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Abstract

Industrial robots are a strategic future technology and an important part of the development

of artificial intelligence, and they are a necessary means for the intelligent transformation of

manufacturing industry. Based on global industrial robot trade data from 1998 to 2017, this

paper applies the dynamic complex network analysis method to reveal the spatial and tem-

poral variation characteristics and trade status evolution of the global industrial robot trade

network. The results show that the global industrial robot network density has steadily

increased, and the industrial robot trade has been characterized by ‘diversification’. The

number of major industrial robot exporters in the world is increasing, and the import market

is increasingly diversified. The export market structure is relatively tight, the centrality of the

global industrial robot trade network shows a downward trend, and the dissimilarity of the

‘core-edge’ clusters decreases year by year. The trade status of ‘catch-up’ countries repre-

sented by China has rapidly increased. However, Japan, Germany, and Italy are still in the

central position of the industrial robot trade. Moreover, trade of the ‘catch-up’ countries’ is

dominated by imports, and exports of industrial robot products are insufficient. Finally, policy

suggestions are provided according to the results.

Introduction

Industrial robots are a strategic future technology that represent, an important part of the

development of artificial intelligence and a necessary means for the intelligent transformation

of the manufacturing industry. According to the latest research from the International Federa-

tion of Robotics (IFR), the average global sales of industrial robots increased by 19% from

2012 to 2017, with 30% growth in 2017, totaling 381,335 units; therefore, the global demand

for industrial robots has sharply increased [1]. China has been the world’s largest industrial

robot market since 2014. In the past 20 years, the following question has emerged: what is the

global industrial robot trade pattern, and what are its evolutionary characteristics? To the best

of our knowledge, studies have not yet answered these two questions. This study is the first to

investigate the characteristics and evolution of the global industrial robot trade. Accordingly,
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this study offers two main contributions. First, it analyzes the spatial and temporal variation

characteristics of the global industrial robot trade network. Second, it reveals the trade status

evolution of global industrial robot trade network, especially pushed by ‘catch-up’ countries.

As industrial robots become the core elements of smart manufacturing, academic circles

are paying increasingly more attention. In terms of the impact of industrial robots on employ-

ment, Graetz & Michaels pointed out that industrial robots have greater substitutability for

general employment in labor-intensive enterprises [2], but they complement highly skilled

labor and increase the demand for skilled personnel [3]. In terms of the industrial robot indus-

try’s development, few scholars have studied the technological development of industrial

robots based on patent data and provided technology intelligence analysis [4]. Many recent

studies have focused on open innovation and convergence innovation [5–6]. Some scholars

have proposed that robotics is an emerging technology with cross-disciplinary convergence

[7–9], and technological breakthroughs and business model innovations are crucial to the

development of the robotics industry [10]. In the field of the industrial robot trade, few studies

believed that the application of industrial robot technology has increased the import and

export volumes after examining the effects of robotization on trade patterns, wages and welfare

[11]. However, few studies attempted to explore the characteristics and evolution of the global

industrial robot trade network.

In addition, identification of the trade network structure and evolutionary characteristics

based on complex network analysis has been widely used by scholars [12–16]. Thus far, investi-

gations have been confined to the Belt and Road trade network [17–18], the global resource

products trade network (such as fossil energy, crude oil, natural gas and rare earths) [13,19–

22], and the international agro-food trade network [23]. Few researchers have examined the

characteristics of trade networks in the manufacturing sector [24–25]. The above studies dis-

cuss the evolutionary characteristics of some industries that play an important role in

highlighting our research. For example, international crude oil trade is evolving into a stable,

ordered and integrated system [19], the international rare earth trade network is dispersed and

unstable [22], three energy-specific networks, namely, coal, oil, and natural gas, display scale-

free characteristics [13], trade regionalization is still high in the electronic industry, geographi-

cal proximity still plays a role in facilitating international trade [25], etc.

The purpose of this paper is to reveal the structural characteristics and evolution of the

global industrial robot trade network by considering the network analysis method that has the

following advantages. First, with respect to the dynamic topological analysis of the trade net-

work, the imbalance of the global trade supply and demand accelerates the internationalization

of trade, and the relationship between the supply and demand of commodities in each country

of the network can reflect the spatial and temporal characteristics of the commodity trade net-

work. Further, investigating the network density, degree, closeness and betweenness centrality

can allow one to assess the statuses of the network nodes in the whole network. Therefore, it

can effectively depict the strength of the trade relations among countries in the global trade

network and better explain the global trade network [13].

Although considerable research has been devoted to the global commodity trade network,

relatively less attention has been paid to industrial robots. This study is designed to depict the

network topological structure of the global industrial robot trade and reveal the spatial-tempo-

ral differentiation and evolution of the global industrial robot trade. The remainder of this

paper is divided into five sections: section 2 presents the network construction and describes

the indicators, section 3 depicts the spatial-temporal differentiation of the global industrial

robot trade, section 4 investigates the evolution of the global industrial robot trade, and section

5 concludes the paper.
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Construction and indicators of the global industrial robot trade

network

Construction of the network

Complex network analysis is a kind of network analysis method developed by sociologists

based on mathematical theory. At present, the complex network analysis method has been

applied to social and economic fields [13, 26–28]. The global trade network is a network that is

used to describe the trade links between node countries—i.e., the links between node countries

represent the import and export trade relations between them, as well as the structural and

evolutionary characteristics of the global trade network by measuring the density, centrality,

block model and other indicators [29,14]. This paper constructs a directed weighted global

industrial robot trade network (GTN). The GTN was built using the set G = (V,W) in which

the nodes v = {vi:i = 1,2,3..,n} represent the trading countries. The trading relationship between

vi and vj is denoted by aij. If country vi exports industrial robots to country vj, a link from vi to

vj is drawn and aij = 1; otherwise, no link is drawn, and aij = 0. w = {wij} represents the weights

of the edges in the network. Namely, the nodes are the countries, and the edges are the trade

volume. The directions of the edges correspond to the directions of the industrial robot trade

flow. The exports and imports represent the trade flows out of and into a country, respectively.

According to the above method, this paper collects import and export trade data between 58

major industrial robot trading economies (see S1 Appendix for a detailed list) from the United

Nations Commodity Trade Statistics Database (Uncomtrade). (The used HS codes are 842489,

842890, 847950, 848640, 851521, 851531, and 851580.) The time interval of the data is chosen

as 1998 to 2017. Since the international industrial robot trade mushroomed after 1998, the

international trade value of industrial robots in 2017 was quadruple that in 1998, as shown in

Fig 1. In addition, both the trade value and growth rate declined in 2009 due to the lag effect of

Fig 1. Total value and growth rate of the international industrial robot trade from 1998–2017.

https://doi.org/10.1371/journal.pone.0222785.g001
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financial crisis in the whole world. Furthermore, 2009 is not considered a typical sample year

to demonstrate the evolution of global industrial robot trade since the economy soon recov-

ered in 2010.

Indicators of network analysis

The network density index, which has been proved to be effective for measuring the density of

networks, here depicts the extent of the connections among the nodes in the GTN. It equals

the ‘total number of relationships that actually exist divided by the ‘maximum number of rela-

tionships that theoretically exist potentially’ [30]. In a way, the network density in this paper

represents the extent of the network’s evolution and the industrial robot trade’s development.

The larger this value is, the closer the relationships are among all of the countries. The defini-

tion of the network density is given by Eq (1), where m is the number of actual relationships in

a network, and the number of nodes is n.

D ¼
2m

nðn � 1Þ
ð1Þ

Degree refers to the number of direct trade relationships that a country has, and it reflects

the range of the country’s direct impact. The out-degree is the number of export links that a

country has with other countries, and the in-degree is the number of import links. A higher

out-degree or in-degree indicates a higher direct impact among other countries [31]. These

values are computed according to the following equations:

kouti ðtÞ ¼
Xn

j¼1

dijðtÞ ð2Þ

kini ðtÞ ¼
Xn

j¼1

djiðtÞ ð3Þ

Here, if country i exports industrial robots to country j during year t, a link from i to j is

drawn, and dij(t) = 1. Otherwise, no link is drawn, and dij(t) = 0. The out degree kouti ðtÞ of coun-

try i in year t is the sum of the dij(t), and the in degree kini ðtÞ of country i in the year t is the sum

of the dji(t).
The closeness centrality index reflects to what degree a country stands at the central posi-

tion of the network. The more central a country is, the lower is its total distance from all the

other nodes. The closeness centrality of node i is given by Eq (4):

CCðiÞ ¼
1

X

i6¼j

dði; jÞ
ð4Þ

where, d(i,j) is the distance between node i and node j, i.e., the minimum length of any path

connecting node i and node j. The length of a path is the sum of the weights of its edges.

Betweenness centrality measures the intermediary ability of the nodes to act as a medium

in the network. In the international trade network of industrial robots, the betweenness cen-

trality is the frequency that a country stands on the shortest path between two other countries.

The betweenness centrality of node i is given by Eq (5):

BCðiÞ ¼
X

x6¼i6¼y

sxyðiÞ
sxy

ð5Þ
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where σxy is the total number of shortest paths from node x to node y and
sxyðiÞ
sxy

is the number of

these paths that pass through node i.
The block model is a method and technique that can detect network agglomeration, core-

edge structures and hierarchies. Structural equivalence refers to a network in which the entire

network structure is not changed if two nodes are replaced by each other. In such as case, the

two nodes are equivalent in the network structure, which is also called equivalent class. Struc-

tural equivalence is based on the degree to which the rows and columns of nodes are similar.

That is, the dissimilarity index between two nodes is the number of other nodes that are not

shared by two nodes. After normalization, the value ranges from 0 (completely similar) to 1

(completely different). A higher nonsimilarity value indicates more internal dissimilarity.

If a network contains equivalent class, the block model matrix calculation can be used to

classify network nodes; the network with equivalent class is represented by the adjacency

matrix, the block in the adjacency matrix form a full or empty network adjacency matrix

graph. Therefore, we can simplify the original adjacency matrix into a new adjacency

matrix, shrink each original category into a new node, and then label the source type for

each category in the new matrix. That is, the block in the new matrix is either full type

(expressed by com, referring to the existence of equivalent connection) or none type (indi-

cated by null or hyphen—, meaning there is no equivalent connection). This kind of con-

traction matrix is also called a shadow matrix [32]. Therefore, the block model contains a

partition file and a shadow matrix. The partition file assigns nodes to each equivalent class

and divides the adjacency matrix of the network into different blocks. The shadow matrix

indicates the relationship types within categories. In summary, the block model describes

the overall structure of the network and explains the locations and relationships of each

node in the complex network structure.

Spatial-temporal differentiation of the global industrial robot trade

Density of the industrial robot trade network

This paper uses the UCINET software to portray the global industrial robot trading network

from 1998 to 2017 (S1 File) and to measure the density and average degree of the global indus-

trial robot trading network in different years, as shown in Table 1. From 1998 to 2017, the den-

sity, average degree and the total number of ties of the global industrial robot trade network

show steady upward trends, which means that there are increasingly more participating coun-

tries in the trade and the trade links are getting increasingly closer. From 2015–2017, the net-

work density and average degree tend to be stable, the main producing and consuming

countries of industrial robots have relatively stable complementary relationships with respect

to their factor endowments, and the global industrial robot trade relationships tend to be

stable.

Centrality of the industrial robot trade network

Degree centrality. The larger the centrality of a country is in the global industrial robot

trade network, the more countries that have industrial robot trade links with that country, and

the more important its trade status. This paper divides the study intervals into four stages, with

1998, 2005, 2012, 2017 as the representatives of the four stages, and the time interval of each

stage was 8 or 6 years. In addition, in 2008 and 2009, the global economy was affected by the

financial crisis and slightly fluctuated, which we do not consider them as typical sample years.

UCINET software is used to calculate the in-degree centralities and out-degree centralities of

countries in 1998, 2005, 2012 and 2017 and further select the top 10 countries in different

Spatial-temporal variation characteristics and evolution of the global industrial robot trade
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years to depict the evolutionary characteristics of the industrial robot trade status, as shown in

Table 2.

Firstly, from the perspective of the in-degree centrality, the import partners of the top ten

countries increased in general, ranging from 33 to 55. However, Germany, Italy, Britain and

the United States have large numbers of import partners with stable relations. For example,

from 1998 to 2017, import partners in Germany, Italy and the UK changed no more than six

and all above forty, these countries are at the center of the import trade of industrial robots.

The import partners of the Netherlands, South Korea and China have increased significantly.

This indicates that the industrial robot industry is developing rapidly. For example, from 1998

to 2017, import partners in Netherlands, South Korea and China increased no less than six-

teen. The rapid development of China’s industrial robot import trade is attributed to the

improvement of its manufacturing industry and the demand for intelligent transformation.

Although China’s industrial robot production started late, it is quickly embedded into the

global value chain. In general, the promotion of intelligent manufacturing transformation and

the division of labor in the global industrial robot value chain make the industrial robot import

market increasingly diversified and the import trade market structure increasingly dispersed.

Secondly, from the perspective of the out-degree centrality, the export partners of the top

ten countries are relatively stable, ranging from 50 to 57,especially Japan, Germany and Italy

who have large numbers of export partners with stable relations, and these countries are at the

center of the industrial robot trade. The export partners of China, the United States, the Neth-

erlands, and South Korea have increased slightly. In general, the number of trading partners of

major industrial robot exporting countries in the world has increased steadily and slightly,

while the number of cooperating countries in the export trade is relatively concentrated, and

the market structure of export trade is relatively tight.

Table 1. Network density, average degree and number of ties in the global industrial robot trade.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Density 0.443 0.454 0.518 0.515 0.531 0.541 0.551 0.568 0.580 0.595

Avg Degree 25.27 25.89 29.552 29.345 30.276 30.828 31.397 32.362 33.052 33.914

No. of Ties 1466 1502 1714 1702 1756 1788 1821 1877 1917 1967

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Density 0.590 0.606 0.615 0.627 0.638 0.641 0.647 0.653 0.655 0.653

Avg Degree 33.621 34.517 35.052 35.741 36.345 36.552 36.897 37.224 37.345 37.241

No. of Ties 1950 2002 2033 2073 2108 2120 2140 2159 2166 2160

https://doi.org/10.1371/journal.pone.0222785.t001

Table 2. In-degree centrality and out-degree centrality of the global industrial robot trade network.

Out-degree centrality In-degree centrality

1998 2005 2012 2017 1998 2005 2012 2017

Node Value Node Value Node Value Node Value Node Value Node Value Node Value Node Value

JPN 54 JPN 56 DEU 57 DEU 57 DEU 45 DEU 50 DEU 50 NLD 55

DEU 53 CHN 56 CHN 57 CHN 57 GBR 42 ITA 44 FRA 48 DEU 49

FRA 52 DEU 55 ITA 56 NLD 57 ITA 41 USA 44 ITA 47 USA 49

GBR 52 ITA 55 USA 56 AUT 57 USA 40 GBR 43 USA 47 ITA 47

ITA 51 USA 55 CHE 56 ITA 56 SWE 37 FRA 43 GBR 46 FRA 47

CHE 51 CHE 54 CAN 56 ESP 56 NLD 36 CAN 43 CHE 45 CHN 46

CHN 51 BEL 53 KOR 56 USA 55 FRA 34 AUT 42 NLD 45 ESP 46

SWE 50 GBR 53 TUR 56 FRA 55 CHE 34 ESP 42 IND 44 KOR 45

USA 50 FRA 53 FRA 55 KOR 55 AUT 33 CHE 40 AUT 43 AUS 45

NLD 50 AUT 53 AUT 55 BEL 55 MEX 34 KOR 40 CHN 43 GBR 44

https://doi.org/10.1371/journal.pone.0222785.t002
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Thirdly, with respect to the change in the in-degree and out-degree centrality in the same

year, global industrial robots show the feature of enhanced intra-industry trade. For example,

from 1998 to 2017, Germany and Italy were both core importers and core exporters. In 2017,

in addition to Germany and Italy, the Netherlands, China, the United States and France were

all important import and export countries, which means that the cooperation of the whole

industrial chain of the global industrial robot trade is emerging.

Finally, combined with the analysis of the annual total import and export trade volume of

each country, it is found that Japan, Germany, Italy, Sweden and other countries are mainly

export-oriented, and the export trade volume is far greater than the import trade volume. For

example, from 2013 to 2017, the import trade of industrial robots in Japan accounted for only

about 13% of its export trade, while the import trade of industrial robots in Germany

accounted for 32% of its export trade. Italy was about 32.6%, and Sweden was 27.4%. In con-

trast, China, Korea, India, Thailand and other industrial robots ‘catch-up’ countries are mainly

import-oriented, and exports of industrial robot products are insufficient. For example, from

2000 to 2017, China’s industrial robot export trade only accounted for 35.3% of its import

trade, South Korea’s industrial robot export trade accounted for 64.8% of import trade, India

was about 12.5%, and Thailand was about 13.4%.” In other words, counties like Japan, Ger-

many and Italy still hold the core position in industrial robot trade network.

Closeness centrality. The closeness centrality index reflects to what degree a country

stands in the central position of the network. The more central a country is, the lower its total

distance from all the other nodes. UCINET software is used to calculate the in-closeness cen-

trality and out-closeness centrality of the countries in 1998, 2005, 2012 and 2017, closeness

centrality is normalized, and the top 10 countries in different years are shown in Table 3.

The results in Table 3 show the following. From the perspective of the out-closeness central-

ity, before 2005, Japan, Germany and Italy were the core exporting countries of industrial

robots. After 2005, China and the Netherlands developed rapidly and gradually became the

main core exporting countries. From the perspective of the in-closeness centrality, before

2012, there was little change in the global industrial robot importing countries, which were

mainly Germany, Italy, the United Kingdom, and the United States, which have strong indus-

trial robot industry foundations. After 2012, the Netherlands, India, China, South Korea and

other countries developed rapidly and became the core importers of the global industrial robot

trade. These results are consistent with the conclusions that were reached above.

Betweenness centrality. Betweenness centrality characterizes the ability of a network

node to control trade resources. The higher the centrality of a node is, the more important the

Table 3. In-closeness centrality and out-closeness centrality of the global industrial robot trade network.

Out-closeness centrality In-closeness centrality

1998 2005 2012 2017 1998 2005 2012 2017

Node Value Node Value Node Value Node Value Node Value Node Value Node Value Node Value

JPN 0.891 CHN 0.983 DEU 1.00 DEU 1.00 DEU 0.722 DEU 0.835 DEU 0.891 NLD 0.950

DEU 0.877 JPN 0.983 CHN 1.00 NLD 1.00 GBR 0.695 ITA 0.770 FRA 0.864 DEU 0.864

FRA 0.864 DEU 0.966 ITA 0.983 CHN 1.00 ITA 0.687 USA 0.770 ITA 0.851 USA 0.864

GBR 0.864 ITA 0.966 USA 0.983 AUT 1.00 USA 0.679 GBR 0.760 USA 0.851 ITA 0.838

ITA 0.851 USA 0.966 CHE 0.983 ITA 0.983 SWE 0.655 FRA 0.760 GBR 0.838 FRA 0.838

CHN 0.851 CHE 0.950 KOR 0.983 ESP 0.983 NLD 0.640 CAN 0.760 CHE 0.826 CHN 0.826

CHE 0.851 GBR 0.934 CAN 0.983 USA 0.966 FRA 0.633 AUT 0.750 NLD 0.826 ESP 0.826

SWE 0.838 FRA 0.934 TUR 0.983 FRA 0.966 CHE 0.626 ESP 0.750 IND 0.814 KOR 0.814

USA 0.838 AUT 0.934 FRA 0.966 KOR 0.966 AUT 0.626 CHE 0.731 CHN 0.803 AUS 0.814

NLD 0.838 BEL 0.934 AUT 0.966 BEL 0.966 MEX 0.626 KOR 0.731 AUT 0.803 GBR 0.803

https://doi.org/10.1371/journal.pone.0222785.t003
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node. Table 4 shows the calculation result of the betweenness centrality. From 1998 to 2017,

the overall centrality declined, the participants in the global industrial robot trade became

more ‘diversified’, and the gap between the major countries shrank. Germany and Japan have

always been at the center of the industrial robot trade. However, in recent years, China, South

Korea and the Netherlands have gradually become the core countries due to their increased

support for the industrial robot industry. In addition, the trade status of industrial robots in

Canada, Turkey and Thailand also improved significantly.

To better reflect the evolutionary characteristics of the global industrial robot trading net-

work from 1998 to 2017, this paper uses Gephi software to map the network evolution of the

global industrial robot trade in 1998, 2005, 2012 and 2017, as shown in Fig 2(A), Fig 2(B), Fig 2

(C), and Fig 2(D). Here, a node is ranked by betweenness centrality. Thus, the larger the node

is, the greater the betweenness centrality, and the stronger the trade influence.

As shown in Fig 2, in 1998, Switzerland, Japan, Germany, Spain, China, and France were

the major industrial robot trading countries. In 2005, Japan and China occupied important

positions in the industrial robot trade and were followed by the United States, South Korea,

Italy, Germany and other countries. In 2012, Germany and China occupied important posi-

tions in the global import and export trade of industrial robots. They had the greatest influ-

ences in the global industrial robot trading network and were followed by the United States,

South Korea, Austria, Switzerland and other countries. In 2017, the global trade pattern

changed slightly, and the trade status of industrial robots in the Netherlands increased rapidly.

The most influential node countries in the trade network are China, Austria, Germany and the

Netherlands, and they are followed by South Korea, Italy, and the United States.

In addition, the betweenness centrality of the core countries in the world showed a down-

ward trend year by year from 1998 to 2017, which indicates that the differences in the trade

statuses are shrinking, and the industrial robot trade is more diversified. Further, by observing

the evolutionary trend from 1998 to 2017, it is found that the trade network is increasingly

more complex, and there are increasingly more core nodes. It vividly depicts the characteristics

of the complexity and diversification of the global industrial robot trade.

Dynamic evolution of the global industrial robot trade based on the

block model

Dynamic analysis of ‘core-edge’ structure in the global industrial robot

trade

To more clearly describe the dynamic evolution of the global industrial robot trade status, this

paper analyzes the locations of industrial robot trading countries using complex networks

Table 4. Betweenness centrality of the global industrial robot trade network.

1998 2005 2012 2017

Node nBetweenness Node nBetweenness Node nBetweenness Node nBetweenness

CHE 3.165 JPN 2.033 DEU 1.152 CHN 1.278

JPN 2.830 CHN 2.033 CHN 1.152 AUT 1.278

CHN 2.526 USA 1.829 USA 1.062 DEU 1.278

ESP 2.321 KOR 1.617 KOR 0.989 NLD 1.278

DEU 2.220 ITA 1.563 AUT 0.964 CZE 1.114

FRA 2.166 DEU 1.563 CHE 0.964 KOR 0.975

GBR 1.823 BEL 1.190 TUR 0.964 ITA 0.883

SWE 1.780 FRA 1.149 ITA 0.936 ESP 0.883

USA 1.703 CHE 1.082 CAN 0.936 BEL 0.822

NLD 1.547 AUT 1.076 JPN 0.920 USA 0.812

https://doi.org/10.1371/journal.pone.0222785.t004
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based on the block model. Specifically, UCINET software is used to calculate the ‘K-cores’ of

the network. Participating countries are divided using a ‘core-edge’ structure, and the dynamic

of ‘core-edge’ structure of the global industrial robot trading network in 1998, 2005, 2012 and

2017 are obtained, as shown in Table 5.

The partitioning results indicate the following.

Fig 2. Global industrial robot trade networks in 1998, 2005, 2012 and 2017. Panel(a) shows global industrial robot

trade network of 1998. Panel(b) shows global industrial robot trade network of 2005. Panel(c) shows global industrial

robot trade network of 2012. Panel(d) shows global industrial robot trade network of 2017.

https://doi.org/10.1371/journal.pone.0222785.g002

Table 5. The ‘core-edge’ regions of the global industrial robot trade network.

Core countries Strong semi-peripheral countries Weak semi-peripheral countries Peripheral countries

1998 20 (DEU, SWE, CAN, FRA, NLD, CHE, AUT, ITA,

USA, GBR, CHN, JPN, KOR, SGP, FIN, NOR, ESP,

BRA, ISR)

14 (CZE, HUN, POL, GRC, IND,

ROU, UKR, TUR, RUS, AUS,

CHN-HK, NZL, PHL, THA)

18 (ETH, PAK, NGA, ISL, MLT, KAZ,

LVA, BEL, COG, IRN, SAU, VNM, EGY,

IDN, MNG, MMR, LAO, RSA)

6 (ARG, CHL, MEX,

COL, VEN, PER)

2005 27 (FRA, CHE, AUT, DEU, ITA, CAN, USA, BEL,

DNK, ESP, SWE, GBR, NLD, CHN, JPN, CHN-HK,

AUS, KOR, IND, SGP, POL, TUR, CZE, FIN, NOR,

HUN, ISR)

7 (IDN, THA, NZL, RSA, ARG,

MEX, BRA)

20 (EGY, SAU, IRN, PAK, PHL, VNM,

MLT, NGA, ETH, ISL, KAZ, LVA, GRC,

ROU, RUS, UKR, PER, VEN, CHL, COL)

4 (COG, MNG, LAO,

MMR)

2012 24 (FRA, ITA, CHE, DEU, NLD, USA, AUT, CAN,

CHN-HK, IND, ESP, GBR, SWE, AUS, CHN, KOR,

JPN, THA, SGP, CZE, DNK, BEL, POL, TUR)

16 (RSA, VNM, BRA, MEX, ARG,

NZL, IDN, PHL, FIN, HUN, ROU,

ISR, NOR, RUS, GRC, UKR)

10 (COL, PER, VEN, CHL, SAU, KAZ,

PAK, EGY, ISL, LVA)

8 (COG, ETH, IRN,

MLT, NGA, LAO,

MNG, MMR)

2017 28 (IND, CHE, CHN, TUR, CHN-HK, JPN, SWE,

SGP, CZE, GBR, AUT, KOR, CAN, DNK, MEX, FIN,

AUS, BRA, ISR, POL, NOR, DEU, ESP, USA, NLD,

FRA, ITA, BEL)

11 (THA, VNM, NZL, PHL, IDN,

RSA, HUN, ROU, GRC, RUS,

UKR)

15 (IRN, MLT, MMR, ISL, PAK, EGY,

SAU, NGA, KAZ, LVA, LAO, MNG,

VEN, COG, ETH)

4 (ARG, COL, PER,

CHL)

https://doi.org/10.1371/journal.pone.0222785.t005
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Firstly, from 1998 to 2017, the number of core countries in the industrial robot trade has

gradually increased and stabilized, and the trade development has been characterized as ‘diver-

sified’. It is worth mentioning that Mexico has grown from a periphery country in 1998 to a

core country in 2017, thus becoming the fastest growing country in the world. In addition, the

trade statuses of India, Turkey and Australia have also increased significantly.

Secondly, from the perspective of the spatial layout characteristics, the core countries of the

global industrial robot trade are concentrated in Europe, East Asia and North America. The

South American countries represented by Argentina, Peru, Chile, and Colombia lacked com-

petitive advantages and became peripheral countries in the industrial robot trade. The spatial

layout of the strong semi-peripheral countries and the weak semi-peripheral countries is more

dispersed.

Thirdly, the numbers of strong semi-peripheral countries and weak semi-peripheral coun-

tries decreased slightly between 1998 and 2017, which means that the irreplaceable links

between the core countries and peripheral countries are strengthened. The number of strong

semi-peripheral countries shows an inverted N-type change, and the number of weak semi-

peripheral countries shows an N-type change, which indicates a complementary relationship.

The number of peripheral countries is small, and the uncompetitive countries have gradually

faded out of the global industrial robot trade market.

Dynamic evolution of the ‘core-edge’ pattern in the global industrial robot

trade

To further describe the trade flow among the participating countries of different categories, it

is necessary to explore the dynamic relationships within and between the four categories of

core-edge structures, that is, the full type (Com, with the similar structure of two-way trade in

imports and exports) and the none type (-null, with the one-way connection of imports). In

this paper, Pajek’s dissimilarity calculation method is used to calculate the final image matrix

of the global industrial robot trade. The dynamic evolution of the ‘core-edge’ pattern in the

global industrial robot trade are shown in Tables 6–9.

The partitioning results of the final image matrix in Tables 6–9 show the following.

Firstly, on the whole, the dissimilarity of the ‘core’ cluster is higher than that of the ‘periph-

ery’ cluster, which means that the industrial robot trade relationship within the ‘core’ cluster

countries is more complex and the intra-trade structure of the core cluster is ‘diverse’.

Table 6. Final image matrix of the global industrial robot trade in 1998.

1 2 3 4 Dissimilarity Dissimilarity of cluster

1 (Core countries) - - - - 0.26 1.07

2 (Strong semi-peripheral countries) - - - – 0.58

3 (Weak semi-peripheral countries) Com - Com Com 0.35 0.48

4 (Peripheral countries) - - Com - 0.20

https://doi.org/10.1371/journal.pone.0222785.t006

Table 7. Final image matrix of the global industrial robot trade in 2005.

1 2 3 4 Dissimilarity Dissimilarity of cluster

1 (Core countries) Com - Com Com 0.29 0.69

2 (Strong semi-peripheral countries) - - - - 0.26

3 (Weak semi-peripheral countries) - - - - 0.45 0.61

4 (Peripheral countries) Com - - Com 0.08

https://doi.org/10.1371/journal.pone.0222785.t007
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However, the countries in the ‘peripheral’ cluster share more nodes in the industrial robot

trade network, and the trade structure of countries in the peripheral cluster is relatively similar.

In addition, the dissimilarity within the ‘core’ cluster decreased year by year. From 1998 to

2017, the dissimilarity decreased from 1.07 to 0.58, which was consistent with the conclusion

that the trade status differences between the core countries were narrowing, as measured by

the betweenness centrality above.

Secondly, in terms of the four categories of the industrial robot trade, the dissimilarity of

the core countries is lower than those of strong semi-peripheral countries and the weak semi-

peripheral countries, which means that the trade structures are more similar, and that intra-

industry trade is larger. The high dissimilarity in strong semi-peripheral countries and weak

semi-peripheral countries indicates that the intragroup trade structure is heterogeneous and is

mainly one-way trade links. In addition, the dissimilarity of the core cloud is higher than the

internal category of ‘core’ countries, which indicates that the core participating countries in

the industrial robot trade network coexist, are ‘diverse’ and are at an ‘equilibrium’. Therefore,

‘equilibrium’ means that it will be difficult for other countries to enter the ‘core countries’ in

the future since top active countries have stable trade relationships. From the perspective of a

complex network, it is difficult for countries to break the current ‘equilibrium’ and push for-

ward to the next new ‘equilibrium’, which need more time and catastrophic change. However,

the Sino-US trade war poses a challenge to the balance of global industrial robot trade.

Thirdly, from the perspective of the import and export trends of the global industrial robot trade,

the trade relationships between core countries have been strengthened, and they have changed from a

simple import relationship to a two-way import and export relationship. In 2017, the core countries

have two-way import and export relations with other categories of countries, which means that the

intra-industry trade that is centered on the core countries has been strengthened. The trade relations

that are related to ‘strong semi-peripheral countries’ and ‘periphery’ countries are characterized by

one-way import trade. There is a stable two-way trade relationship between ‘weak semi-peripheral’

countries and ‘core’ countries, ‘strong semi-peripheral’ countries and ‘periphery’ countries, which also

indicates that ‘weak semi-peripheral’ countries will have the potential for greater development in the

industrial robot industry in the future.

Conclusions

Industrial robots are an important part of AI development and a necessary means of intelligent

transformation in the manufacturing industry. In this context, based on the Uncomtrade

Table 9. Final image matrix of the global industrial robot trade in 2017.

1 2 3 4 Dissimilarity Dissimilarity of cluster

1 (Core countries) Com Com Com Com 0.21 0.58

2 (Strong semi-peripheral countries) - - - - 0.24

3 (Weak semi-peripheral countries) Com Com - Com 0.32 0.49

4 (Peripheral countries) - - - - 0.20

https://doi.org/10.1371/journal.pone.0222785.t009

Table 8. Final image matrix of the global industrial robot trade in 2012.

1 2 3 4 Dissimilarity Dissimilarity of cluster

1 (Core countries) Com Com Com - 0.17 0.68

2 (Strong semi-peripheral countries) - - Com - 0.42

3 (Weak semi-peripheral countries) Com Com Com Com 0.30 0.42

4 (Peripheral countries) - - - - 0.20

https://doi.org/10.1371/journal.pone.0222785.t008
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database of the import and export trade data of 58 countries in the world from 1998 to 2017,

this paper systematically studies the structural characteristics and evolution of the global

industrial robot trade network. The main conclusions are as follows. First, since 1998, the den-

sity of the global industrial robot trade network has increased gradually and tended to be stable

from 2015 to 2017. It became more complicated and more diversified, and major producers

and consumers of industrial robots have had relatively stable complementary factor endow-

ment relationships in recent years. Second, in terms of the out-degree centrality, from 1998 to

2017, the global industrial robot export trade market structure is relatively tight. In terms of

the in-degree centrality, the global industrial robot import market has become increasingly

diversified, import partners in Netherlands, South Korea and China increased significantly,

and the import trade market structure has become increasingly decentralized. Third, in terms

of the centrality of complex trade networks, the betweenness centrality of the industrial robot

trade in the world has shown a downward trend. The trade pattern has been characterized as

‘diversified’, and the gaps between major countries are shrinking. Germany and Japan have

always been at the center of the trade. China, South Korea, and the Netherlands are catching

up rapidly and gradually becoming the core countries of industrial robot trade. The trade sta-

tus of industrial robots in Canada, Turkey, Thailand, and Mexico is also significantly

improved.

Our findings bear several managerial implications for countries that develop industrial

robots.

Firstly, the global industrial robot trade is dominated by developed countries, with Japan,

Germany, the United States, and Italy at the center of the trade. In addition, trade status of

‘catch-up’ countries represented by China has rapidly increased recent years. However, ‘catch-

up’ countries’ trade relationship is dominated by imports, and exports of industrial robot

products are insufficient. Therefore, ‘catch-up’ countries’ can take advantage of regional coop-

eration, such as China’s OBOR (One Belt One Road) policy, which will significantly be pro-

moted industrial robot trade within the OBOR countries. Secondly, the node similarity implies

that the top active countries have stable trade relationships in the global industrial robot field

and that it is hard for other countries to break the ‘equilibrium’. Only if they positively partici-

pate in global industrial robot trade and achieve key technological breakthroughs will they

break their dependence on imports and catch-up to and surpass core countries. These efforts

need the support from the government, which should ensure financial policies, promote

regional cooperation, and attract more technical talent. In addition, as stated earlier “the Sino-

US trade war poses a challenge to global industrial robot trade” which means both China and

the United States need to adjust their trade strategies accordingly to prevent the decline in

existing trade status.

Several important limitations of our study highlight possible directions for future research.

First, we use 58 major industrial robot trading economies’ data to explore the global trade net-

work, and future research can be extended to more countries. Second, although this study

investigated the spatial-temporal variation characteristics and evolution of the global industrial

robot trade, what factors influence the global industrial robot trade was not discussed in this

study, which represents an avenue for future research. Furthermore, new complex network

analysis methods can be used in the future to explore in more detail the evolutionary charac-

teristics of global industrial robot trade such as community structure analysis. Finally, this

work focuses only on different industrial robot product trades; different categories of indus-

trial robots may have different characteristics. These limitations notwithstanding, it is believed

that the findings in this paper offer some noteworthy insights for both academics and

practitioners.
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