired read are distributed in two separate files with one of them containing the forward (or

“left”) read and the other one containing the corresponding reverse (or “right”) read. Note that

there is a one-to-one mapping between the forward and reverse reads of each sequence. If each

file were separately handled as a single-end dataset, their corresponding input splits would

keep the one-to-one correspondence. So, HSP supports paired-end datasets by providing an

appropriate PairedEndSequenceInputFor mat class together with a custom InputSplit imple-

mentation: PairedEndCompositeInputSplit. This class allows to create composite input splits

formed by the two underlying file splits coming from each input file, keeping the aforemen-

tioned one-to-one mapping. Finally, the PairedEndSequenceRecordReader class uses two of the

underlying record readers for single-end datasets to parse the reads from each of the input

splits and merge their contents, thus providing a single record to the map task that contains

both ends. It is worth mentioning that our approach does not interfere with the data-aware

capabilities of Hadoop. The scheduler will still try its best to place map tasks on the nodes

where both splits that make up a composite split reside (or at least one of them), minimizing

network traffic. This is possible due to the location information provided by the PairedEnd-
CompositeInputSplit class through the getLocations() method, which must be implemented by

any InputSplit subclass.

Regarding the data types of the <key,value> pairs provided by HSP, both single- and

paired-end record readers generate the following format: <LongWritable,Text>. In single-

end mode, the key is a unique self-generated identifier for each read within the split and

the value is the text-based content of the read (e.g., read identifier, bases and qualities for

FASTQ). In paired-end mode, the key provides the length (in bytes) of a single read in the

pair and the value is the merged content of both reads. If needed, users can obtain the “left”

and “right” reads separately by splitting the value (i.e., the text) using the provided key.

These formats for the <key,value> pairs have been chosen to make HSP agnostic of HSRA
so that it can be used by any other Big Data framework compatible with the Hadoop input

formats.

Once the HSP library has been designed to feed the map tasks with appropriate key-value

pairs from the input datasets in an efficient way, the read alignment step can start. Next sec-

tions describe how this step has been implemented in HSRA for single- and paired-end

alignment.

4.4 Single-end alignment

The single-end mode has been implemented using a map-only job, thus avoiding any data

sorting and shuffling overhead incurred by the Hadoop framework (requirement 8(b)). By

default, one map task is generally launched per input split in a Hadoop job. In order to increase

the flexibility and user-friendliness of our tool, HSRA accepts the number of aligner instances

to be executed per node through a command-line option. The total number of map tasks (i.e.,

aligner instances) launched in a job is internally managed by HSRA, which calculates the

appropriate split size to create as many input splits (i.e., map tasks) as needed. The number of

map tasks per node is then controlled by requesting the necessary memory resources from

YARN for each task. These memory requirements are based on the available memory per node

as configured in YARN and the estimated memory per aligner as indicated by the user. Note

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0201483


that all this configuration is automatically done by HSRA and is completely transparent to the

user.

A high-level overview of the HSRA workflow for single-end alignment is depicted in Fig 2.

The input splits are read from HDFS using the HSP library, which parses them into key-value

Fig 2. Overview of the HSRA workflow for single-end alignment. This mode executes a map-only job taking advantage of the HSP library to

parse the reads directly from HDFS. Native pipes are used for efficient IPC communication between Hadoop and HISAT2.

https://doi.org/10.1371/journal.pone.0201483.g002

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0201483.g002
https://doi.org/10.1371/journal.pone.0201483


pairs representing single-end reads that feed the map tasks. During the setup method of the

map phase, each map task executes a single instance of HISAT2 as an external process. This

instance is in charge of aligning the reads of its corresponding input split to the whole refer-

ence genome. Next, the map method provided by HSRA is called for each input key-value pair

(i.e., each read) generated by HSP. These reads are sent to the underlying aligner by using an

Inter-Process Communication (IPC) mechanism to avoid any disk overhead (requirement 8

(a)), as described in Section 4.4.1. Finally, the cleanup method of the map phase is in charge of

destroying the aligner when finished. The number of threads that the underlying aligner can

use to speed up the computation can also be provided as input argument to HSRA. One clear

advantage of this design is that the alignment step can be performed using a two-level hybrid

parallelization. On the one hand, several map tasks are executed across the cluster, with several

tasks per node if desired. On the other hand, each map task can parallelize the alignment using

several threads to exploit the multithreaded capabilities of HISAT2.

The interaction between the map task, which runs as a Java process called YarnChild in a

Java Virtual Machine (JVM), and the underlying aligner HISAT2, which runs as a separate sys-

tem process launched from the JVM, is far from straightforward. Note that, for performance

reasons, state-of-the-art aligners are usually written in natively compiled languages (e.g.,

HISAT2 is implemented in C++), while Hadoop and HDFS are implemented in Java. So, these

aligners cannot read/write directly from/to HDFS unless their source code were modified.

However, they still require that the input reads to be aligned are either stored in a file or fed

through the standard input stream (i.e., stdin). The problem is that the input splits are parsed

from HDFS during the map phase, so the reads reside in the JVM memory space. As men-

tioned in Section 3, most of the previous tools (e.g., BigBWA, SparkBWA, DistMap, Halvade)

have overcome this issue through the local file system by copying the reads parsed from HDFS

to a file stored in local disk, and then passing the path to this file as an input argument to the

aligner, thus incurring disk overhead. In a similar way, aligners generally write the alignments

either to an output file or to the standard output stream (i.e., stdout). The common approach

is again to copy the output file from local disk to HDFS in the map task when the aligner has

finished. As mentioned before, HSRA avoids any disk overhead during the alignment step by

using an IPC mechanism that is based on named pipes, as described next.

4.4.1 Efficient IPC mechanism between Hadoop and HISAT2. A named pipe (or FIFO)

provides an efficient one-way IPC channel between two separate processes running on the

same node, without incurring the performance penalty of involving the disk or the network

stack. In fact, the communication using a named pipe is performed through a memory buffer

that exists inside the kernel space, with one process acting as reader and the other one as

writer. The underlying implementation ensures that a named pipe stays in memory rather

than being written to disk. This concept is an extension of the traditional pipe that lasts beyond

the life of the process. The “name” of a named pipe is actually a file name within the file system

that appears as it were a regular file. Using this mechanism, two separate processes can be

attached to a named pipe by its name (i.e., its path) for doing efficient IPC through the file sys-

tem, without incurring any disk overhead.

Unfortunately, the JVM does not currently provide any routine to create named pipes from

Java code. Instead, HSRA must resort to native APIs (e.g., mkfifo). Such APIs can be accessed

from Java via the Java Native Interface (JNI), which allows the execution of native code (e.g.,

C/C++) inside the JVM. In HSRA, the map task first creates two named pipes through JNI for

the input and output files required by HISAT2 in single-end mode. Once created, standard

Java routines for file I/O (e.g., open, read, write, close) can be performed over named pipes in

the same way as with regular files. Next, the map task launches the aligner with the paths of the

input and output pipes as arguments. So, HISAT2 acts as reader while the map task must open

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 12 / 25

https://doi.org/10.1371/journal.pone.0201483


the input pipe as writer. The reads to be aligned are streamed (i.e., written) by the map task to

the input pipe as they are read from the split stored in HDFS, while the aligner is concurrently

reading from the pipe (see Fig 2). In a similar way, the map task opens the output named pipe

as reader to consume the output alignments produced by HISAT2. As any other standard

MapReduce application, these alignments are written to HDFS by HSRA during the map

phase as output <key,value> pairs using the following format: <NullWritable,Text>. So, our

pipe-based mechanism avoids the use of any intermediate file on local disks as, unlike previous

tools, the output from the aligner is directly written to HDFS. Finally, note that the map task

launches a helper thread to consume the data coming from the aligner at the same time that

the main thread is feeding the aligner through the input pipe. As mentioned before, named

pipes are internally implemented using a memory buffer, whose maximum size is limited.

When this buffer is full, any write operation to the pipe blocks until data are consumed. So, the

helper thread is needed to consume the data as soon as they are produced by the aligner, avoid-

ing any possible deadlock that would occur if both pipes were managed by a single thread.

4.5 Paired-end alignment

The paired-end mode follows the same overall design as single-end, thus taking advantage of

the two-level parallelization and the efficient IPC communication between Hadoop and

HISAT2 through named pipes. In fact, the number of aligners to execute and the number of

threads per aligner can also be specified for this mode. Currently, HSRA provides two different

approaches for processing paired-end datasets, both implemented using a single MapReduce

job. The first one, which can be considered a naive approach, uses the single-end support from

the HSP library and performs a reduce-side join in order to pair the reads from the two input

files required in this mode. The second approach takes advantage of the specific support pro-

vided by HSP for paired-end datasets to perform the join on the map side, thus executing a

map-only job. The goal of providing two different implementations is to show the perfor-

mance benefits obtained due to using this specific support only available in the HSP library.

Each approach is detailed next.

4.5.1 Reduce-side join approach. The overall workflow of this approach is shown in Fig

3. Using the single-end support from HSP, each map task processes a split from one of the two

input files required in the paired-end mode.

Before the paired-end alignment can actually be performed, the reads from the i-th split of

the first input file must be joined (i.e., paired) with the corresponding ones from the i-th split

of the second input file. To do so, map tasks parse their corresponding splits from HDFS as in

single-end mode, but they emit key-value pairs where the key is the unique identifier within

the split generated by HSP and the value is the read parsed as text. As explained in Section 4.3,

there is a one-to-one correspondence between the forward and reverse reads in paired-end

datasets. So, the identifier of the j-th read from the i-th split of the first input file will be the

same as that of the j-th read from the i-th split of the second one. The grouping-by-key opera-

tion performed by the MapReduce data engine between the map and reduce phases acts as a

reduce-side join, where both the forward and reverse reads of each paired-end sequence are

sent to the same reduce task. Remind that the input of a reduce task is a single list that contains

all the values (2 in this case) with the same key. In this way, the paired-end alignment can be

performed during the reduce phase. First, reduce tasks create two named pipes for both input

files required by HISAT2, and a third one for the output file. Next, each reduce task launches a

single instance of HISAT2. The paired-end reads are obtained from the input key-value pairs

received by a reduce task, which are streamed to the input pipes. The main thread is in charge

of feeding the first input pipe being read by HISAT2, while a helper thread does the same for

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 13 / 25

https://doi.org/10.1371/journal.pone.0201483


Fig 3. Overview of the HSRA workflow for paired-end alignment using the reduce-side join approach. This

approach executes a MapReduce job using the single-end support provided by the HSP library, where a reduce-side

join is needed to obtain the paired-end reads. Native pipes are used for efficient IPC communication between Hadoop

and HISAT2.

https://doi.org/10.1371/journal.pone.0201483.g003

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 14 / 25

https://doi.org/10.1371/journal.pone.0201483.g003
https://doi.org/10.1371/journal.pone.0201483


the second one. Another helper thread is also needed to receive the output data from the

aligner and write them to HDFS to avoid any deadlock, as in single-end mode.

This approach does not require any specific support for paired-end datasets from the HSP

library. Instead, it relies on the single-end support and leverages the underlying MapReduce

engine to perform the join-like operation required to merge both ends of a paired-end

sequence in the reduce side, which executes the alignment step. However, sorting and data

shuffling mechanisms between the map and reduce phases involve disk and network over-

heads, which can limit performance and scalability.

4.5.2 Map-side join approach. This approach takes full advantage of the HSP library to

process paired-end datasets in a more efficient way. The overall workflow is depicted in Fig 4.

As can be seen, the custom input format and record reader provided by HSP for paired-end

reads allows HSRA to perform the alignment step during the map phase, thus executing a

map-only job that avoids data sorting and shuffling overheads (requirement 8(b)).

As explained in Section 4.3, HSP can transparently feed the map tasks with appropriate

key-value pairs for paired-end alignment, where the key provides the length of each end of a

paired read and the value contains the merged content of both ends. The join-like operation

that merges both ends of a paired read from the two input files occurs in the map side when

reading the composite splits from HDFS, which have been previously created by the HSP

library. During the map phase, the map tasks use the key to split the value (i.e., a paired-end

sequence) into separate forward and reverse reads. These separate reads are then streamed to

HISAT2 through two named pipes in the same way as in the previous approach, with the out-

put from the aligner being also handled through an additional named pipe.

5 Results and discussion

In this section, HSRA is evaluated on a 16-node multi-core cluster using Hadoop version 2.7.3

and HISAT2 version 2.1.0. Each computing node consists of two Intel Xeon E5-2660 octa-core

processors at 2.2 GHz (i.e., 16 cores per node), 64 GiB of memory and one 800 GiB local disk

intended for both HDFS and intermediate data storage during the execution of Hadoop jobs.

The nodes are interconnected through an InfiniBand FDR network (56 Gbps). The system

runs Linux CentOS 6.8 with kernel 2.6.32-642, and the JVM version is Oracle JDK 1.8.0_144.

Regarding HDFS settings, the block size and the replication factor were set to 256 MiB and 3,

respectively. Four publicly available datasets (stored in HDFS) have been used to evaluate

HSRA, named after their accession numbers in the NCBI sequence read archive (see Table 1

for their main characteristics). We have selected datasets with different representative sizes

(from 23 to 96 GiB) and read lengths (76 and 101 base pairs). The alignments were performed

for single- and paired-end reads to the reference human genome hg38, whose index files are

available in the local disk of each node. Finally, the results shown in this section correspond to

the median runtime for a set of 10 executions for each dataset.

As explained in Section 4.4, the flexibility of our tool allows the user to easily set via com-

mand-line options the number of aligner instances to execute per node (-na) and the number

of threads to use per aligner (-nt). HSRA also provides two different approaches for paired-end

alignment described in Section 4.5. So, the experimental evaluation started by finding the best

configuration for the number of aligners and threads, as well as the best approach for paired-

end mode. For these experiments, the datasets with the largest read lengths were used: SRR1

and DDR1 (see Table 1). Fig 5 shows the runtime for the single-end alignment of both datasets

for different configurations using 4, 8, 12 and 16 nodes, while Figs 6 and 7 provide the same

results for the paired-end alignment of the SRR1 and DRR1 datasets, respectively, using both

approaches.

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 15 / 25

https://doi.org/10.1371/journal.pone.0201483


Fig 4. Overview of the HSRA workflow for paired-end alignment using the map-side join approach. This approach allows avoiding any data

shuffling by executing a map-only job thanks to the specific support for paired-end datasets provided by the HSP library. Native pipes are used

for efficient IPC communication between Hadoop and HISAT2.

https://doi.org/10.1371/journal.pone.0201483.g004

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 16 / 25

https://doi.org/10.1371/journal.pone.0201483.g004
https://doi.org/10.1371/journal.pone.0201483


The first conclusion that can be drawn from these results is that the intermediate configura-

tion for the number of aligners and threads is the best performer overall: two aligner instances

per node and eight threads per aligner on this system. Nevertheless, the performance differ-

ences between configurations are generally small, especially when using the largest number of

Table 1. Input datasets used in the experimental evaluation.

Tag Name Instrument model Organism #Reads Read length Size

SRR1 SRR534301 Illumina HiSeq 2000 Homo sapiens 108.75 M 101 bp 24 GiB

DRR1 DRR021368 Illumina HiSeq 2500 Homo sapiens 289.15 M 101 bp 96 GiB

SRR2 SRR317060 Illumina Genome Analyzer II Homo sapiens 110.47 M 76 bp 23 GiB

SRR3 SRR567455 Illumina HiSeq 2000 Homo sapiens 251.88 M 76 bp 45 GiB

Characteristics of the public datasets used in the evaluation of HSRA, named after their accession numbers in the NCBI sequence read archive.

https://doi.org/10.1371/journal.pone.0201483.t001

Fig 5. Experimental results for single-end alignment. Runtime results obtained by HSRA when varying the number of nodes using the (a)

SRR1 and (b) DRR1 datasets.

https://doi.org/10.1371/journal.pone.0201483.g005

Fig 6. Experimental results for paired-end alignment (SRR1 dataset). Runtime results obtained by HSRA when varying the number of nodes

using the (a) reduce-side and (b) map-side join approaches.

https://doi.org/10.1371/journal.pone.0201483.g006

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 17 / 25

https://doi.org/10.1371/journal.pone.0201483.t001
https://doi.org/10.1371/journal.pone.0201483.g005
https://doi.org/10.1371/journal.pone.0201483.g006
https://doi.org/10.1371/journal.pone.0201483


nodes. As a rule of thumb, non-expert users can select as many aligner instances as processors

per node and as many threads as cores per processor. The second conclusion is that the map-

side join approach for paired-end alignment significantly outperforms the reduce-side coun-

terpart for all configurations and number of nodes (see Figs 6 and 7). In fact, the map-side join

is on average 1.8 times faster than its counterpart for the aforementioned intermediate config-

uration, which clearly shows the performance benefits provided by the HSP library when

using its specific support for paired-end datasets. Finally, the third conclusion is that our tool

provides good scalability overall, especially for the largest dataset (i.e., DRR1). From now on,

all the experimental results shown in this section have been obtained with the best configura-

tion for HSRA.

5.1 Performance comparison with DistMap

Big Data users that perform their RNA-seq data analyses on HDFS can take advantage of the

performance benefits provided by HSRA when mapping very large datasets. In order to accu-

rately measure such benefits and provide a fair comparison with previous Big Data mapping

tools, they should ideally use the same underlying aligner. This would ensure that the raw per-

formance and memory consumption of the alignment step remains the same for all the tools.

So, any performance difference between them could be directly attributed to their implemen-

tation on top of the underlying aligner, and not due to using different alignment algorithms.

However, HSRA is, up to our knowledge, the first publicly available distributed tool based on

HISAT2. As mentioned in Section 3.2, DistMap [50] is one of the Hadoop-based tools that

supports several aligners for RNA-seq data, TopHat2 being one of them, which is the predeces-

sor of HISAT2. It was therefore feasible to adapt DistMap by modifying its source code to use

HISAT2 instead of TopHat2, and thus provide a fair comparison with our tool. Note that the

DistMap results shown in this section do not include the extra time required for the prepro-

cessing step to prepare the input datasets. We report the time needed to perform only the

alignment stage, which provides a best-case scenario for DistMap performance.

Table 2 shows the experimental results for DistMap and HSRA for the single- and the

paired-end alignment of the four datasets using 4, 8, 12 and 16 nodes. These results validate

our design as they prove that our tool is on average around 2.3 times faster than DistMap

when using the same underlying aligner. On the 16-node cluster, the maximum speedups of

Fig 7. Experimental results for paired-end alignment (DRR1 dataset). Runtime results obtained by HSRA when varying the number of nodes

using the (a) reduce-side and (b) map-side join approaches.

https://doi.org/10.1371/journal.pone.0201483.g007

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 18 / 25

https://doi.org/10.1371/journal.pone.0201483.g007
https://doi.org/10.1371/journal.pone.0201483


HSRA over DistMap are 3.70x and 3.30x for single-end (SRR3) and paired-end (SRR2) modes,

respectively. The main reason for this performance improvement is that HSRA does not incur

any disk overhead during the alignment step (requirement 8(a) in Section 4) by streaming the

input reads from HDFS to HISAT2 through named pipes, while consuming its output data in

the same way. Instead, DistMap first copies the input reads from HDFS to local files stored in

disk and passes their paths to HISAT2 to perform the alignment, while the SAM output files

are also first stored in local disk and then copied to HDFS. It is important to remark that the

results for DistMap do not include the preprocessing of the input datasets, which would fur-

ther increase its runtimes, while HSRA avoids any preprocessing step by using the HSP library.

The results shown in this section reinforce the main motivation of this paper: the design of

existing Big Data tools (e.g., DistMap) cannot take full advantage of state-of-the-art aligners

such as HISAT2, and a new tool implemented from scratch to overcome this issue is indeed

advisable.

5.2 Performance comparison with HISAT2

Table 3 shows the runtimes of DistMap and HSRA using 16 nodes (i.e., 256 cores) and com-

pares them with those of HISAT2 on a single node using all the available cores (16). This

Table 2. Experimental results for DistMap and HSRA using HISAT2.

Alignment Nodes SRR1 DRR1 SRR2 SRR3 Speedup

DistMap HSRA DistMap HSRA DistMap HSRA DistMap HSRA

Single-end 4 734 349 1564 872 989 440 4301 1977 2.09x

8 467 220 880 469 591 242 1923 880 2.13x

12 419 185 692 343 511 189 1715 645 2.45x

16 358 176 495 285 428 135 1621 438 2.81x

Paired-end 4 1479 646 3357 1910 2021 1072 12162 6592 1.86x

8 785 346 1681 796 1019 575 5350 2415 2.14x

12 496 257 1285 555 870 326 3123 1455 2.23x

16 401 230 784 423 751 228 2760 1069 2.41x

Runtime results (in seconds) for DistMap and HSRA for single- and paired-end read alignment. Both Hadoop-based tools use HISAT2 as the underlying aligner. The

speedups shown are the average ratio of DistMap runtimes to HSRA ones for all the datasets and each cluster size.

https://doi.org/10.1371/journal.pone.0201483.t002

Table 3. Experimental results for DistMap and HSRA (16 nodes) vs HISAT2 (1 node).

Alignment Dataset HISAT2 DistMap HSRA

Runtime Runtime Speedup Runtime Speedup

Single-end SRR1 1171 358 3.27x 176 6.65x

DRR1 3193 495 6.45x 285 11.20x

SRR2 1508 428 3.52x 135 11.17x

SRR3 6806 1621 4.20x 438 15.54x

Paired-end SRR1 3281 401 8.18x 230 14.27x

DRR1 7939 784 10.13x 423 18.77x

SRR2 4009 751 5.34x 228 17.58x

SRR3 19832 2760 7.19x 1069 18.55x

Runtime results (in seconds) for HISAT2 on one node and results for DistMap and HSRA on a 16-node Hadoop cluster when aligning each dataset. The speedups

shown are the ratio of HISAT2 runtimes to DistMap and HSRA ones.

https://doi.org/10.1371/journal.pone.0201483.t003

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 19 / 25

https://doi.org/10.1371/journal.pone.0201483.t002
https://doi.org/10.1371/journal.pone.0201483.t003
https://doi.org/10.1371/journal.pone.0201483


scenario allows measuring the maximum performance benefits of using Hadoop-based tools

when aligning a single dataset on HDFS by distributing the workload across the cluster. As

can be seen, DistMap and HSRA provide significant speedups over HISAT2: up to 6.45x

and 15.54x for single-end alignment, respectively, reducing runtimes to a few minutes. As

expected, aligning paired-end datasets is significantly more computationally intensive than

single-end ones. This fact allows DistMap and HSRA to further improve their speedups up to

10.13x and 18.77x, respectively.

Although the scalability of HISAT2 is limited to one node when aligning a single dataset,

users can also execute one HISAT2 instance per node to simultaneously align multiple datasets

on a cluster. Table 4 shows the runtime of HISAT2 when aligning the four datasets on four

nodes (i.e., one dataset per node). In this scenario, the HISAT2 performance corresponds to

the maximum runtime of the most compute-intensive alignment on this system (i.e., SRR3).

These results are compared with the runtimes of DistMap and HSRA when aligning the four

datasets on a 4-node Hadoop cluster, so using the same amount of computing resources.

These tools must execute four Hadoops jobs in total (i.e., one job per dataset). Basically, their

performance corresponds to the sum of the alignment times for each dataset on a 4-node

Hadoop cluster (see Table 2) plus the overhead of launching each Hadoop job (around 20 sec-

onds per job for our testbed). As expected, the performance benefits of Hadoop-based tools

are reduced. In fact, HISAT2 outperforms DistMap for single-end alignment, while the

speedup of DistMap over HISAT2 for paired-end mode is negligible (1.04x). Nevertheless,

HSRA is still around 2 times faster than HISAT2 in this scenario. These results prove that our

tool is the suitable replacement of DistMap when performing RNA-seq analyses on HDFS,

while HISAT2 would be the preferred choice otherwise.

5.3 HSRA correctness

We have tested the correctness of HSRA using the SRR1 dataset in single- and paired-end

mode. To assess the impact of distributing the input reads across the cluster, we have per-

formed these experiments using the minimum and maximum number of nodes considered

in this work (4 and 16, respectively). The procedure was the following: (1) the output SAM

files generated by HSRA were first merged into a single SAM file, one for each alignment

mode, to be later processed using the SAMtools package [52], as this software does not sup-

port HDFS; (2) the two merged SAM files were then copied from HDFS to local disk and

analyzed with SAMtools to extract meaningful mapping statistics from the alignments con-

tained in them; (3) these results were compared with those obtained by HISAT2 when exe-

cuted as a standalone tool; and (4) the uniquely aligned reads, which represent more than

90% of the mapped reads for the SRR1 dataset, were further analyzed to obtain the number

of misaligned reads generated by HSRA (i.e., reads mapped to a different chromosome and/

or position).

Table 4. Experimental results for HISAT2, DistMap and HSRA (4 nodes).

Alignment HISAT2 DistMap HSRA

Runtime Runtime Speedup Runtime Speedup

Single-end 6806 7673 0.89x 3728 1.83x

Paired-end 19832 19098 1.04x 10302 1.93x

Runtime results (in seconds) for HISAT2, DistMap and HSRA when aligning all the datasets using four nodes. The speedups shown are the ratio of HISAT2 runtimes to

DistMap and HSRA ones.

https://doi.org/10.1371/journal.pone.0201483.t004

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 20 / 25

https://doi.org/10.1371/journal.pone.0201483.t004
https://doi.org/10.1371/journal.pone.0201483


Table 5 shows the most relevant metrics obtained by analyzing with SAMtools the corre-

sponding SAM files of HISAT2 and HSRA. Overall, we found very small differences for most

of the metrics. These differences are due to the default hybrid approach implemented by

HISAT2, explained in Section 2.1.1. This approach collects splice sites as it processes the input

reads. These sites are then used when aligning later reads in the same execution. So, when dis-

tributing the input dataset across the cluster, each aligner task only processes part of the data.

Therefore, more/less/different splice sites (there is no way to know that) may be collected by

each aligner task. This fact mainly affects the ability of HISAT2 to search for multiple distinct

alignments for each read, as indicated by the reported number of valid alignments and second-

ary (non-primary) alignments (i.e., HSRA reports less multimapped reads than HISAT2).

According to the number of unmapped reads, HSRA introduces a small percentage (<1%) of

false-positive alignments, which are uniquely mapped by our tool. This in turn increases the

total number of reads mapped by HSRA and thus its overall alignment rates are slightly higher

(<0.1%) than those obtained by HISAT2. Regarding misaligned reads, we have checked that

only 0.45% and 0.75% of the uniquely aligned reads generated by HSRA using 4 and 16 nodes,

respectively, are mapped to a different chromosome and/or position when compared to those

of HISAT2.

Table 5. Mapping statistics for HISAT2 and HSRA (SRR1 dataset).

HISAT2 HSRA (4 nodes) Diff. HSRA (16 nodes) Diff.

Single-end Alignments 124.16 M 123.60 M -0.45% 123.24 M -0.74%

Secondary alignments 22.67 M 22.10 M -2.51% 21.71 M -4.23%

Reads unmapped 7.25 M 7.22 M -0.41% 7.21 M -0.55%

Reads mapped 101.49 M 101.52 M 0.03% 101.53 M 0.04%

Uniquely mapped reads 92.30 M 92.77 M 0.51% 93.10 M 0.87%

Alignment rate 93.33% 93.36% 0.03% 93.37% 0.04%

Bases mapped 10,209.15 M 10,212.24 M 0.03% 10,212.30 M 0.03%

Mismatches 48.10 M 48.25 M 0.31% 48.31 M 0.44%

Error rate 0.004711 0.004725 0.30% 0.004731 0.42%

Average quality 34.10 34.10 0.00% 34.10 0.00%

Average coverage 3.348 3.349 0.03% 3.349 0.03%

Paired-end Alignments 235.46 M 233.06 M -1.02% 231.48 M -1.69%

Secondary alignments 37.24 M 34.72 M -6.77% 33.08 M -11.17%

Reads unmapped 19.28 M 19.17 M -0.57% 19.10 M -0.93%

Reads mapped 198.22 M 198.33 M 0.06% 198.40 M 0.09%

Reads mapped and paired 188.51 M 188.70 M 0.10% 188.82 M 0.16%

Uniquely mapped reads 182.43 M 184.45 M 1.11% 186.19 M 2.06%

Alignment rate 91.14% 91.18% 0.04% 91.21% 0.08%

Bases mapped 19,937.70 M 19,949.70 M 0.06% 19,955.69 M 0.09%

Mismatches 117.06 M 117.64 M 0.50% 118.01 M 0.81%

Error rate 0.005871 0.005897 0.44% 0.005913 0.72%

Average quality 32.90 32.90 0.00% 32.90 0.00%

Average coverage 6.5384 6.5424 0.06% 6.5443 0.09%

Mapping statistics (and their differences) for HISAT2 and HSRA for single- and paired-end read alignment of the SRR1 dataset. These results were obtained by

analyzing the output SAM files generated by both tools using the SAMtools package. For HSRA, two sets of results are provided for the minimum (4) and maximum (16)

number of nodes considered in this work.

https://doi.org/10.1371/journal.pone.0201483.t005

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 21 / 25

https://doi.org/10.1371/journal.pone.0201483.t005
https://doi.org/10.1371/journal.pone.0201483


Finally, it is worth noting that increasing the number of nodes by a factor of 4 (from 4 to

16), and thus the number of aligner tasks executed by HSRA, does not widen these differences

in the same proportion. Remark also that previous Big Data mapping tools [37, 39–41] that do

not rely on HISAT2 have also reported small differences when verifying their correctness com-

pared with their corresponding standalone aligners. This fact evidences that any distributed

mapping tool that splits the input data into several chunks can minimally affect the output

alignments one way or another depending on the underlying aligner used.

6 Conclusions

Recent advances in NGS technologies have established the need for fast tools to align RNA-seq

reads to a reference genome. In this paper we have presented HSRA, a Hadoop-based tool that

obtains good scalability on multi-node systems while providing comparable accuracy to its

underlying aligner, HISAT2. After a preliminary review of the literature we established eight

requirements that HSRA successfully fulfills and make our tool more flexible and interesting

than the existing counterparts. For instance, we developed the HSP library as basis of HSRA to

efficiently parse FASTA/FASTQ files from HDFS avoiding expensive preprocessing or conver-

sion steps.

The performance of our tool has been evaluated on a 16-node Hadoop cluster using four

large datasets. Our results have shown experimental evidence of significant performance

improvements in terms of execution times and scalability compared to a previous Hadoop-

based tool (DistMap) using the same underlying aligner. In fact, HSRA is up to 3.70 times

faster than DistMap for the single-end alignment of a huge dataset with 251 million 76 bp

reads to the human genome when using all the cluster nodes. HSRA is distributed as free soft-

ware under the GNU GPLv3 license and is publicly available to download from http://hsra.

dec.udc.es.

As future work, we aim to evaluate the performance of HSRA on public cloud platforms

such as Amazon EMR. Furthermore, we intend to adapt our tool to exploit other Big Data

frameworks such as Apache Spark.

Acknowledgments

This work was supported by the Ministry of Economy, Industry and Competitiveness of Spain

and FEDER funds of the European Union [grant TIN2016-75845-P (AEI/FEDER/EU)] and by

Xunta de Galicia (Centro Singular de Investigación de Galicia accreditation 2016-2019) [grant

ED431G/01].

Author Contributions

Conceptualization: Roberto R. Expósito, Jorge González-Domı́nguez, Juan Touriño.

Investigation: Roberto R. Expósito.

Methodology: Roberto R. Expósito.

Resources: Roberto R. Expósito, Jorge González-Domı́nguez.

Software: Roberto R. Expósito.

Supervision: Juan Touriño.

Writing – original draft: Roberto R. Expósito, Jorge González-Domı́nguez, Juan Touriño.

Writing – review & editing: Roberto R. Expósito, Jorge González-Domı́nguez, Juan Touriño.

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 22 / 25

http://hsra.dec.udc.es
http://hsra.dec.udc.es
https://doi.org/10.1371/journal.pone.0201483


References
1. Pepke S, Wold B, Mortazavi A. Computation for ChIP-seq and RNA-seq studies. Nat Methods. 2009; 6

(11):S22–S32. https://doi.org/10.1038/nmeth.1371 PMID: 19844228

2. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet.

2009; 10(1):57–63. https://doi.org/10.1038/nrg2484 PMID: 19015660

3. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical repro-

ducibility and comparison with gene expression arrays. Genome Res. 2008; 18(9):1509–1517. https://

doi.org/10.1101/gr.079558.108 PMID: 18550803

4. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;

51(1):107–113. https://doi.org/10.1145/1327452.1327492

5. Zou Q, Li XB, Jiang WR, Lin ZY, Li GL, Chen K. Survey of MapReduce frame operation in bioinformat-

ics. Brief Bioinform. 2013; 15(4):637–647. https://doi.org/10.1093/bib/bbs088 PMID: 23396756

6. O’Driscoll A, Daugelaite J, Sleator RD. ‘Big data’, Hadoop and cloud computing in genomics. J Biomed

Inform. 2013; 46(5):774–781. https://doi.org/10.1016/j.jbi.2013.07.001 PMID: 23872175

7. Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical research and health care: a liter-

ature review. Biomed Inform Insights. 2016; 8:1–10. https://doi.org/10.4137/BII.S31559 PMID:

26843812

8. Schmidt B, Hildebrandt A. Next-generation sequencing: big data meets high performance computing.

Drug Discov Today. 2017; 22(4):712–717. https://doi.org/10.1016/j.drudis.2017.01.014 PMID:

28163155

9. Fjukstad B, Bongo LA. A review of scalable bioinformatics pipelines. Data Sci Eng. 2017; 2(3):245–251.

https://doi.org/10.1007/s41019-017-0047-z

10. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat

Methods. 2015; 12(4):357–360. https://doi.org/10.1038/nmeth.3317 PMID: 25751142

11. The Apache software foundation [Internet]. Apache Hadoop; 2006 [cited 20 June 2018]. Available from:

http://hadoop.apache.org.

12. Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015; 2015

(11):951–969. https://doi.org/10.1101/pdb.top084970 PMID: 25870306

13. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009; 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

14. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol. 2009; 10(3):R25. https://doi.org/10.1186/gb-2009-10-

3-r25 PMID: 19261174

15. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357–

359. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

16. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping qual-

ity scores. Genome Res. 2008; 18(11):1851–1858. https://doi.org/10.1101/gr.078212.108 PMID:

18714091

17. Smith AD, Xuan Z, Zhang MQ. Using quality scores and longer reads improves accuracy of Solexa read

mapping. BMC Bioinformatics. 2008; 9(1):128. https://doi.org/10.1186/1471-2105-9-128 PMID:

18307793

18. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read

alignment. Bioinformatics. 2009; 25(15):1966–1967. https://doi.org/10.1093/bioinformatics/btp336

PMID: 19497933

19. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian tran-

scriptomes by RNA-Seq. Nat Methods. 2008; 5(7):621–628. https://doi.org/10.1038/nmeth.1226 PMID:

18516045

20. Mullaney JM, Mills RE, Pittard WS, Devine SE. Small insertions and deletions (INDELs) in human

genomes. Hum Mol Genet. 2010; 19(R2):R131–R136. https://doi.org/10.1093/hmg/ddq400 PMID:

20858594

21. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantifica-

tion of transcript expression. Nat Methods. 2017; 14(4):417–419. https://doi.org/10.1038/nmeth.4197

PMID: 28263959

22. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Bio-

technol. 2016; 34(5):525–527. https://doi.org/10.1038/nbt.3519 PMID: 27043002

23. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR. Simulation-based comprehen-

sive benchmarking of RNA-seq aligners. Nat Methods. 2017; 14(2):135–139. https://doi.org/10.1038/

nmeth.4106 PMID: 27941783

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 23 / 25

https://doi.org/10.1038/nmeth.1371
http://www.ncbi.nlm.nih.gov/pubmed/19844228
https://doi.org/10.1038/nrg2484
http://www.ncbi.nlm.nih.gov/pubmed/19015660
https://doi.org/10.1101/gr.079558.108
https://doi.org/10.1101/gr.079558.108
http://www.ncbi.nlm.nih.gov/pubmed/18550803
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1093/bib/bbs088
http://www.ncbi.nlm.nih.gov/pubmed/23396756
https://doi.org/10.1016/j.jbi.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23872175
https://doi.org/10.4137/BII.S31559
http://www.ncbi.nlm.nih.gov/pubmed/26843812
https://doi.org/10.1016/j.drudis.2017.01.014
http://www.ncbi.nlm.nih.gov/pubmed/28163155
https://doi.org/10.1007/s41019-017-0047-z
https://doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://hadoop.apache.org
https://doi.org/10.1101/pdb.top084970
http://www.ncbi.nlm.nih.gov/pubmed/25870306
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1101/gr.078212.108
http://www.ncbi.nlm.nih.gov/pubmed/18714091
https://doi.org/10.1186/1471-2105-9-128
http://www.ncbi.nlm.nih.gov/pubmed/18307793
https://doi.org/10.1093/bioinformatics/btp336
http://www.ncbi.nlm.nih.gov/pubmed/19497933
https://doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
https://doi.org/10.1093/hmg/ddq400
http://www.ncbi.nlm.nih.gov/pubmed/20858594
https://doi.org/10.1038/nmeth.4197
http://www.ncbi.nlm.nih.gov/pubmed/28263959
https://doi.org/10.1038/nbt.3519
http://www.ncbi.nlm.nih.gov/pubmed/27043002
https://doi.org/10.1038/nmeth.4106
https://doi.org/10.1038/nmeth.4106
http://www.ncbi.nlm.nih.gov/pubmed/27941783
https://doi.org/10.1371/journal.pone.0201483


24. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioin-

formatics. 2010; 26(7):873–881. https://doi.org/10.1093/bioinformatics/btq057 PMID: 20147302

25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics. 2013; 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID:

23104886

26. Huang S, Zhang J, Li R, Zhang W, He Z, Lam TW, et al. SOAPsplice: genome-wide ab initio detection

of splice junctions from RNA-seq data. Front Genet. 2011; 2:46. https://doi.org/10.3389/fgene.2011.

00046 PMID: 22303342

27. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice: accurate mapping of

RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010; 38(18):e178. https://doi.org/10.

1093/nar/gkq622 PMID: 20802226

28. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of tran-

scriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):R36.

https://doi.org/10.1186/gb-2013-14-4-r36 PMID: 23618408

29. Sirén J, Välimäki N, Mäkinen V. Indexing graphs for path queries with applications in genome research.

IEEE/ACM Trans Comput Biol Bioinform. 2014; 11(2):375–388. https://doi.org/10.1109/TCBB.2013.

2297101 PMID: 26355784

30. Message Passing Interface Forum [Internet]. MPI: a Message Passing Interface standard; 1994 [cited

20 June 2018]. Available from: http://www.mpi-forum.org.

31. Ghemawat S, Gobioff H, Leung ST. The Google file system. SIGOPS Oper Syst Rev. 2003; 37(5):29–

43. https://doi.org/10.1145/1165389.945450

32. Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop distributed file system. In: Proceedings of the

IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST’2010). Incline Village, NV,

USA; 2010. p. 1–10.

33. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al. Apache Hadoop YARN: Yet

Another Resource Negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing

(SOCC’13). Santa Clara, CA, USA; 2013. p. 5:1–5:16.

34. Peters D, Luo X, Qiu K, Liang P. Speeding up large-scale next generation sequencing data analysis

with pBWA. J Appl Bioinform Comput Biol. 2012; 1(1). https://doi.org/10.4172/2329-9533.1000101

35. González-Domı́nguez J, Hundt C, Schmidt B. parSRA: a framework for the parallel execution of short

read aligners on compute clusters. J Comput Sci. 2018; 25:134–139. https://doi.org/10.1016/j.jocs.

2017.01.008

36. Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009; 25

(11):1363–1369. https://doi.org/10.1093/bioinformatics/btp236 PMID: 19357099

37. Pireddu L, Leo S, Zanetti G. SEAL: a distributed short read mapping and duplicate removal tool. Bioin-

formatics. 2011; 27(15):2159–2160. https://doi.org/10.1093/bioinformatics/btr325 PMID: 21697132

38. Nguyen T, Shi W, Ruden D. CloudAligner: a fast and full-featured MapReduce based tool for

sequence mapping. BMC Res Notes. 2011; 4(1):171. https://doi.org/10.1186/1756-0500-4-171 PMID:

21645377

39. Abuı́n JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the Burrows-Wheeler aligner to Big

Data technologies. Bioinformatics. 2015; 31(24):4003–4005. https://doi.org/10.1093/bioinformatics/

btv506 PMID: 26323715

40. Abuı́n JM, Pichel JC, Pena TF, Amigo J. SparkBWA: speeding up the alignment of high-throughput

DNA sequencing data. PLoS ONE. 2016; 11(5):e0155461. https://doi.org/10.1371/journal.pone.

0155461 PMID: 27182962

41. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable sequence analysis with

MapReduce. Bioinformatics. 2015; 31(15):2482–2488. https://doi.org/10.1093/bioinformatics/btv179

PMID: 25819078

42. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL. Searching for SNPs with cloud computing.

Genome Biol. 2009; 10(11):R134. https://doi.org/10.1186/gb-2009-10-11-r134 PMID: 19930550

43. Zheng Y, Kamil A, Driscoll MB, Shan H, Yelick K. UPC++: a PGAS extension for C++. In: Proceedings

of the 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2014). Phoenix,

AZ, USA; 2014. p. 1105–1114.

44. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al. Apache Spark: a unified engine for

Big Data processing. Commun ACM. 2016; 59(11):56–65. https://doi.org/10.1145/2934664

45. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.

2010; 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 24 / 25

https://doi.org/10.1093/bioinformatics/btq057
http://www.ncbi.nlm.nih.gov/pubmed/20147302
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.3389/fgene.2011.00046
https://doi.org/10.3389/fgene.2011.00046
http://www.ncbi.nlm.nih.gov/pubmed/22303342
https://doi.org/10.1093/nar/gkq622
https://doi.org/10.1093/nar/gkq622
http://www.ncbi.nlm.nih.gov/pubmed/20802226
https://doi.org/10.1186/gb-2013-14-4-r36
http://www.ncbi.nlm.nih.gov/pubmed/23618408
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1109/TCBB.2013.2297101
http://www.ncbi.nlm.nih.gov/pubmed/26355784
http://www.mpi-forum.org
https://doi.org/10.1145/1165389.945450
https://doi.org/10.4172/2329-9533.1000101
https://doi.org/10.1016/j.jocs.2017.01.008
https://doi.org/10.1016/j.jocs.2017.01.008
https://doi.org/10.1093/bioinformatics/btp236
http://www.ncbi.nlm.nih.gov/pubmed/19357099
https://doi.org/10.1093/bioinformatics/btr325
http://www.ncbi.nlm.nih.gov/pubmed/21697132
https://doi.org/10.1186/1756-0500-4-171
http://www.ncbi.nlm.nih.gov/pubmed/21645377
https://doi.org/10.1093/bioinformatics/btv506
https://doi.org/10.1093/bioinformatics/btv506
http://www.ncbi.nlm.nih.gov/pubmed/26323715
https://doi.org/10.1371/journal.pone.0155461
https://doi.org/10.1371/journal.pone.0155461
http://www.ncbi.nlm.nih.gov/pubmed/27182962
https://doi.org/10.1093/bioinformatics/btv179
http://www.ncbi.nlm.nih.gov/pubmed/25819078
https://doi.org/10.1186/gb-2009-10-11-r134
http://www.ncbi.nlm.nih.gov/pubmed/19930550
https://doi.org/10.1145/2934664
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1371/journal.pone.0201483


46. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko K. Hadoop-BAM: directly

manipulating next generation sequencing data in the cloud. Bioinformatics. 2012; 28(6):876–877.

https://doi.org/10.1093/bioinformatics/bts054 PMID: 22302568

47. HPC Lab [Internet]. pMap: parallel sequence mapping tool; 2010 [cited 20 June 2018]. Available from:

http://bmi.osu.edu/hpc/software/pmap/pmap.html.

48. Hong D, Rhie A, Park SS, Lee J, Ju YS, Kim S, et al. FX: an RNA-seq analysis tool on the cloud. Bioin-

formatics. 2012; 28(5):721–723. https://doi.org/10.1093/bioinformatics/bts023 PMID: 22257667

49. Langmead B, Hansen KD, Leek JT. Cloud-scale RNA-sequencing differential expression analysis with

Myrna. Genome Biol. 2010; 11(8):R83. https://doi.org/10.1186/gb-2010-11-8-r83 PMID: 20701754

50. Pandey RV, Schlötterer C. DistMap: a toolkit for distributed short read mapping on a Hadoop cluster.

PLoS ONE. 2013; 8(8):e72614. https://doi.org/10.1371/journal.pone.0072614 PMID: 24009693

51. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade-RNA: parallel variant calling from tran-

scriptomic data using MapReduce. PLoS ONE. 2017; 12(3):e0174575. https://doi.org/10.1371/journal.

pone.0174575 PMID: 28358893

52. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

53. Li X, Tan G, Zhang C, Li X, Zhang Z, Sun N. Accelerating large-scale genomic analysis with Spark. In:

Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (IEEE

BIBM 2016). Shenzhen, China; 2016. p. 747–751.

54. Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C, et al. Rethinking data-intensive

science using scalable analytics systems. In: Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data (SIGMOD’15). Melbourne, Australia; 2015. p. 631–646.

55. Expósito RR, Mosquera LL, González-Domı́nguez, J [Internet]. Hadoop Sequence Parser (HSP) library

for FASTQ/FASTA datasets; 2017 [cited 20 June 2018]. Available from: https://github.com/rreye/hsp.

56. Expósito RR, Veiga J, González-Domı́nguez J, Touriño J. MarDRe: efficient MapReduce-based

removal of duplicate DNA reads in the cloud. Bioinformatics. 2017; 33(17):2762–2764. https://doi.org/

10.1093/bioinformatics/btx307 PMID: 28475668

57. Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a Hadoop-based analytic toolkit for large-scale

sequence data. Bioinformatics. 2013; 29(23):3014–3019. https://doi.org/10.1093/bioinformatics/btt528

PMID: 24021384

58. Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. FASTdoop: a versatile and efficient library for

the input of FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications. Bioinformat-

ics. 2017; 33(10):1575–1577. https://doi.org/10.1093/bioinformatics/btx010 PMID: 28093410

HSRA: Hadoop-based spliced read aligner for RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201483 July 31, 2018 25 / 25

https://doi.org/10.1093/bioinformatics/bts054
http://www.ncbi.nlm.nih.gov/pubmed/22302568
http://bmi.osu.edu/hpc/software/pmap/pmap.html
https://doi.org/10.1093/bioinformatics/bts023
http://www.ncbi.nlm.nih.gov/pubmed/22257667
https://doi.org/10.1186/gb-2010-11-8-r83
http://www.ncbi.nlm.nih.gov/pubmed/20701754
https://doi.org/10.1371/journal.pone.0072614
http://www.ncbi.nlm.nih.gov/pubmed/24009693
https://doi.org/10.1371/journal.pone.0174575
https://doi.org/10.1371/journal.pone.0174575
http://www.ncbi.nlm.nih.gov/pubmed/28358893
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://github.com/rreye/hsp
https://doi.org/10.1093/bioinformatics/btx307
https://doi.org/10.1093/bioinformatics/btx307
http://www.ncbi.nlm.nih.gov/pubmed/28475668
https://doi.org/10.1093/bioinformatics/btt528
http://www.ncbi.nlm.nih.gov/pubmed/24021384
https://doi.org/10.1093/bioinformatics/btx010
http://www.ncbi.nlm.nih.gov/pubmed/28093410
https://doi.org/10.1371/journal.pone.0201483

