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A B S T R A C T   

Sleep-related problems are widespread. Numerous devices for sleep monitoring are increasingly 
available, including smartwatches, sleep monitoring rings, etc. These devices accumulate and 
analyze a substantial quantity of physiological data. In this study, we develop a smart air-mattress 
system that can effectively aid health measurements. The proposed system adopts an air-mattress 
system to detect subtle changes in pressure and thereby collect micro physiological signals, 
including ballistocardiography (BCG) and breathing signals. The system uses ultrasonic signals to 
detect the subject’s turning movements. To increase the signal recognition accuracy, the BCG 
signal is processed effectively to reduce noise interference engendered by the body movement 
during sleep and is processed using regression analysis for heart rate and breathing rate esti-
mation. Accordingly, the proposed system is unconstrained and can be used to collect micro BCG 
signals, breathing signals, heart rate signals, and turning movements for the long-term health- 
care.   

1. Introduction 

The recently global outbreak of the COVID-19 disease has inspired the strong need for remotely measuring platforms able to 
monitor the quality of patients’ healthcare with affordable prices [1]. Continuous heart heat monitoring is essential for early detection 
of cardiovascular diseases, which would be key factors for the evaluation of human’s health status. In addition, sleep-related problems, 
including insomnia and sleep apnea, are becoming increasingly extensive and affect modern people’s daily lives. Sleep apnea has a 
causal link to high blood pressure, coronary heart disease, arrhythmia, heart rhythm failure, and stroke [2]. Heartbeat and breathing 
are crucial health indicators. Long-term heart rate measurements can enable the monitoring of heart status and signs of heart disease 
while respiratory monitoring can provide further information for tracking health over time. 

Polysomnography (PSG) systems have been used in sleep tracking for a long time. Such systems use electrode pads stuck to the 
patient’s body to acquire physiological signals [3]. PSG systems are highly accurate but can affect sleep quality. Accordingly, 
numerous unconstrained systems have been developed for acquiring and assessing human physiological data; examples of such sys-
tems include liquid mattresses [4], acoustic sensors [5], pillow sensors [6], pressure pads [7], and hydraulic beds [8]. Compared with 
intrusive measurement systems, unconstrained measurement systems offer improved convenience and safety. 

Multiple studies have developed unconstrained physiological measurement systems in the recent decade. In Ref. [9], the authors 
presented a review of various signal processing methods as applied to the specific sensors, to analyze ballistocardiography (BCG) 
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signals and extract heart rate and breathing rate, as well as determining sleep stages. Recent research efforts have shown that smart air 
mattresses can be effectively used to track physiological signals over time, including body movement, breathing signals, and BCG 
signals, and eventually to measure the tiny vibrations produced by the human body. 

There are a variety of advanced sensing mechanisms integrated with the smart mattresses for the purpose of BCG measurement, for 
example, the polyvinylidene fluoride (PVDF) sensors [10,11], the piezoelectric pressure sensor [12], the electromechanical flm (EMFi) 
sensors [13], the strain-gauge based sensors [14], and accelerometers [15]. In the above approaches, added-on sensory and compli-
cated signal processing is needed. In Ref. [16], a pressure sensor was used to measure vibrations caused by human movement in 
pressure. In some advanced approaches, detecting heart rate variability using millimeter-wave radar technology has also been tried 
[17,18]. However, as the reflected radar wave has to be measured, which is invasive to the subject in some sense. 

To tackle the issue, in this study, we developed a smart air-mattress system based on the BCG-based measurement for monitoring 
the physiological characteristics of the human body. BCG can produce graphical representations of the mechanical activity of the heart 
and lungs [19]; it is adopted here to measure heart rate and breathing rate. The measurement systems are not invasive without the 
issues of electromagnetic interference. It is convenient to use with extreme low cost. The user does not require wearing any monitoring 
instruments and extra sensors attached with the mattress. Practically, it is appropriate to be used for long-term measurements of 
breathing rate and heart rate behavior of the subjects. 

Body position or posture considerably affects sleep quality [20]. Three methods have recently been developed for measuring body 
position or turning movements during sleep; these methods entail the use of a pressure sensor in a mattress, motion sensor on a 
wearable device, or image recognition. In addition, multiple inertial sensors [21] accelerometers [22] and radar systems [23] have 
been used for body position or turning monitoring. Body position and turning monitoring during sleep is crucial because experts 
recommend that specific groups of people should avoid certain sleeping positions. For example, babies are not suggested to sleep on 
their stomach, pregnant women should not sleep on their back, and patients with sleep apnea are recommended to sleep on their sides. 

2. System description 

The air mattress considered in this research task is inflatable and can support the users with high sensitivity. The mattress can be 
inflated to support the weight of the subject up to 150 kg. The air pressure is controlled using a relief valve. This valve ensures that no 
air escapes the mattress and reduces experimental errors. There is a mattress-integrated air pressure sensor which is the only sensor 
needed to collect the necessary information. 

The proposed approach possesses the following advantages for long-term care or therapy of sleep disorder.  

- It is portable; the air mattress can be deinflated and folded for ease of transport and can autoinflate when plugged.  
- Low cost. The mattress is mostly made of rubber and requires fewer electronic components and without the need of extra sensors.  
- It can collect multiple types of physiological data, including sleeping time, breathing signals, BCG signals, and body movement 

information.  
- It is noninvasive, no concern of radiative influence, and is able to detect all time for bedridden subjects’ heartbeats and to 

consequently extract breathing rate, heart rate and heart rate variability. 

The use of the proposed system for estimation based on the linear and random forest regression analysis of micro movement of heart 
activity with respect to 10 participants is realized and verified. The regression tresses can be used as a tool for heart rate estimation. 

Figure 1. Illustration of the signal acquisition architecture.  
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3. Experimental setup 

The smart air-mattress system has a compact architecture for monitoring physiological signals during sleep. For the development 
stage, signals collected by the air mattress are transmitted to a computer through a data acquisition system. The acquisition system 
consists of an interface and module for data processing, which saves data and uses it for subsequent processing. Pressure changes 
generated by the subject lying on the mattress are received by the air pressure sensor chip and converted into a differential voltage 
signal sent to the data acquisition system. The signal captured by the data acquisition system is input to an analog-to-digital converter 
(ADC) for conversion, and the signal is processed then. Because body movement noise may affect measurement precision, appropriate 
filters are used to remove interference to improve the subsequent recognition. To avoid body movement–induced false information, an 
outlier is applied to filter out the noisy signals that differs substantially from the rest of the data. Figure 1 displays the signal acquisition 
system. Table 1 lists key specifications of the air mattress. 

This study fulfilling the established ethical guidelines has been approved by the Research and Development Committee of National 
Chung Hsing University. Informed consent was obtained from each subject before experiments. 

3.1. Air-mattress system 

The experimental air-mattress system is composed of an air mattress, a tube, an air pressure sensor, a unidirectional valve, a relief 
valve, a pump, a digital processor, and a controller, see Figure 2. The air mattress is made of lightweight rubber. Its length and width 
are 75 and 37 cm, respectively. Because of its rubber construction, it can be easily folded into a smaller size and carried in a bag. 

The air mattress contains 128 air cells. Each air cell has no air and is not affected by the inflation system. The cell unit remains in the 
vacuum state with the length and width of 2 cm and 2 cm, respectively. When the subject lies on the air mattress, the air cells can 
automatically increase the contact area between the body and the mattress through the compressible characteristics of air. This is 
designed to improve measurement accuracy. 

If the mattress is unoccupied, it will undergo a decompression process; it is inflated again when an individual lies down. The process 
is slow to prevent the inflator pump from running continuously, thus reducing power consumption. 

3.2. Data acquisition 

The system acquires differential voltage signals captured by the air pressure sensor. The acquisition card extracts tiny voltage 
signals and features a 24-bit high-resolution ADC (delta–sigma) unit and support for the NI DAQ-9178. We collected expansive samples 
of physiological signals and conducted validation to determine quality of the row data. Data were collected through a continuous 
sample acquisition process. 

3.3. Signal filtering 

Finite impulse response (FIR) filters are commonly used to process digital signals. Four types of digital filters are commonly used: 
low-pass, high-pass, bandpass, and band-rejection filters. A FIR filter is a dynamic linear system describing the dynamic relationship 
between input and output as 

y(n)=
∑N

k=0
hkx(n − k) (1)  

where x(n) represents the n-th sampling input signal, y(n) represents the output signal, h0, h1, ..., hN represent the impulse response 
values, and N represents the filter order. 

Because of the low frequency of the BCG signals, in our experiments, a FIR characterized by (1) up to three order (n = 3) is good 
enough to extract meaningful signals while filtering out undesirable noises. 

3.4. Signal processing 

In general, acquired signals are affected by various types of interference. To obtain accurate data, the system must preprocess the 
acquired signals to remove unnecessary noise and outliers. In the experiment in this study, a boxplot was used to eliminate erroneous 
signals generated by body movement. 

The system executes further processing to extract heart rate and breathing rate signals. The processing steps include time-domain 
analysis, peak enhancement, peak detection, erroneous peak rejection, and heart rate and breathing rate calculation. 

Table 1 
Fundamental features of the smart air mattress.  

Operating voltage (V) Sensitivity (mV/kPa) Response time (ms) Frequency (kHz) Air pressure range (kPa) 

2.7–3.3 54 1 1 0–50  
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Figure 2. The air-mattress system under consideration.  

Figure 3. Signal before and after filtering. (a) Normal signal. (b) Signal after outlier filtering. The time unit is 0.1 s.  

C.-L. Lin et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e12717

5

3.5. Ultrasonic detection of turning movements 

People often turn over while sleeping. According to estimates, people turn over as many as 20–30 times per night. An air-mattress 
system alone can detect substantial changes in air pressure but cannot accurately perceive turning movements. Accordingly, we 
developed a module comprising ultrasonic sensors to detect turning movement signals. The installation location of the sensor module is 
crucial. We have tested various installation locations on the human body. The results of detection with respect to various locations 
were compared and the most appropriate location was set. 

3.6. Regression analysis 

Regression is a data analysis method that mainly explores the relationship between independent variables and dependent variables, 
whether the relationship is linear or nonlinear. Inferences or predictions can generally be made through the establishment of 
regression models. 

Many types of regression analysis methods commonly seen include linear regression, logistic regression, polynomial regression, 
stepwise regression, and ridge regression. Choosing a suitable regression method is not easy because whether the relationship between 
the independent and dependent variables is linear or nonlinear is unknown in advance. Here, two regression methods, namely linear 
and random forest regression, were used to analyze and compensate for errors in the input and output values. 

4. Experiments 

4.1. Outlier 

We proposed a boxplot to eliminate undesirable errors caused by extraneous body movements. The box-whisker plot is a method of 
using five statistics to describe the data including minimum value, maximum value, median value, the 75th percentile (Q3) and the 25th 

percentile (Q1). IQR denotes the box length between Q1 and Q3, i.e. Q3-Q1. The minimum and maximum values are defined, 
respectively, Q1-1.5*IQR and Q3+1.5*IQR. A point outside the boundary is regarded as outlier. For the current experiment, before and 
after performing the outlier detection are illustrated in Figure 3(a) and (b) respectively. 

4.2. Time-domain analysis 

We set up appropriate band-pass filters based on the natural frequency discrimination of breathing and heart rate signals [24,25] to 
separate both signals from the micro air pressure change of the smart air mattress. 

The acquired signals were filtered to smooth analysis in this study. The sample results of the filtration process are illustrated in 
Figure 4 for 30 s with the time unit being 0.1 s. The upper panel illustrates the original signal; the second panel illustrates the signal 

Figure 4. Sample extraction of the measured BCG signals where the time unit is 0.1 s. From the top to the bottom, the measured signal, the 
extracted breathing signal, the ambiguous BCG signal, and the extracted BCG heart rate signal. 
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filtered by a 0.2–0.5 Hz bandpass filter, which was regarded as the breathing signal; the third panel illustrates the signal filtered by a 
0.5–4 Hz bandpass filter, which was regarded as the ambiguous BCG signal; and the bottom panel illustrates the signal filtered by a 
0.7–2 Hz bandpass filter, which was regarded as the final BCG heart rate signal. 

4.3. BCG and ECG signal comparison 

During the BCG signal measurement process, we also recorded ECG signals for comparison. Figure 5 illustrates the results of 
comparison of signals collected over a 20 s period; the blue plot represents the ECG signals recorded by an ECG acquisition system, and 
the black plot represents the BCG signals detected from the proposed air mattress. 

4.4. Peak enhancement 

Peak enhancement [26] can be executed to improve signals and normalize signals to the same reference point. A peak detection 
approach ensures effective signal detection. Such an approach involves only linear conversion; thus, the position of the signal point is 
not affected. Different iteration times can be selected in each system, but more iterations are not necessarily better. In the iterative 
process, a large signal can easily be over enhanced. We have applied different iteration times and compared the results. 

The peak enhancement results are illustrated in Figure 6. The upper panel presents the origin signal, the middle panel presents the 
results obtained after only one iteration, and the bottom panel presents the results obtained after two iterations. When two iterations 
were used, the peak of the weak signal was eliminated. We noted that applying only one iteration was sufficient to enhance the signal. 

4.5. Peak detection 

We used one-dimensional data to identify the highest peak. The local maximum was identified between neighboring values. If a 
special signal was encountered, a specific method was used to find its peak. 

Because the original signal peak was enhanced, all peaks became more obvious and easier to identify. After conducting peak 
detection, we can accurately identify the J peak position of the BCG signal. After fulfilling the step for determining the peak position, 
we proceeded to calculate the corresponding heart rate. We used a compensation approach to address problems associated with the 
missing peaks. The results of the peak detection process are illustrated in Figure 7. 

4.6. Erroneous peak rejection 

Signal preprocessing can reveal the BCG signal peak in each band. If the original data contain missing values, the corresponding 
peaks may be wrongly enhanced and thus eliminated. 

In the proposed system, an average JJ interval is determined for a signal. Subsequently, a signal value that is within ±30% of the 
average JJ interval value is considered reasonable. If the signal value is not within this interval, it would be considered invalid. If the 
exact value is less than 30% of the total value, then the corresponding data was ignored (Figure 8). 

Figure 9(a) and (b) show, respectively, the BCG heart rate compared with the ECG heart rate (as the ground truth) for a male subject 
at age 24 and a female subject at the same age. The data were collected for around 2.5 min with 10 s as a sampling period. The average 
heart rate for the male subject is lower than that of the female. The average errors are, respectively, 5.68% and 5.60%. 

4.7. Ultrasonic detection of turning movements 

The installation location of the ultrasonic sensor module is crucial (Figure 10). In the previous academic studies, turning movement 
signals were measured from the upper body, mainly in the chest, hands, waist, buttocks. In the present study, we have explored 
different installation positions by considering several factors including signal quality and reliability, installation difficulty, cost, etc. It 
was observed that considering measurement sensitivity the best positions for the installation locations were the places where the chest 
and the buttocks touch the mattress. The testing subject rests for 5–10 min to reset the physical status. We wait for the measurement 
panel to display stable data and commence data collection. When lying down, the subject sleeps on one’s back 15 min, then on left 
decubitus 10 min and finally on right decubitus 10 min. Total measurement time is then 35 min. 

If a subject is lying down, the ultrasonic signal is theoretically unchanged. Three sleeping positions under consideration is shown in 

Figure 5. Comparison of BCG (in black) and ECG (in deep blue) signals.  
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Figure 6. Signal peak enhancement where the time unit is 0.1 s.  

Figure 7. Signal peak detection where the time unit is 0.1 s.  

Figure 8. Heart rate estimation where the time unit is 0.1 s.  
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Figure 11. When the body moves, the distance between the sensor and the subject would change (Figure 12(a) for male subjects and 12 
(b) for female subjects). In this study, the sampling frequency was set to 10 Hz. Every signal change was determined to be accompanied 
by a small change in the subject’s position. We calculated the average value of movements every 3 s and compared it with a pre-
determined value (i.e. 5). When the value exceeded 5, the subject was judged to have turned over. The starting reference point was the 
lying status. 

4.8. Linear regression 

Traditional linear regression is used first to model the relationship between the response-ECG signal, and the explanatory (inde-
pendent) variables-BCG heart rate, breathing rate and sleeping position. One is referred to Ref. [28] regarding details of applying the 
regression analysis. Ten volunteers with 5 females and 5 males aged 20–30 joined the experiment. The regression equations for two 
and three independent variables are obtained by running Python, respectively, by 

Figure 9. Comparison of BCG and ECG heart rate measurements of the (a) male and (b) female subjects with the same sampling period.  
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ECG= 0.968 ·BCG − 0.203 · breath + 7.363 (2)  

ECG= 1.007 ·BCG − 0.0958 · breath + 0.333 · position + 1.822 (3) 

Figure 10. Installation locations of ultrasonic modules.  

Figure 11. Three sleeping positions under consideration.  

Figure 12. Turning movement signals.  
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where BCG denotes BCG heart rate, ECG denotes ECG hear rate, breath denotes breathing rate and position refers to sleeping position. 
Statistical results corresponding to (2) and (3) are presented in Table 2, indicating that the p-values for the BCG heart rate and body 
position are smaller than 0.05 (Table 2(a)) but that for breathing rate is greater than 0.05 (Table 2(b)). Here, p-value is defined as the 
step to accept or reject a null hypothesis. That’s is, the prediction that holds a lower p-value (such as <0.05) is likely to be more 
meaningful addition to the model as a change in the prediction values are related to the changes of the response variable. This indicates 
that the breathing rate might not be fully supported by a complete regression. Thus, breathing rate and heart rate are not necessarily 
directly related in human beings. This is consistent with the results of recent medical research [27]. 

R2 values indicate the proportion of the variance explained by variables in a regression model. The R2 measure can provide an 
estimate for judging the performance of a model. In the case of involving three inputs to one output, the model variables explain 

Table 2 
Linear regression results.  

(a) Results of two independent variables (BCG and breath). 

Regression Design 

R value 0.886 
R-squared 0.786 
Adjusted R-squared 0.783 
Standard deviation 5.80 
Number of observations 179  

Analysis of variance (ANOVA) 

Degree of freedom SS MS F Significant value 

Regression 2 21748.53 10874.26 322.74 1.32E-56 
Residual 176 5930.134 33.694   
Sum 178 27678.66      

Coefficient Standard Error t-statistic p-value 

Intercept 7.364 4.665 1.578 0.116 
BCG 0.968 0.041 23.505 3.55E-56 
Breathing Rate − 0.203 0.153 − 1.324 0.187   

Lower limit 
95% 

Higher limit 
95% 

Lower limit 
95% 

Higher limit 
95% 

Intercept − 1.843 16.577 − 1.843 16.591 
BCG 0.887 1.050 0.887 1.050 
Breathing 

Rate 
0.187 0.10 − 0.506 0.10  

(b) Results of three independent variables (BCG, breath and position) 

Regression Design 

R value 0.857 
R-squared 0.735 
Adjusted R-squared 0.736 
Standard deviation 5.805 
Number of observations 373  

ANOVA 

Degree of freedom SS MS F Significant value 

Regression 2 460532.213 15351.07 455.492 1.20E-123 
Residual 369 12436.096 33.7021   
Sum 372 58489.308      

Coefficient Standard Error t-statistic p-value 

Intercept 1.822 2.995 0.608 0.543 
Position 0.333 0.3888 0.857 3.92E-01 
BCG 1.007 0.028 35.958 1.20E-122 
Breathing Rate − 0.096 0.113 − 0.851 0.395   

Lower limit 
95% 

Higher limit 
95% 

Lower limit 
95% 

Higher limit 
95% 

Intercept − 4.067 7.711 − 4.067 7.711 
Position − 0.431 1.098 − 0.431 1.098 
BCG 0.952 1.062 0.952 1.062 
Breathing 

Rate 
− 0.317 0.126 − 0.317 0.126 

*For briefness, BCG denotes the BCG hear rate. 
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approximately 73% of the variance. 
After including sleeping position as a variable in the model, we observe that the regression result is worse than it was when two 

independent variables were adopted. These results thus indicate that estimation via the air mattress decreases if high-level noise is 
present or the subject is side sleeping. It is quite nature that when the subject doesn’t sleep on the recumbent position, micro heart 
movement is hard to be directed to the air mattress leading to the inferior measurement sensitivity. 

4.9. Random forest regression 

Random forest regression analysis [28–31] was used in this study and involved into two parts. In the first part, the random forest 
regression model compared BCG heart rate and breathing rate with ECG heart rate values. In the second part, the regression model 
compared BCG heart rate, breathing rate, and position with the ECG heart rate values. 

For the training part, we adopt the weighted impurity function to split nodes given by 

G(y,Ns)=
1
Ns

⎛

⎝
∑

yi∈yleft

(

yi − y
left

)2

+
∑

yj∈yright

(

yj − y
right

)2
⎞

⎠ (4)  

where Ns is the number of training samples of the current node, yi and yj are, respectively, the values of left and right nodes, yleft and 
yright are, respectively, the mean values of left and right nodes. The data selection method based on the cost (4) used in the training 
process is bootstrap. Bootstrap is a kind of uniform sampling with replacement from a given training set. It reselects data and add to the 
training set. When the sample is normally distributed, the sampling method is suitable for the situation of normal distribution of 
samples. 

The following parameters were set for the analysis: the maximum number of trees was set to 100, the measurement quality in-
dicator of the split point was mean square error, the minimum number of samples required to split internal nodes was 2, and the 
minimum number of samples required for leaf nodes was 1. For regression tree construction, we used 70% of the data as the training set 
and 30% as the testing set. 

To analyze the importance of variables, we import three conditions listed in Table 3 to generate three models. Figure 13(a-c) show 
convergence of the final regression with respect to one, two and three independent variables after performing random tree regression, 
where the measured BCG heart rate values have gradually converged to the ECG heart rate values, i.e. the near ground truth values, 
after the decision tress developed completely. The full-sized figures of the decision trees can be viewed by accessing 

https://drive.google.com/drive/folders/1VIBT4rV9bVu4EUncjkeuSGJh_AWzoFg3?usp = sharing. 
The computer program for executing the heart rate estimation can be accessed via the following link: 
https://drive.google.com/drive/folders/1zWBIZKigb_pFbUMVLqroCZ_YeltRKUZC?usp = sharing. 
The results of random forest regression are superior than the results generated by linear regression. As mentioned, breathing rate 

and heart rate are not directly related to human beings. Although the third tree develops more branches, breathing rate accounted for 
only 3% of the feature importance. Therefore, the impact of breathing rate is insignificant, and the results obtained after including 
breathing rate and sleeping position are inferior than other results. Under this situation, the importance of BCG is reduced 
substantially. 

It is reasonable to recognize the fact that the subjects sleep on sides decrease measurement sensitivity and thus reduce estimation 
accuracy. Rather, lying down would be a better choice for measurement to aid an accurate estimation. However, it is impractical to ask 
the subjects to keep sleeping the way during a normal sleep period. 

There are still technical issues needed to improve for real-world experiments. For example, the regression tree analysis cannot filter 
out extremal values in an active manner. A pre-data processing such as a data smoother would be beneficial to the subsequent data 
training and estimation under this situation. 

5. Conclusion 

This study has developed a noncontact air-mattress system for monitoring physiological signals and body movements of users. It is 
demonstrated to be able to detect breathing rate and heartbeat rate of the subjects with reasonable accuracy for the health care 
purpose. The air-mattress system equipped with a high-sensitive signal processor to sense subtle breathing signals and heart rate 
signals by sensing the micro air pressure change. The results were verified by conducting real-world experiments. Compared with the 
advanced approach adopting mmWave radar or Lidar to detect heartbeat movement of patients, the proposed approach is inactive and 
non-intrusive and without the issues of EMI or EMC. We have also presented linear and random forest regression analyses to develop 
the model for heart rate estimation. The results support the fact that breathing rate and heart rate are not necessarily directly related in 
human beings. Error analyses based on regression analyses are provided and discussed. 

The proposed system is combining with other noncontact sensors, including blood pressure monitors and thermometers, to allow 
for comprehensive physiological monitoring. When combined with internet connectivity, the system is expected to provide users with 
a convenient health monitoring option. 
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Table 3 
Results of variable importance analysis.  

Input Output Mean absolute error Mean squared error R2 valued score Ratio of relative importance 

BCG ECG 3.403 19.786 0.846 NA 
BCG, Breathing rate ECG 3.423 20.041 0.844 BCG: 0.967 breathing: 0.033 
BCG, Position, Breathing rate ECG 3.818 27.978 0.816 BCG: 0.63 breathing: 0.261 position:0.109  

Figure 13. Three experimental data sets used for data regression (a) one independent variable (b) two independent variables (c) three independent 
variables. The measured BCG heart rate values indicated by shallow blue dots have gradually converged to the ECG heart rate (the near ground 
truth) values indicated by red dots. 
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