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Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in
hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating
system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within
the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional
network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system.

1. Serotonin

Serotonin (5-hydroxytryptamine; 5-HT), named by Rapport
et al. (1948) [1], is one of the ubiquitous molecules
acting as messengers, well known as a neurotransmitter
and neuromodulator. Serotonin (Figure 1) is mostly found
outside the central nervous system [2]; it was first identified
in enterochromaffin cells and named as “enteramine” by
Vialli and Erspamer in 1937 and confirmed to be the same
entity with the “clotted blood” vasoconstriction effects in
1952 [3].

2. Serotonin as an Ancient Molecular Signal

The serotonergic system is an ancient sensor of diverse
stimuli and molecular signaling in single-celled eukaryotes,
plants, and animals [4–6].

The regulated expression of genetic material in every cell
is very important and a “regulatory lesson” learned over the
years is that small metabolites are often regulatory signals to
control gene expression. For “expensive” biosynthesis, as the
required for the serotonin precursor tryptophan, common
pathways are found in organisms that take advantage of the

aromatic structures; tryptophan serves as the precursor not
only of serotonin (Figure 2), but also of very important
compounds as niacin in eukaryotes, indoleacetic acid in
plants, and indole in bacteria. Regulatory strategies could be
compatible with other metabolic goals as organisms evolved
capable of obtaining tryptophan by feeding, with specific
plasma membrane transporters [7, 8].

Beyond the heterotrophic theory of the very first living
organisms [9], serotonin could be used as specific signal,
after direct relation with tryptophan synthesis was con-
trolled, and specific monoamine transporters that do not
need the missing carboxyl group of the aminoacids [7, 10]
were present; later, it acquired functions of “hormone” and
growth factor, and serotonin activity as neurotransmitter was
achieved at last [4]. In prenervous stages, serotonin regulates
basic developmental processes from cleavage divisions after
fertilization (proliferator) to morphogenetic cell movements
during gastrulation (morphogen) in sea urchin [11]. Pres-
ence of serotonin and its metabolite 5-hydroxyindoleacetic
acid in unicellular ciliate Tetrahymena pyriformis [12] and
increasing RNA production in the 5-HT stimulated protozoa
[13] suggested an active biogenic amine system with relevant
functions; interaction with GTPases might represent some
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Figure 1: Serotonin (5-HT). Modified image from NCBI PubChem
Substance Database CID 5202.

of the earlier functions of serotonin (and biogenic amines)
before it could be vesiculated and its exocytosis could be
regulated for metazoan serotonergic systems [14, 15].

3. Serotonin as a Regulatory
Molecule in Animals

This happy hormone, as recalled by Dr. Barnes [16], plays a
modulatory role in almost every physiological function and
is involved in many biological processes [2, 17]; furthermore,
the three related metabolites, 5HT, tryptophan, and mela-
tonin, are important regulators of feed intake, reproduction,
immunity, neurological function, and antistress responses
[18].

Serotonin is involved in natural reward-related physiol-
ogy and behaviour, from feeding to sexual activity [19] with
many actions correlated to the involved location (cellular-
tissue-organ concentration) and the different signaling can
also be associated with its more than fourteen recep-
tor subtypes, regulating physiological processes through
different, even opposing mechanisms; these indoleamine
effects include also serotonylation and interaction with
GTPases [2, 14, 15]. Serotonin influences body temperature,
breathing rhythms (respiratory system), heart rate (cardio-
vascular function in general), eating and bowel motility
(gastrointestinal system), ejaculatory latency and bladder
control, muscle contraction/relaxation and locomotion,
sleep, arousal, pain and sensory perception, emotions, and
cognition [2, 5, 20] with a well-known signaling role in
immune cells [21].

4. Serotonin in Central Nervous System

Serotonergic neurons, first discovered in the brainstem by
Dahlström and Fuxe in 1964 [22], release 5-HT throughout
the CNS [23, 24] as expected after the brain serotonin discov-
ery [25]. 5-HT cell bodies are mainly localized in the raphe
nuclei with their axons innervating almost every brain region
[17]. The hippocampus is a principal target of serotonergic
afferents along with all the limbic system [26]. The serotonin
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Figure 2: Serotonin metabolism. Tryptophan is the precursor for
serotonin synthesis, with different enzymatic reactions in plant and
animals [6]; hydroxylation is the rate limiting step (enzyme medi-
ated by tryptophan hydroxylase in animals or tryptamine hydrox-
ylase in plants), while decarboxylation is a rapid conversion by
the aromatic amino acid decarboxylase (tryptophan decarboxylase).
The catabolic metabolite of serotonin is 5-hydroxyindoleacetic
acid, via 5-hydroxyindole acetaldehyde enzymatically converted by
the membrane-bound mitochondrial flavoprotein monoamino oxi-
dase. Modified images from NCBI PubChem Substance Database.

projections to hippocampus stem in a topographic order
from the midbrain dorsal and median raphe nuclei [27–
29]. The rat ventral hippocampus receive moderately dense
projections from the caudal dorsal raphe and essentially none
from the rostral dorsal raphe, with fine serotonergic axons
and small varicosities widely distributed throughout the
hippocampus. Furthermore, beaded serotonergic axons with
large, spherical varicosities are also found in hippocampus;
median raphe nucleus predominantly innervate the stratum
lacunosum moleculare of the CA1 and CA3 regions and the
dentate hilus [26, 28, 30, 31]. The density of serotonergic
axons is highest in CA3, lower in dentate gyrus and lowest
in CA1 [26, 30]. Almost all subtypes of serotonin receptors
are expressed in hippocampus during ontogeny, so the
regulation of the serotonergic system is more than complex
[32, 33].

5. Serotonin Receptors

Heterogeneity in serotonin receptors was established by
the late 1950s, with Gaddum and Picarelli [34] proposing
two tryptamine receptors in the guinea-pig ileum: M and
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Figure 3: Serotonin main signaling pathways. 5-HT or agonists/antagonists for each receptor (•) interact in the extracellular side and
the conformational changes of 5-HTRs modify the activity of specific intracellular enzymes, which in time modify other targets state to
provoke different cellular responses [43]. G-protein βγ pathways are not represented in the figure. All of the serotonin receptor subtypes are
represented for a hippocampal pyramidal cell, as reported, but subpopulations of these neurons might differentially express 5-HT receptors.
AC, adenylate cyclase; PLC, phospholipase C. The 7TMD images of each subtype receptor are represented with the defined number of exons
that code for the mature protein [44]; putative intron location in correspondent pre-mRNA is marked by a lightning symbol (�), and
alternative splicing sites are marked with stars (���).

D, blocked with morphine and dibenzyline, respectively;
binding to serotonin receptors was also studied with [3H]
5-HT and [3H] LSD [35, 36] and more than twenty
years later a new classification was proposed by Peroutka
and Snyder (1979): 5-HT1 and 5-HT2 receptors based on
radioligand binding techniques ([3H] 5-HT, [3H] LSD and
[3H] spiroperidol) [37].

With the use of specific radiolabelled ligands, there was a
new classification [38] proposing 5-HT3 receptors although
5-HT1-like receptors were still considered a heterogeneous
entity. Others tried to adjust the new information and
finally, with the advances in molecular biology, the serotonin
receptors were cloned, finding more than three subtypes.
The Serotonin Club Receptor Nomenclature Committee
(SCRNC), reporting directly to the IUPHAR Committee
for Receptor Nomenclature, described a new classification
of 5-HT receptors [39]. This classification was based in
different operational (selective agonists, antagonists, and
ligand-binding affinities), structural (molecular structure),
and transductional (intracellular transduction mechanisms)
criteria.

Serotonergic receptors (Figure 3) were grouped in seven
classes 5-HT1–7, all of them belonging to the G-protein-
coupled receptor (GPCR) superfamily [40], except 5-HT3

which is a ligand-gated ion channel that belongs to the nico-
tinic acetylcholine receptor superfamily: cystein-loop trans-
mitter gated superfamily which constitutes heteropentamers

[5, 41, 42]. Particularly, subindex for the different receptors
were arranged and the former 5-HT1C was renamed as
5-HT2C, for its transductional properties and molecular
structure [39]. In the paper, subscript will be used for 5-HT
subtype receptors after SCRNC, and normal line of type for
previous findings in subtype receptor will be written.

6. Ion Channel Serotonin Receptor

The 5-HT3 receptor is a cation-selective ion channel which
activation evokes neuronal excitation and neurotransmitter
release. There are two well-recognized genes encoding A
and B subunits, but additional C, D, and E genes expand
the diversity to heterooligomer formation of the pentameric
channel [45]. The different composition might reflect dis-
tinct pharmacology and relevance to their function repre-
senting each one a different subtype of receptor. These sub-
units can interact with other members of the Cys-loop super-
family, regarding the previous “M”-type serotonin of Gad-
dum and Picarrelli classification [46].

7. Metabotropic Serotonin Receptors

The seven transmembrane domain (7TMD) serotonin recep-
tors belong to the “type A” family of GPCR, rhodopsin-like
receptors, grouped by Fredricksson et al. (2003) in the amine
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Figure 4: cAMP signaling pathways. Serotonin receptors 5-HT1 and 5-HT5 interact with αi/0 G-protein inhibiting the formation of cyclic
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receptor cluster [47]. They display a heterogeneous phyloge-
netic pattern with 5-HT2 forming one group and 5-HT1B-1F

forming another group; the rest of 5-HT receptor subtypes
can be related with other biogenic amine receptors clusters.
In other classification [48], 7TMD 5-HT receptors can be
grouped in type 1 family that contains GPCRs for small
ligands binding in a cavity formed by TM-III to TM VI [49].

The 7TMD serotonin receptors are coupled to different G
proteins. The 5-HT1 receptors couple to Gαi/Gαo proteins;
the 5-HT2 receptors couple to Gαq proteins; the 5-HT4, 5-
HT6 and 5-HT7 receptors couple to Gαs proteins, and the 5-
HT5 receptors are related to Gαi/Gαo proteins [44].

Activation of Gαs coupled receptors (Figure 4) leads to
the stimulation of adenylyl cyclases elevating cyclic AMP
(cAMP), which as a second messenger interacts with other
proteins including ion channels and activating the protein
kinase A (PKA). This phosphorylating enzyme also activates
cAMP-responsive transcription factors like CREB modify-
ing gene expression. The interaction with other exchange
proteins directly activated by cAMP leads to alternative sig-
naling cascades besides the classical PKA. The interaction
with Gαi leads to inhibition of adenylyl cyclases, decreasing
production of cAMP [5].

The activation of Gαq/11 coupled receptors (Figure 5)
lead to the hydrolysis of membrane phosphoinositides
resulting in the formation of diacyl glycerol (DAG) and
inositol phosphates (IP3). IP3 can interact with the calcium
reservoirs, elevating intracellular levels and activating protein
kinase C [5, 50]. Serotonin receptors may also be coupled to
Gα12/13, mediating structural changes within the cell through
activation of the Rho signaling pathway [41].

The Gβγ dimeric subunit can interact with a variety of
enzymatic effectors within the cell, like their action on gated
ion channels, regulation of particular isoforms of adenylyl
cyclase and phospholipase C, and phosphoinositide-3-kinase
isoforms (and ERK signaling) [51].

If so many receptor subtypes of serotonin make it
complex to understand, plethora of activities can be found
with the coupling to multiple G-proteins. There are different
parameters in the activation pathway of the GPCR receptors,
considering multiple states instead of the traditional two-
state model of activation and forming dimers that may have
distinct pharmacology with respect to activation, signaling,
and internalization and the organization in microdomains at
the membrane level that may affect coupling and trafficking
of G-proteins [52].
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Promiscuous coupling of GPCRs to G-proteins is not a
surprise, and they can also signal without coupling to them;
they can activate a variety of cascades by arrestin-ergic
signalling, beside the original function of these proteins in
terminating coupling and endocytosis [53, 54].

In brief, there are thirteen genes coding for GPCR
serotonin receptors that may couple almost every G-protein
in the cell membrane and probably act without coupling to
them, and two recognized genes coding for the subunits of
cation-selective 5-HT3 ligand-gated ion channel pentameric
receptor.

This diversity is further complexed by the posttrans-
lational and co/posttransductional modifications of the
protein to be produced, without talking about oligomer-
ization of the serotonin receptors and single-nucleotide
polymorphisms. There are examples of this modifications in
the different receptor families with alternative splicing, RNA
editing, palmitoylation, glycosylation, phosphorylation, and
proteolysis, to mention a few [55].

8. Serotonin Receptors
Expression in Hippocampus

All the serotonin receptor families are remarkably expressed
in hippocampus, which is part of the limbic system, a

whole structure related with memory processing, emotional
association with memory, judgment, affect, and motivation
or the organization of planned actions [26]. The innervation
of serotonergic pathways in hippocampus and the diverse
expression of serotonin receptors in this brain area reflect
the overall functions related to 5-HT, in particular with
cognition, mood and food intake. After recognition of hip-
pocampal serotonergic afferents by histochemical methods
(fluorescence, potassium dichromate), uptake of tritiated
serotonin was achieved corroborating the wide spread of
5-HT pathways [56]. Molecular biology of the specific
receptors for serotonin confirmed this knowledge.

8.1. 5-HT1 Receptors. The hippocampus contains a high
density of 5-HT1 sites, most of which belong to the 5-HT1A

subtype [39]. Before classification of serotonin receptors on
the basis of their molecular biology, distinction between
the receptors in this group was based on the affinities
for 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT)
distinguishing 5-HT1A, lysergic acid diethylamide (LSD)
and mesulergine detecting 5-HT1C, later renamed as 5-
HT2C, and rauwolscine for 5-HT1D receptors, for example,
but findings of new receptors with affinity for these ligands
may clarify error in quantitation of the former groups.
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8.2. 5-HT1A. Fargin et al. characterized the genomic clone G-
21 that corresponded to 5-HT1A sequence [57]. Gozlan et al.
(1983) [58] had previously reported the existence of 5 HT1—
like receptors in hippocampus on the basis of the bind-
ing experiments of [3H] 8-OH-DPAT. In 1986, Hoyer
et al. [59] and Vergé et al. [60] confirmed these results
and compared binding of 5-HT1A and 5-HT1B; later char-
acterization was performed by chromatographic analyses
of the serotonin 5-HT1A receptor solubilized from the rat
hippocampus [61]. Activation of somatodendritic autore-
ceptors diminished 5-HT synaptic transmission [62] suggest-
ing that 5-HT1A might represent presynaptic receptors as
well as postsynaptic neurotransmission in hippocampus. At
cellular levels, 5-HT1A receptors are located postsynaptically
in pyramidal and granular neurons of the hippocampus
as well as extrasynaptic structures, by studies using highly
selective 5-HT1A antibodies that allowed confirmation and
refinement of autoradiographic results [41]. They function
as somatodendritic inhibitory receptors in raphe nuclei and
presynaptically in hippocampus [63]. 5-HT1A has also been
detected in some astrocytes, radial glia, and ependymal and
endothelial cells [64].

8.3. 5-HT1B. Molecular cloning of rat 5-HT1B receptor was
performed by Voigt et al. in 1991 [65]. Previously, 5-
HT1B was defined as the nonspiperone sensitive [3H]5-
HT binding in brain [41]; localization of 5-HT1B was
described with low densities in hippocampus (gyrus dentatus
> CA1 ≥ CA3) by affinity differences with [3H] 8-OH-DPAT
[60] and binding studies with [125I]iodocyanopindolol [66].
Immunohistochemistry analysis had also shown coexpres-
sion of 5-HT1B in hippocampal cells with other serotonin
receptors [67]. 5-HT1B receptors are responsible for the
presynaptic inhibition of neurotransmission at the local
synapses between axon collaterals of CA1 pyramidal cells
and other CA1 pyramidal neurons and interneurons [68].
Projection neurons from hippocampus reach the bed nucleus
of the stria terminalis, where presynaptic 5-HT1B receptors
are involved in the inhibition of glutamate transmission
[69]. Furthermore, 5-HT1B hippocampal GABAergic axon
terminal heteroreceptors inhibit neurotransmitter release
[70].

8.4. 5-HT1D. Hamblin and Metcalf in 1991 [71] described
sequence of human 5-HT1D serotonin receptor and two
genes known as 5-HT1Da and 5-HT1Db were reported [72].
It was clear later that 5-HT1Db was the homologue receptor
of rat 5-HT1B, so called 5-HT1B. Operational profiles
between the former 5-HT1Da and 5-HT1Db receptors
were almost indistinguishable, and similarities are still very
present [41]. 5-HT1Da remained as the homologue of
rat 5-HT1D, and so-called 5-HT1D. 5-HT1D binding sites
resemble those of 5-HT1B receptors in hippocampus with
very low presence [41, 73]. 5-HT1B/1D receptors are found
at pre- and postsynaptic sites but presynaptic receptors
are predominantly located on 5-HT hippocampal nerve
terminals [63].

8.5. 5-HT1E. There is not a clear characterization of 5-HT1E

due to the lack of specific ligands that might differentiate

this receptor subtype; furthermore, expression of 5-HT1E has
not been found in rodents, because there is a stop codon in
the correspondent mRNA [41]. Cloning of this receptor was
achieved using cDNA synthesized from monkey cortex and
human hippocampal cDNA library [74] though confirming
its presence in hippocampus, previously reported by the
existence of a 5-HT1E subtype in human brain with findings
in radioligand studies [75].

8.6. 5-HT1F . When 5-HT1F was found [76], it was designated
as 5-HT1Eb due to its related pharmacological profile; 5-
HT1F-labeling was moderate in granule cells of the dentate
gyrus and hippocampal pyramidal cells in CA1–CA3, con-
firming its expression in hippocampus [77].

8.7. 5-HT2 Receptors. Receptors from this group were orig-
inally recognized by ligands like ketanserin, mesulergine,
LSD, and spiperone, which were reported to have high
affinities for 5-HT2 receptors compared to 5-HT1 group
[78]. These receptors are coupled to phosphatidylinositol
hydrolysis although some effects may involve intracellular
calcium release via an independent mechanism [79]. Hoyer
et al. [80] used Ketanserin binding though localizing 5-HT2
receptors recognition sites in hippocampus.

8.8. 5-HT2A. On the basis of the similarity in exerting the
cellular effects which reflected the structural relationship
with the former 5-HT1C receptor, Pritchett et al. (1988)
used oligonucleotides encoding this serotonin receptor and
found 5-HT2A sequence [81]. Julius et al. (1990) also found
an encoding sequence for 5-HT2 which was expressed in
hippocampus in a 10-fold lower level than in rat cortex
[82]. The 5-HT2A receptor refers to the classical D receptor
described by Gaddum and Picarelli in 1957 and defined later
as 5-HT2 by Peroutka and Snyder in 1979 [37]. 5-HT2A

expression in human hippocampus was confirmed with RT-
PCR technique [83]. Immunoreactivity for 5-HT2A receptor
in hippocampus was found primarily in the pyramidal cell
layer of CA1–CA3 and in the granular layer of dentate gyrus
[84]. Agonist studies with 1-(2,5-dimethoxy-4-iodophenyl)-
2-aminopropane (DOI) indicate postsynaptic receptors for
5-HT2A [63]; in prelimbic prefrontal cortex, most 5-HT2A

receptors were postsynaptically located, but presynaptic
axons and varicosities locations were found [85]. Cellular
localization of 5-HT2A receptors in astrocytes has been found
in hippocampus [86].

8.9. 5-HT2B. The “last” 5-HT2-like receptor subtype to be
cloned was 5-HT2B [87] from rat stomach fundus. The
origin and comparable sequence to 5-HT1C/2 led them to
designate it as 5-HT2F (for fundus) and renamed as 5-HT2B

after consensus of SCRNC in 1994. Cloned human 5-HT2B

receptors had a high degree of homology with mouse and
rat receptors although with higher affinity for ketanserin
and a lower affinity for yohimbine; it was found at very
low presence in the whole brain [88]. Expression of 5-
HT2B receptors in cultured astrocytes from hippocampus
with Ca2+ increases after stimulation with alpha-methyl 5-
HT has been reported [89]. The presence of this receptor
in astrocytes was verified with immunohistochemistry and
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westernblot analysis. Furthermore, microglial cell cultures
expresses 5-HT2B receptors, and they are involved in the
regulation of inflammatory cytokine production from blood
cells [90].

8.10. 5-HT2C . Lübbert and colleagues cloned in 1987 [91]
the mouse 5-HT1C-mRNA (actually 5-HT2C) extracted from
choroid plexus tumors; Julius et al. (1988) characterized a
cDNA encoding this protein and confirmed the receptor
expression in neurons of many regions of central nervous
system by in situ hybridization and RNA blot analysis [92].
It was first identified in porcine choroid plexus on the
basis of its pharmacological properties [93] and localized
by autoradiographic mapping in rat [94] and human brain,
particularly in hippocampus [80].

The overall distribution of 5-HT2C receptor was reported
by several studies with mRNA in situ hybridization [95–98].
The specificity of radioligand binding ([3H] mesulergine)
was compared with in situ hybridization by Mengod et
al. (1990), finding high signal in the pyramidal layer of
the CA3 field of rostral rodent hippocampal formation,
while intense hybridization was found in the strata oriens
and radiatum of the caudal CA1 area and in the ventral
subiculum [97]. Furthermore, Abramowski et al. (1995)
compared [3H] mesulergine binding with specific antibody-
binding in rat and human brain [99]; Clemett et al.
(2000) also studied the presence of 5-HT2C protein with
immunohistochemistry and western blotting with abundant
expression in rat hippocampus [100].

8.11. 5-HT3 Receptors. 5-HT3 receptor belongs to the ligand-
gated ion channel superfamily and corresponds to the M
receptor of Gaddum and Picarelli [41, 101]; five subunits
have been cloned although only 5-HT3A and 5-HT3B are
recognized for rodents [102–106]. The various subtypes of
5-HT3 may well-correspond to the pentameric heterodimer
assembled between all subunits and their splice variants,
and also with other members of the cys-loop superfamily,
like a4-nAChR nicotinic receptor [46, 107] although this
association has not been detected in porcine native 5-
HT3 brain receptors [108]. On the contrary, association
and coimmunoprecipitation of 5-HT3 and P2X2 ATP-gated
channels has been reported [109].

All subunits have been found mainly in human intestine
[110]. 5-HT3 mRNA was found in rat hippocampus primar-
ily on interneurons, mediating indirect inhibitory effects on
pyramidal neuron populations [111]. On the contrary, 5-
HT3 was found in human hippocampus with predominant
immunoreactivity associated with pyramidal neurons in CA2

and CA3; transcripts were also identified so hippocampal
cells can produce 5-HT3A and 5-HT3B functionally isoforms
of this ion channel [112].

8.12. 5-HT4 Receptors. The 5-HT4 receptor was first
described in the central nervous system [113] stimulating
adenylate cyclase; with some useful radioligands, it was
showed to be distributed in hippocampus. It was cloned
[114] and mRNA was localized in hippocampus by in situ
hybridization [115].

The 5-HT4 receptor gene is very complex and has
several possible splice variants; there are at least nine
receptor splice variants reported with a number of carboxy-
terminal variants but no difference in affinity for agonists
or antagonists [41]. There is evidence that suggests that
5-HT4 receptor activity enhances cognition and provides
neuroprotection, particularly on hippocampal effects [116];
5-HT4 receptors on hippocampal cholinergic axon terminals
are neurotransmitter release facilitating [70].

8.13. 5-HT5 Receptors. The 5-HT5 receptor group consists
of two members: 5-HT5A and 5-HT5B; human 5-HT5B has
been described, but it fails to encode a functional protein due
to the presence of stop codons in the sequence [117–119].
They still lack physiological correlation, in part for the lack of
selective agonists; the transductions pathways have not been
well established although negatively coupling to adenylate
cyclase has been reported [41, 43, 120].

8.14. 5-HT5A. Cloning and distribution of 5-HT5A receptor
has been reported, finding high concentration in hip-
pocampus [119, 121, 122]. Although this receptor is a
well-recognized GPCR protein, the negatively coupling to
adenylated cyclase is not well established [120, 123–125],
and furthermore, its coupling to multiple signal transduction
pathways has been reported [126]. The 5-HT5A receptor
is expressed predominantly by astrocytes with very weak
neuronal immunoreactivity [120].

8.15. 5-HT5B. Cloning and distribution of 5-HT5B receptor
has been reported as well, finding this receptor in hippocam-
pus [119, 127]. The levels of expression of 5-HT5B mRNA
in hippocampus were high, with predominant expression
in CA1 pyramidal cells [128]. It is a pseudogene in man
[129], and it has been proposed that the upregulation found
(particularly in hippocampus) for mice 5-HT5B receptor, in
response of social isolation stress, might be undertaken in
humans by another receptor like 5-HT5A [130].

8.16. 5-HT6 Receptors. Ruat et al. (1993) cloned 5-HT6

receptor [131], starting from the sequence of rat histamine
H2 receptor with two transcripts evidenced. mRNA was
detected in hippocampus and in transfected COS-7 cells 5-
HT6 receptor was positively coupled to adenylate cyclase.
Hybridization signal of 5-HT6 mRNA was detected in CA1,
CA2, and CA3 fields of hippocampus as well as in dentate
gyrus [128].

8.17. 5-HT7 Receptors. Ruat et al. (1993) also cloned the
putative 5-HT7 receptor and localized it at hippocampus
[132]. It is differentially expressed in CA1 cells preferentially
localized on the cell body but absent in interneurons
[133]. The expression in the limbic areas suggests that
these receptors mediate serotoninergic controls in functions
like mood, learning, or neuroendocrine and vegetative
behaviors. The emerging functions of hippocampus involve
several neurotransmitter networks, where 5-HT7 receptors
can be functioning. AMPA receptor-mediated transmission
between CA3 and CA1 pyramidal neurons is enhanced
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postsynaptically by 5-HT7, while 5-HT1A receptors inhibit
this transmission both pre- and postsynaptically [134].

9. Serotonergic Modulation in Hippocampus

Among the various major neurotransmitter signaling, like
monoaminergic, glutamatergic, and nitrergic neurotrans-
mitter systems that might be involved in some plastic
modifications of hippocampus particularly after stress expo-
sure [135], serotonergic system is very interesting for its
complexity and regulation.

Almost all pre- and postsynaptic serotonin receptors
have been identified in hippocampus; furthermore, the 5-HT
transporter (SERT, 5-HTT) plays a key role in serotonergic
neurotransmission, and it is condition-regulated in hip-
pocampus [136, 137]. In addition, tryptophan hydroxylase
(TPH), the rate-limiting enzyme for producing serotonin,
plays another key role in the regulation of this system; TPH1
and TPH2 have been found in hippocampus [138]. The other
key enzyme in serotonergic system is monoamine oxidase
A, responsible for 5-HT degradation [139], expressed in
hippocampus as well.

Regulation of serotonin system is very important and dis-
turbances in this matter are related to anatomical, functional
and behavioural anomalies, including neurologic and psy-
chiatric disorders as obsessive-compulsive disorder, bulimia,
chronic impulsivity, obesity and drug addiction, aggression,
-major- depression, suicide, anxiety, schizophrenia, mania,
autism, Alzheimer’s disease and also sudden infant death
syndrome [43, 139–142].

The function of serotonin as neurotransmitter seems to
be developed at last in evolution, and ionotropic channels are
related to rapid neuronal activation, particularly in enteric
nervous system [4]. Serotonin, as metabotropic effector,
has been recognized as a trophic factor, particularly during
development including morphogenetic activities as cell pro-
liferation, migration and differentiation [137, 143]; during
adulthood, depletion in serotonin decreases neurogenesis in
the dentate gyrus [144] though 5-HT plays a critical role in
the neuronal organization of the hippocampus [145].

Several metabotropic effects of serotonin have been
related to brain-derived neurotrophic factor (BDNF) expres-
sion [144] and BDNF itself promotes the development and
function of serotonergic neurons [140]. This kind of interac-
tion between neurotrophic factors and neurotransmitters has
been reported also with steroids; the regulation of HPA axis
by serotonin and vice versa is well documented [146, 147];
sexual steroids have this intricate correlation as well [148].
The key for understanding these relationships is the existence
of multiple receptors and ligand interaction for molecular
signaling.

On the other hand, hippocampus-dependent memory
formation uses long-term potentiation (LTP) as a pivotal
role. Cross-talk between the cAMP signal transduction
system and LTP has been reported, with a critical linkage
between Ca2+ and cAMP signaling [149]. At this level, all
of the serotonin receptors seem to be directly involved in
the normal function of hippocampus in mood regulation

and memory formation; neurogenesis is thought to be one
of the involved processes for long lasting changes related to
hippocampal function, particularly because dentate gyrus is
one of the prominent areas of adult brain neurogenesis [150].

The 5-HT1A is the most likely involved receptor in
regulation of neurogenesis in the dentate gyrus [150]; it is
expressed on raphe serotonin neurons as an autoreceptor
[151], acting as a negative regulator of neuronal activity in
presynaptic locations in hippocampus, with very important
function in the balance of serotonin reservoirs. 5-HT1A also
inhibits neuronal firing, activating G-protein-gated inwardly
rectifying potassium (GIRK) currents and inhibiting Ca2+

channels [44]; it is involved in the inhibition of long-term
potentiation (LTP) by the inhibition of NMDA function
[152].

As one of the most “important” members of serotonin
receptors, 5-HT1A receptor is the best characterized and
its ligands are used extensively. The mutant (knockout)
mice lacking this receptor exhibits enhanced anxiety-related
behaviour [153, 154]. The “specific” 5-HT1A ligand 8-OH-
DPAT has been used to establish the roles of this receptor
as trophic factor and in neurotransmission as well, but 5-
HTT (SERT) recognizes this ligand and likewise modulates
anxiety-related behaviour [136, 155].

The therapeutic effects of serotonin-selective reuptake
inhibitors (SSRI), “specifically” acting on SERT function,
are well documented, and several theories are proposed to
explain the retarded actions in successfully treated patients
[156–158]. SSRIs are the most widely prescribed class
of antidepressants, which increases synaptic levels of 5-
HT in hours or days, but exerts the therapeutic response
several weeks later [159]. The increasing levels of 5-HT
cause a desensitization of 5-HT1A autoreceptors with a
lesser inhibition caused by this receptor in raphe neurons,
leading to a facilitation of 5-HT signaling [160]. There
is a differential response of SSRI’s desensitizing 5-HT1A

presynaptic or postsynaptic receptors; the specific serotonin
receptor antagonist WAY 100635 also promotes differential
changes in autoreceptors compared to postsynaptic 5-HT1A

receptors [160, 161].
SERT and 5-HT1A are the most studied therapeutic tar-

gets although several serotonin receptors are involved in hip-
pocampus activities, particularly 5-HT4, 5-HT6, and 5-HT7

that activate cAMP signaling increasing CREB, which may
increase the expression of BDNF [150]. Furthermore, 5-HT4

activation may cause a faster direct activation of 5-HT neu-
rons, increasing their firing and causing desensitization of 5-
HT1A [159]. 5-HT2 receptors involve an alternative signaling
pathway to cAMP, where increasing Ca2+ levels is of par-
ticular importance, relying on the crosstalk between cAMP
signaling and Ca2+-regulated adenylyl cyclases. Knockout
phenotype for 5-HT2A shows decreased, anxiety while the
one for 5-HT2C shows increased appetite, overweight, and
cognitive impairment. Serotonin receptor 5-HT2C is proba-
bly the most important receptor related to food intake and
energy balance (satiety and obesity), with viable targeting for
weight control [20].

The most representative neurotransmitter receptor for
serotonin in rapid actions is the ionotropic 5-HT3, which
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is also involved in LTP modulation in hippocampus [162].
The knockout phenotype for 5-HT3A has reduced pain
perception and variants of the 5-HT3A receptor have been
associated with bipolar disorder and schizophrenia [43].

Serotonergic neuronal-glial interactions (Figure 6) have
been proposed to play a significant role in the development
of several CNS pathologies [163]. Some serotonin receptors

are mainly expressed in glia. 5-HT5A correlates with astrocyte
maturity and activity, increasing its levels after induced
gliosis [120] although its expression in pyramidal cells of
hippocampus has been reported [117]. Addition of cAMP
analogues to astrocyte cultures decreases 5-HT1A expression
and increases 5-HT5A, therefore suggesting a direct neuronal
regulation of astrocyte homeostasis, as cAMP intracellular
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increases might activate and sensitize astrocytes to respond
at serotonin signaling from neurons that can supress gliosis
in vivo [120].

Each cell type can modify its serotonin receptor expres-
sion depending on the differentiation time and relationship
in a particular network. Mouillet-Richard et al. (2000) have
shown the differentiating changes than inducted serotonergic
1C11∗5HT cells can exhibit [164], sequentially expressing
three different serotonin receptor subtypes (5-HT1B/1D, 5-
HT2B, and 5-HT2A). Although cell cultures do not represent
reliable conditions of in vivo differentiation, they help us
understand how cells can adapt to changing media. The 5-
HT2 receptors are referred to as programmable receptors that
may not influence development although this process affect
their number, affinity, or function; the coupling efficiency
of the receptor may change in time, in correlation to a
developmental change of phosphatidylinositol hydrolysis-
second messenger system [165].

In conclusion, the specific changes that modulate sero-
tonin signaling can be performed by serotonin itself; the
levels of serotonin that can be reached in the synapses,
or as a volume transmission, is of outstanding importance
to understand the rate of change in the 5-HT signaling
itself, time of action might conduce to one response or the
contrary, considering that all the cell types in hippocampus
are involved in this modulation and function. Serotonin can
act directly into neuron and glia after SERT incorporation, an
ancient function for this biogenic amine and probably with
more importance during development.
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