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SUMMARY
Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge
of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a
genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age cat-
egories are associated with patients’ manifestations. The ‘‘cytoplasmic transport’’ cluster is associated with
neurological and ophthalmological manifestations, the ‘‘mitochondrion’’ cluster with hypotonia, acute meta-
bolic decompensation, and death, and the ‘‘B12 availability’’ and ‘‘remethylation’’ clusters with anemia and
cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger pa-
tients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syn-
drome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the
older patients. These results should prompt systematic checking of markers of vitamin B12 status, including
homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult
patients.
INTRODUCTION

Vitamin B12, also known as cobalamin, is a water-soluble vitamin

that influences key biochemical functions involved in DNA

synthesis, methylation of DNA, proteins and metabolites, and

mitochondrial metabolism through its role as a precursor of

methylcobalamin and adenosylcobalamin, which act as cofac-

tors for two target enzymes, cytoplasmic methionine synthase

and mitochondrial methylmalonyl-CoA mutase, respec-

tively.164–166 Vitamin B12 is not produced in humans and must

be provided by foods of animal origin.167 The absorption and

metabolism of vitamin B12 is a complex multistep process re-

viewed in Green et al.164 Following ingestion, B12 is liberated

from food carrier proteins and binds to haptocorrin in the stom-

ach and transferred to gastric intrinsic factor (GIF) when hapto-

corrin is degraded in the small bowel. The GIF-B12 complex is

absorbed in the distal ileum through a receptor composed of am-

nionless (encoded by AMN gene) and cubilin (encoded byCUBN

gene). In blood, B12 is transported by haptocorrin and transcoba-
Cell R
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lamin. The circulating B12 bound to transcobalamin is available

for cellular uptake in most tissues via TcblR/CD320 receptor-

mediated endocytosis. B12 lysosomal degradation of transcoba-

lamin releases B12, and the vitamin is subsequently exported into

the cytosol by LMBD1 and ABCD4. In the cytosol, MMACHC and

MMADHC chaperone and orientate B12 toward the synthesis of

the MeCbl and AdoCbl cofactors in the cytosol and mito-

chondrion, respectively. At the cytosolic level, methylcobalamin

is required for the remethylation of homocysteine intomethionine

by methionine synthase. This remethylation pathway involves

adding a methyl group provided by methyltetrahydrofo-

late.164,168 Methionine is the immediate metabolic precursor of

S-adenosylmethionine, which is the universal methyl-donor in

the transmethylation of DNA, histones, and other proteins and

small molecules in mammals.164,167–169 At the mitochondrial

level, adenosylcobalamin serves as a cofactor of methyl-

malonyl-CoA mutase to catalyze the conversion of

L-methylmalonyl-CoA to succinyl-CoA, which represents the

final step of the anaplerotic replenishment of the tricarboxylic
eports Medicine 3, 100670, July 19, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The four clusters are defined ac-

cording to the function and metabolic conse-

quences of genes involved in inherited disor-

ders of vitamin B12 metabolism

The cluster ‘‘B12 bioavailability’’ includes gene de-

fects involved in B12 absorption, blood transport,

and cellular uptake, with an expected abnormal

level of blood vitamin B12 and/or transport proteins

and a combined increase of homocysteine and

methylmalonic acid. Note that gene defects in

lysosome export may also produce vitamin B12

deficit through impaired vitamin B12 absorption. The

‘‘cytoplasmic transport’’ cluster includes gene de-

fects of cytoplasmic transport with an expected

normal blood level of vitamin B12 and/or transport

proteins and a combined increase of homocysteine

and methylmalonic acid. The ‘‘remethylation’’ clus-

ter includes gene defects of the remethylation

pathway of homocysteine with an expected normal

blood level of vitamin B12 and/or transport proteins

and methylmalonic acid and an increased level of

homocysteine. The ‘‘mitochondrion’’ cluster of the

B12 mitochondrion pathway includes gene defects

involved in the mitochondrion processing of B12 and

conversion of L-methylmalonyl-CoA to succi-

nyl-CoA. The complementation groups corre-

sponding to vitamin B12 metabolism defects are

indicated in blue font (icons made by flaticon,

flaticon.com; CC-BY-3.0).
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acid cycle by the catabolism of branched-chain amino acids,

odd-chain fatty acids, and side chain of cholesterol.170 The crit-

ical metabolic role of B12 is illustrated by the broad spectrum of

clinical manifestations of inherited disorders of vitamin B12meta-

bolism. Inherited disorders of vitamin B12 metabolism are

caused by a wide variety of genetic alterations in the genes

involved in the absorption, cell trafficking, and intracellular meta-

bolism of vitamin B12.

To date, there is insufficient knowledge regarding the evalua-

tion of the prevalence and classification of the broad spectra
2 Cell Reports Medicine 3, 100670, July 19, 2022
of clinical manifestations, biological, elec-

trophysiological, and imaging findings

among patients with inherited disorders

of vitamin B12 metabolism. In particular,

no systematic assessment, comparison,

and categorization of all disorders have

been performed to describe their clinical

and metabolic spectrum in relation to

age and functional type of gene defects.

To address this issue, we defined four

functional gene clusters according to the

function and metabolic consequences

of genes involved in inherited disorders

of vitamin B12 metabolism, namely ‘‘B12

bioavailability,’’ ‘‘cytoplasmic transport,’’

‘‘remethylation,’’ and ‘‘mitochondrion’’

clusters (Figure 1). Thus, we conducted a

systematic review of the literature using a

highly sensitive search strategy to identify

case reports describing individual-level
data of patients with a genetically proven diagnosis of an in-

herited disorder of vitamin B12 metabolism. We performed a

meta-analysis to assess the clinical, biological, imaging, and

electrophysiological manifestations in the studied population

and according to three age categories, <1 year, 1–15 years,

and >15 years. We performed phenome-wide association

studies to assess the predictors associated with age categories,

functional gene clusters, and death. We highlighted specific

manifestations according to age and gene clusters, which will

help better understand the pathomechanisms that underlie the

http://flaticon.com
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two impaired B12-dependent metabolic pathways and better

orientate the diagnosis and management of this complex group

of inherited metabolic disorders.

RESULTS

Literature review
As reported in the PRISMA flow diagram (Figure S1, related to

Table 1), the systematic search generated 12,614 citations, of

which 678 appeared to be relevant to the systematic review.

Of these 678 publications, 515 were excluded based on selec-

tion criteria, including 156 studies that lacked a molecular diag-

nosis (Table S1, related to Table 1). One-hundred and sixty-three

publications were eligible for the systematic review and reported

individual-level case reports on 824 patients with a genetically

proven inherited disorder of vitamin B12 metabolism.1–163

Description of the whole population of the 824 patients
with inherited disorders of vitamin B12 metabolism
Among the 824 patients included in the systematic review, the

proportion of males was 53% and the median age was 3.7 years

(IQR, 0.2–2.0; range, 0–59.0) (Table 1). Seventy-one percent of

patients were under 1 year old and 10.3% were over 15 years

old. MMACHC gene pathogenic variants were the most

frequently reported (49.6%, 409/824), followed by MMUT

(32.6%, 269/824), MMAA (6.1%, 50/824), and MMAB (3.5%,

29/824) (Table 1). The annotation of the genetic variants retrieved

in each of these four genes, including the HGVS nomenclature to

report DNA and protein sequences variants and pathogenicity

prediction according to the ACMG classification, is reported in

Tables S2–S5 (related to Tables 1–4). Neurological manifesta-

tions were the most frequently reported and included develop-

mental delay (38.2%, 315/824), hypotonia (17.7%, 146/824),

and seizures (10.6%, 87/824). Digestive manifestations were

the second most observed category of manifestations and cor-

responded to feeding intolerance (24.9% 205/824). Acute meta-

bolic decompensation was reported in 13.2%of cases (109/824)

and death occurred in 13.1% (108/824).

Phenotypic landscape and predictors of inherited
disorders of vitamin B12 metabolism according to age
category
The number of patients who were less than 1 year old was 509

(71.1% of the whole population). Among them, pathogenic

variants on MMACHC and MMUT were observed in 44.4%

(226/509) and 37.7% (192/509) of cases, respectively. In this

age subgroup, neurological manifestations were the most

frequently reported and included developmental delay (40.5%,

206/509), hypotonia (21.0%, 107/509), and seizures (9.4%,

48/509). Feeding intolerance was reported in 30.6% (156/509)

of patients, and 17.1% (87/509) died (Table 2). The number of pa-

tients between 1 and 14 years was 133 (median 4.0 years; IQR,

2.0–9.0). In this age category, MMACHC deficiency was

observed in 57.1% (76/133) and MMUT deficiency in 20.3%

(27/133). Neurological manifestations were the most frequently

reported and included developmental delay (39.1%, 52/133)

and peripheral neuropathy (15.8%, 21/133). Cardiovascular

manifestations frequently reported were high blood pressure,
pulmonary hypertension (8.3%, 11/133), and cardiomyopathy

(5.3%, 7/133). The number of patients over 15 years was 74

(median age 20.0; IQR, 18.0–29.0). In this age category,

MMACHC deficiency was observed in 91.9% of cases (68/74).

Neurological manifestations were the most frequently reported

in this age category and included walking difficulties 37.8% (28/

74), development delay 32.4% (24/74), and peripheral neuropa-

thy 29.7% (22/74). Psychiatric disorders and high blood pressure

were reported in 33.8% (25/74) and 12.2% (9/74), respectively.

We evaluated the influence of gradually increasing patient

age categories on observed clinical manifestations (Figure 2).

We observed a very significant increase in the frequency of

neurological manifestations in relation to age categories. This

mainly concerned the difficulty in walking and the presence of

peripheral neuropathy, pyramidal syndrome, and, to a lesser

extent, extrapyramidal syndrome. Likewise, we observed a

significant influence of age on the frequency of cerebral

atrophy and electroencephalogram abnormalities as well as

for psychiatric manifestations. Unlike the neurological and

psychiatric manifestations, the ophthalmological manifesta-

tions, nystagmus, and strabismus were mainly diagnosed in

the first year of life and inversely correlated with age. The fre-

quency of cardiovascular manifestations, including thrombosis

and blood pressure, also increased very significantly with age.

The increase in systolic blood pressure was not related to renal

failure, as the latter was not significantly associated with age

(Figure 2).

Phenotypic landscape and predictors of inherited
disorders of vitamin B12 metabolism according to
functional gene clusters
Cytoplasmic transport gene cluster

We classified 416 patients in the cytoplasmic transport gene

cluster. The median age was 0.3 years (IQR, 0–10.3) (Table 3).

A total of 61.5% (232/377) of the patients were less than 1 year

old, 20.4% (77/377) were 1 to 14 years old, and 18.0% (68/377)

were 15 years old or more. Among the most frequent neurolog-

ical manifestations were developmental delay (35.3%, 147/

416), hypotonia (15.4%, 64/416), and seizures (14.2%,

59/416). Ophthalmological manifestations were often reported,

including nystagmus (16.8%, 70/416) and maculopathy or reti-

nopathy (15.1%, 63/416). Psychiatric disorders occurred in

11.8% of cases (49/416), cardiomyopathy in 5.1% (21/416),

and hypertension in 4.6% (19/416). Seventy variants of the

MMACHC gene were reported (Table S2, related to Tables 1–

4). The most frequently reported variants were c.270_271insA

(274 occurrences; most frequently observed in the age sub-

group 0 to 1 year: 76%, 208/274), c.609G > A (98 occurrences),

and c.482G > A (82 occurrences; most frequently observed in

the age subgroup 15 years and more: 46%, 38/82). In logistic

regression analysis with Bonferroni correction, the following

items were significantly associated with an increased risk of

belonging to the cytoplasmic transport functional gene cluster

when compared with the remaining functional gene clusters,

in the descending order of ORs: nystagmus (OR, 27.24; 95%

CI: 8.50–87.30); maculopathy or retinopathy (OR, 17.98;

95% CI: 6.48–49.90); psychiatric disorders (OR, 17.98; 95%

CI: 5.56–58.18); over 15 years age category (OR, 12.18;
Cell Reports Medicine 3, 100670, July 19, 2022 3



Table 1. Clinical, biological, imaging, and electrophysiological findings of the 824 patients included in the individual patient-level

meta-analysis

Demographic data

Age (years) – n, median (IQR; range) 716 3.7 (0.2–2; 0–59)

Age, 0 to 1 year – n/N, % (95% CI) 509/716 71.1 (67.8–74.4)

Age, 1 to 14 years included – n/N, % (95%

CI)

133/716 18.6 (15.7–21.4)

Age, 15 years and more – n/N, % (95% CI) 74/716 10.3 (8.1–12.6)

Male gender – n/N, % (95% CI) 328/620 52.9 (49.0–56.8)

Gene – n/N, % (95% CI)

MMACHC 409/824 49.6 (46.2–53.1)

MMUT 269/824 32.6 (29.4–35.9)

MMAA 50/824 6.1 (4.4–7.7)

MMAB 29/824 3.5 (2.3–4.8)

MTRR 16/824 2.0 (1.0–2.9)

MMADHC 15/824 1.8 (0.9–2.7)

TCN2 13/824 1.6 (0.7–2.4)

AMN 6/824 0.7 (0.1–1.3)

ABCD4 4/824 0.5 (0.0–0.9)

CBLIF (alias, GIF) 3/824 0.4 (0.0–0.8)

LMRD1 3/824 0.4 (0.0–0.8)

MTR 3/824 0.4 (0.0–0.8)

CUBN 2/824 0.2 (0.0–0.6)

CD320 1/824 0.1 (0.0–0.4)

ZF143 1/824 0.1 (0.0–0.4)

Gene clustersa – n/N, % (95% CI)

Cytoplasmic transportb 416/823 50.5 (47.1–54.0)

Mitochondrionc 353/823 42.9 (39.5–46.3)

B12 bioavailability
e 32/823 3.9 (2.6–5.2)

Remethylationd 22/823 2.7 (1.6–3.8)

Clinical findings

Neurological manifestations – n/N, % (95% CI)

Developmental delay 315/824 38.2 (34.9–41.6)

Hypotony 146/824 17.7 (15.1–20.3)

Seizures 87/824 10.6 (8.5–12.6)

Walking difficulty 66/824 8.0 (6.2–9.9)

Peripheral neuropathy 64/824 7.8 (5.9–9.6)

Pyramidal syndrome 36/824 4.4 (3.0–5.8)

Extrapyramidal syndrome 30/824 3.6 (2.4–4.9)

Microcephaly 24/824 2.9 (1.8–4.1)

Digestive manifestations – n/N, % (95% CI)

Feeding intolerance 205/824 24.9 (21.9–27.8)

Multiple organ failure – n/N, % (95% CI)

Acute metabolic decompensation 109/824 13.2 (10.9–15.5)

Death 108/824 13.1 (10.8–15.4)

Ophthalmologic manifestations – n/N, % (95% CI)

Nystagmus 74/824 9.0 (7.0–10.9)

Maculopathy or retinopathy 67/824 8.1 (6.3–10.0)

Strabismus 26/824 3.2 (2.1–4.4)

Renal manifestations – n/N, % (95% CI)

Chronic kidney disease 58/824 7.0 (5.3–8.8)

(Continued on next page)
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Table 1. Continued

Acute kidney failure or hemolytic-uremic

syndrome

37/824 4.5 (3.1–5.9)

Psychiatric manifestations – n/N, % (95% CI)

Psychiatric disorders 52/824 6.3 (4.7–8.0)

Behavior abnormality 24/824 2.9 (1.8–4.1)

Cardiovascular manifestations – n/N, % (95% CI)

Cardiomyopathy 27/824 3.3 (2.1–4.5)

High blood pressure 21/824 2.6 (1.5–3.6)

Pulmonary hypertension 16/824 1.9 (1.0–2.9)

Thrombosis 13/824 1.6 (0.7–2.4)

Miscellaneous manifestations – n/N, % (95% CI)

Intrauterine growth restriction 15/824 1.8 (0.9–2.7)

Dermatologic abnormality 7/824 0.8 (0.2–1.5)

Gout 5/824 0.6 (0.0–1.1)

Pregnancy 4/824 0.5 (0.0–1.0)

Biological findings

Hematology

Anemia – n/N, % (95% CI) 108/824 13.1 (10.8–15.4)

Cytopenia – n/N, % (95% CI) 45/824 5.5 (3.9–7.0)

Hemoglobin (g/dL) – n, median (IQR) 80 7.8 (6.8–10.4)

Platelet (G/L) – n, median (IQR) 37 158 (83–276)

White blood cell (G/L) – n, median (IQR) 30 5.615 (4.500–7.900)

Biochemistry, blood – n, median (IQR)

Homocysteine (mmol/L) 288 92 (54–141)

Methionine (mmol/L) 136 13.0 (7.1–21.5)

C3 (mmol/L) 105 9.9 (6.9–14.2)

MMA (mmol/L) 94 19 (4–53)

B12 (pmol/L) 52 389 (171–601)

Ammonia (mmol/L) 42 174 (123–350)

Biochemistry, urine – n, median (IQR)

MMA (mM/mol creatine) 213 1,056 (272–3607)

Imaging and electrophysiological findings – n/N, % (95% CI)

Brain MRI 175/824 21.2 (19.8–22.7)

Abnormal signal 89/175 50.1 (43.2–58.5)

Cerebral atrophy 52/175 29.7 (23.1–37.1)

MRI without abnormality 46/175 26.3 (19.9–33.5)

Abnormal EMG finding 23/824 2.8 (1.7–3.9)

Abnormal EEG findingf 17/824 2.1 (1.1–3.0)

Therapy – n/N, % (95% CI)

Vitamin B12 supplementation 316/824 38.3 (35.0–41.7)

Liver transplantation 16/824 1.9 (1.0–2.9)

Kidney transplantation 14/824 1.7 (0.8–2.6)

MMACHC, metabolism of cobalamin associated C; MMA, methylmalonic acid; MRI, magnetic resonance imaging; EEG, electroencephalography;

EMG, electromyography; IQR, interquartile range; Ref, reference values.
aOne patient had two mutations for the ZNF143 gene and was not classified in the four gene clusters.
bGene cluster ‘‘B12 bioavailability’’ regroups all patients with CBLIF (alias, GIF), CUBN, AMN, TCN2, LMBRD1, CD320, or ABCD4 variants.
cGene cluster ‘‘cytoplasmic transport’’ regroups all patients with MMACHC and MMADHC variants responsible for combined mitochondrion and re-

methylation abnormalities.
dGene cluster ‘‘remethylation’’ regroups all patients with MTR, MTRR, and MMADHC variants responsible for remethylation abnormalities.
eGene cluster ‘‘mitochondrion’’ regroups all patients with MMAA, MMAB, or MMUT variants and MMADHC variants responsible for mitochondrion

abnormalities.
fAbnormal EEG pattern other than seizures.
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Table 2. Clinical, biological, radiological, and electrophysiological findings of the 824 patients included in the individual patient-level

meta-analysis according to age subgroups

Patients under 1 year Patients between 1 and 14 years Patients over 15 years

Demographic data

Age (years) – n; median (IQR) 509; 0.0 (0.0–0.3) 133; 4.0 (2.0–9.0) 74; 20.0 (18.0–29.0)

Male gender – n/N; % (95% CI) 212/383; 55.4 (50.4–60.4) 52/119; 43.7 (34.7–52.7) 32/65; 49.2 (36.7–61.7)

Gene – n/N; % (95% CI)

MMACHC 226/509; 44.4 (40.1–48.7) 76/133; 57.1 (48.6–65.7) 68/74; 91.9 (85.5–98.3)

MMUT 192/509; 37.7 (33.5–41.9) 27/133; 20.3 (13.4–27.2) 4/74; 5.4 (1.3–10.7)

MMAA 31/509; 6.1 (4.0–8.2) 8/133; 6.0 (1.9–10.1) 1/74; 1.4 (0.0–4.0)

MMAB 25/509; 4.0 (3.0–6.8) 1/133; 0.8 (0.0–2.2) 0/74; 0.0 (0.0–0.0)

TCN2 12/509; 2.4 (1.0–3.7) 1/133; 0.8 (0.0–2.2) 0/74; 0.0 (0.0–0.0)

MMADHC 10/509; 2.0 (7.6–3.2) 4/133; 3.0 (0.0–0.6) 0/74; 0.0 (0.0–0.0)

MTRR 4/509; 0.8 (0.0–1.6) 3/133; 2.3 (0.0–4.8) 1/74; 1.4 (0.0–4.0)

MTR 3/509; 0.6 (0.0–1.3) 0/133; 0.0 (0.0–0.0) 0/74; 0.0 (0.0–0.0)

ABCD4 2/509; 0.4 (0.0–0.1) 2/133; 1.5 (0.0–3.6) 0/74; 0.0 (0.0–0.0)

LMRD1 2/509; 0.4 (0.0–0.1) 0/133; 0.0 (0.0–0.0) 0/74; 0.0 (0.0–0.0)

CD320 1/509; 0.2 (0.0–0.0) 0/133; 0.0 (0.0–0.0) 0/74; 0.0 (0.0–0.0)

ZF143 1/509; 0.2 (0.0–0.0) 0/133; 0.0 (0.0–0.0) 0/74; 0.0 (0.0–0.0)

AMN 0/509; 0.0 (0.0–0.0) 6/133; 4.5 (0.9–8.1) 0/74; 0.0 (0.0–0.0)

CBLIF (alias, GIF) 0/509; 0.0 (0.0–0.0) 3/133; 2.3 (0.0–4.8) 0/74; 0.0 (0.0–0.0)

CUBN 0/509; 0.0 (0.0–0.0) 2/133; 1.5 (0.0–3.6) 0/74; 0.0 (0.0–0.0)

Gene clustersa – n/N; % (95% CI)

Mitochondriond 251/508; 49.4 (45.0–53.8) 37/133; 27.8 (20.1–35.5) 5/74; 6.8 (0.9–12.6)

Cytoplasmic transportc 232/508; 45.7 (41.3–50.0) 77/133; 57.9 (49.4–66.4) 68/74; 91.9 (85.5–98.3)

B12 bioavailability
b 17/508; 3.4 (1.8–4.9) 14/133; 10.5 (5.2–15.8) 0/74; 0.0 (0.0–0.0)

Remethylatione 8/508; 1.6 (0.5–2.7) 5/133; 3.8 (0.5–7.1) 1/74; 1.4 (0.0–4.0)

Clinical findings

Neurological manifestations – n/N; % (95% CI)

Developmental delay 40.5; (36.2–44.7) 52/133; 39.1 (30.7–47.5) 24/74; 32.4 (21.5–43.4)

Hypotony 107/509; 21.0 (17.5–24.6) 16/133; 12.0 (6.4–1.8) 0/74; 0.0 (0.0–0.0)

Seizures 48/509; 9.4 (6.9–12.0) 20/133; 15.0 (8.9–21.2) 11/74; 14.9 (6.6–23.2)

Microcephaly 21/509; 4.1 (2.4–5.9) 1/133; 0.8 (0.0–2.2) 0/74; 0.0 (0.0–0.0)

Walking difficulty 16/509; 3.1 (1.6–4.7) 20/133; 15.0 (8.9–21.2) 28/74; 37.8 (26.5–49.2)

Peripheral neuropathy 16/509; 3.1 (1.6–4.7) 21/133; 15.8 (9.6–22.1) 22/74; 29.7 (19.1–40.4)

Extra pyramidal syndrome 14/509; 2.8 (1.3–4.2) 6/133; 4.5 (0.9–8.1) 8/74; 10.8 (3.6–18.1)

Pyramidal syndrome 10/509; 2.0 (0.9–3.2) 6/133; 4.5 (0.9–8.1) 19/74; 25.7 (15.5–35.9)

Digestive manifestations– n/N; % (95% CI)

Feeding intolerance 156/509; 30.6 (26.6–34.7) 33/133; 24.8 (17.4–32.2) 3/74; 4.1 (0.0–8.7)

Multiple organ failure – n/N; % (95% CI)

Death 87/509; 17.1 (13.8–20.4) 10/133; 7.5 (5.2–9.8) 4/74; 5.4 (1.3–10.7)

Acute metabolic decompensation 82/509; 16.1 (12.9–19.3) 12/133; 9.0 (4.1–14.0) 4/74; 5.4 (1.3–10.7)

Ophthalmologic manifestations – n/N; % (95% CI)

Nystagmus 55/509; 10.8 (8.1–13.5) 6/133; 4.5 (0.9–8.1) 2/74; 2.7 (0.0–6.5)

Maculopathy or retinopathy 52/509; 10.2 (7.6–12.9) 5/133; 3.8 (0.5–7.0) 5/74; 6.8 (0.9–12.6)

Strabismus 23/509; 4.5 (2.7–6.3) 1/133; 0.8 (0.0–2.2) 0/74; 0.0 (0.0–0.0)

Renal manifestations – n/N; % (95% CI)

Chronic kidney disease 37/509; 7.3 (5.0–9.5) 12/133; 9.0 (4.1–14.0) 7/74; 9.5 (2.6–16.3)

Acute kidney failure or HUS 21/509; 4.1 (2.4–5.9) 14/133; 10.5 (5.3–15.8) 2/74; 2.7 (0.0–6.5)

Cardiovascular manifestations – n/N; % (95% CI)

Cardiomyopathy 17/509; 3.3 (1.8–4.9) 7/133; 5.3 (1.4–9.1) 2/74; 2.7 (0.0–6.5)

(Continued on next page)
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Table 2. Continued

Patients under 1 year Patients between 1 and 14 years Patients over 15 years

Pulmonary hypertension 4/509; 0.8 (0.0–1.6) 11/133; 8.3 (3.5–13.0) 1/74; 1.4 (0.0–4.0)

Thrombosis 3/509; 0.6 (0.0–1.3) 5/133; 3.8 (0.5–7.0) 5/74; 6.8 (0.9–12.6)

High blood pressure 2/509; 0.4 (0.0–0.9) 9/133; 6.8 (2.4–11.1) 9/74; 12.2 (4.5–19.8)

Psychiatric manifestations – n/N; % (95% CI)

Behavior abnormality 11/509; 2.2 (0.9–3.4) 8/133; 6.0 (1.9–10.1) 4/74; 5.4 (1.3–10.7)

Psychiatric disorders 8/509; 1.6 (0.5–2.7) 18/133; 13.5 (7.6–19.4) 25/74; 33.8 (22.8–44.8)

Miscellaneous manifestations – n/N; % (95% CI)

Intrauterine growth restriction 8/509; 1.6 (0.5–2.7) 3/133; 2.7 (0.0–4.8) 1/74; 1.4 (0.0–4.0)

Gout 5/509; 1.0 (0.1–1.8) 0/133; 0.0 (0.0–0.0) 0/74; 0.0 (0.0–0.0)

Dermatologic abnormality 1/509; 0.2 (0.0–0.6) 4/133; 3.0 (0.0–6.0) 1/74; 1.4 (0.0–4.0)

Pregnancy 0/509; 0.0 (0.0–0.0) 2/133; 1.5 (0.0–3.6) 2/74; 2.7 (0.0–6.5)

Biological findings

Hematology

Anemia – n/N; % (95% CI) 42/509; 8.3 (5.9–10.6) 47/133; 35.3 (27.1–43.6) 11/74; 14.9 (6.6–23.2)

Cytopenia – n/N; % (95% CI) 23/509; 4.5 (2.7–6.3) 18/133; 13.5 (7.6–19.4) 3/74; 4.1 (0.0–8.7)

Hb (g/dL) – n; median (IQR) 25; 7.3 (6.5–10.0) 36; 7.9 (7.0–10.3) 9; 8.9 (7.8–11.6)

WBC (G/L) – n; median (IQR) 16; 4.995 (3.693–7.025) 13; 7.000 (4.900–10.200) 0; —

Platelet (G/L) – n; median (IQR) 15; 83 (21.5–263.5) 20; 199 (122–292.5) 2; 128.5 (82–175)

Biochemistry, blood – n, median (IQR)

Homocysteine (mmol/L) 137; 92 (50–157) 64; 90 (59–123) 60; 99 (67–117)

Methionine (mmol/L) 77; 117–14 22; 1,912–25 15; 98–16

C3-Carnitine (mmol/L) 69; 10.4 (6.5–14.1) 17; 7.9 (7.1–11.2) 7; 11.2 (7.8–15.5)

MMA (mmol/L) 66; 20 (4–93) 9; 296–14 9; 22 (8–70)

Ammonia (mmol/L) 31; 198 (141–402) 3; 206 (113–232) 6; 3215–54

B12 (pmol/L) 21; 362 (181–573) 22; 396 (112–611) 7; 428 (380–738)

Biochemistry, urine – n, median (IQR)

MMA (mM/mol creatine) 131; 1,940 (550–4,663) 44; 950 (173–2,801) 22; 486 (244–1,009)

Imaging and electrophysiological findings – n/N, % (95% CI)

Head MRI 61/509; 12.0 (9.2–14.8) 41/133; 30.8 (22.9–38.8) 35/74; 47.3 (35.7–58.9)

Abnormal signal reported 39/61; 64.0 (51.9–76.0) 17/41; 41.5 (26.4–56.5) 9/35; 25.7 (11.2–40.2)

Without abnormality 20/61; 32.8 (21.0–44.6) 5/41; 12.2 (2.2–22.2) 7/35; 20.0 (6.7–33.2)

Cerebral atrophy reported 8/61; 13.1 (4.6–21.6) 22/41; 53.7 (38.4–68.9) 21/35; 60.0 (43.8–76.2)

Abnormal EEG finding reportedf 61/509; 12.0 (9.2–14.8) 6/133; 4.5 (0.9–8.1) 2/74; 2.7 (0.0–6.5)

Abnormal EMG finding reported 39/61; 64.0 (51.9–76.0) 7/133; 5.3 (1.4–9.1) 14/74; 18.9 (9.8–28.1)

Therapy – n/N, % (95% CI)

Vitamin B12 supplementation 156/509; 30.6 (26.6–34.7) 66/133; 49.6 (45.3–54.0) 56/74; 75.7 (65.7–85.7)

Kidney transplantation 13/509; 2.6 (1.2–3.9) 0/133; 0.0 (0.0–0.0) 1/74; 1.4 (0.0–4.0)

Liver transplantation 15/509; 3.0 (1.5–4.4) 0/133; 0.0 (0.0–0.0) 0/74; 0.0 (0.0–0.0)

MMACHC, metabolism of cobalamin associated C; MMA, methylmalonic acid; HUS, hemolytic-uremic syndrome; Hb, hemoglobin; WBC, white blood

cell; MRI, magnetic resonance imaging; EEG, electroencephalography; EMG, electromyography; IQR, interquartile range; Ref, reference values.
aOne patient had two mutations for the ZNF143 gene and was not classified in the four gene clusters.
bGene cluster ‘‘B12 bioavailability’’ regroups all patients with CBLIF (alias, GIF), CUBN, AMN, TCN2, LMBRD1, CD320, or ABCD4 variants.
cGene cluster ‘‘cytoplasmic transport’’ regroups all patients with MMACHC and MMADHC variants responsible for combined mitochondrion and re-

methylation abnormalities.
dGene cluster ‘‘mitochondrion’’ regroups all patients with MMAA, MMAB, or MMUT variants and MMADHC variants responsible for mitochondrion

abnormalities.
eGene cluster ‘‘remethylation’’ regroups all patients with MTR, MTRR, and MMADHC variants responsible for remethylation abnormalities.
fAbnormal EEG pattern other than seizures.
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Table 3. Clinical, biological, radiological, and electrophysiological findings of the 824 patients included in the individual patient-level

meta-analysis according to functional gene clusters

Cytoplasmic transporta Mitochondrionb B12 bioavailability
d Remethylationc

Demographic data

Age (years) – n, median (IQR) 377; 0.3 (0.0–10.3) 293; 0.1 (0.0–0.7) 31; 0.3 (0.2–2.1) 14; 0.3 (0.1–5.0)

Age, 0 to 1 – n/N, % (95% CI) 232/377; 61.5

(56.6–66.5)

251/293; 85.7

(81.6–89.7)

17/31; 54.8 (36.3–73.4) 8/14; 57.1 (56.5–79.5)

Age, 1 to 14 years included – n/N,

% (95% CI)

77/377; 20.4

(16.3–24.5)

37/293; 12.6 (8.8–16.5) 14/31; 45.2 (26.6–63.7) 5/14; 35.7 (7.0–64.4)

Age, 15 years and more – n/N,

% (95% CI)

68/377; 18.0

(14.1–21.9)

5/293; 1.7 (0.2–3.2) 0/31; 0.0 (0.0–0.0) 1/14; 7.1 (0.0–22.6)

Male gender – n/N, % (95% CI) 196/361; 54.3

(49.1–59.5)

116/214; 54.2

(47.5–60.9)

11/31; 35.5 (17.6–53.3) 5/14; 35.7 (7.0–64.4)

Clinical findings

Neurological manifestations – n/N, % (95% CI)

Developmental delay 147/416; 35.3

(30.7–39.9)

142/353; 40.2

(35.1–45.4)

15/32; 46.9 (28.6–65.2) 10/22; 45.5 (22.9–68.1)

Hypotony 64/416; 15.4 (11.9–18.9) 75/353; 21.2

(17.0–25.5)

2/32; 6.3 (0.0–15.1) 4/22; 18.2 (0.7–35.7)

Seizures 59/416; 14.2 (10.8–17.5) 22/3 53; 6.2 (3.7–8.8) 1/32; 3.1 (0.0–9.5) 4/22; 18.2 (0.7–35.7)

Peripheral neuropathy 49/416; 11.8 (8.7–14.9) 3/353; 0.9 (0.0–1.8) 4/32; 12.5 (0.4–24.6) 8/22; 36.4 (14.5–58.2)

Walking difficulty 46/416; 11.1 (8.0–14.1) 8/353; 2.3 (0.7–3.8) 9/32; 28.1 (11.7–44.6) 3/22; 13.6 (0.0–29.2)

Pyramidal syndrome 25/416; 6.0 (3.7–8.3) 9/353; 2.6 (0.9–4.2) 0/32; 0.0 (0.0–0.0) 2/22; 9.1 (0.0–22.1)

Microcephaly 18/416; 4.3 (2.4–6.3) 2/353; 0.6 (0.0–1.4) 1/32; 3.1 (0.0–9.5) 2/22; 9.1 (0.0–22.1)

Extra pyramidal syndrome 12/416; 2.9 (1.3–4.5) 15/353; 4.3 (2.1–6.4) 1/32; 3.1 (0.0–9.5) 2/22; 9.1 (0.0–22.1)

Digestive manifestations– n/N, % (95% CI)

Feeding intolerance 85/416; 20.4 (16.5–24.3) 97/353; 27.5 (22.8–32.2) 19/32; 59.4 (41.4–77.4) 3/22; 13.6 (0.0–29.2)

Ophthalmologic manifestations – n/N, % (95% CI)

Nystagmus 70/416; 16.8 (13.2–20.4) 0/353; 0.0 (0.0–0.0) 0/32; 0.0 (0.0–0.0) 3/22; 13.6 (0.0–29.2)

Maculopathy or retinopathy 63/416; 15.1 (11.7–18.6) 4/353; 1.1 (0.0–2.2) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

Strabismus 26/416; 6.3 (3.9–8.6) 0/353; 0.0 (0.0–0.0) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

Psychiatric manifestations – n/N, % (95% CI)

Psychiatric disorders 49/416; 11.8 (8.7–14.9) 2/353; 0.6 (0.0–1.4) 0/32; 0.0 (0.0–0.0) 1/22; 4.6 (0.0–14.0)

Behavior abnormality 22/416; 5.3 (3.1–7.5) 1/353; 0.3 (0.0–0.8) 0/32; 0.0 (0.0–0.0) 1/22; 4.6 (0.0–14.0)

Multiple organ failure – n/N, % (95% CI)

Death 31/416; 7.5 (4.9–10.0) 74/353; 21.0 (16.7–25.2) 0/32; 0.0 (0.0–0.0) 2/22; 9.1 (0.0–22.1)

Acute metabolic decompensation 13/416; 3.2 (1.5–4.8) 93/353; 26.3 (21.7–31.0) 2/32; 6.3 (0.0–15.1) 1/22; 4.6 (0.0–14.0)

Cardiac or hemodynamic manifestations – n/N, % (95% CI)

Cardiomyopathy 21/416; 5.1 (2.9–7.2) 4/353; 1.1 (0.0–2.2) 1/32; 3.1 (0.0–9.5) 0/22; 0.0 (0.0–0.0)

High blood pressure 19/416; 4.6 (2.6–6.6) 2/353; 0.6 (0.0–1.4) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

Pulmonary hypertension 13/416; 3.2 (1.5–4.8) 3/353; 0.9 (0.0–1.8) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

Thrombosis 10/416; 2.4 (0.9–3.9) 1/353; 0.3 (0.0–0.8) 1/32; 3.1 (0.0–9.5) 1/22; 4.6 (0.0–14.0)

Renal manifestations – n/N, % (95% CI)

Acute kidney failure or HUS 24/416; 5.8 (3.5–8.0) 12/353; 3.4 (1.5–5.3) 1/32; 3.1 (0.0–9.5) 1/22; 4.6 (0.0–14.0)

Chronic kidney disease 16/416; 3.9 (0.0–8.8) 36/353; 10.2 (7.0–13.4) 6/32; 18.8 (4.5–33.0) 0/22; 0.0 (0.0–0.0)

Miscellaneous manifestations – n/N, % (95% CI)

Intrauterine growth restriction 9/416; 2.2 (0.8–3.6) 2/353; 0.6 (0.0–1.4) 3/32; 9.4 (0.0–20.1) 1/22; 4.6 (0.0–14.0)

Pregnancy 3/416; 0.7 (0.0–1.5) 1/353; 0.3 (0.0–0.8) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

Dermatologic abnormality 2/416; 0.5 (0.0–1.2) 1/353; 0.3 (0.0–0.8) 4/32; 12.5 (0.4–24.6) 0/22; 0.0 (0.0–0.0)

Gout 0/416; 0.0 (0.0–0.0) 5/353; 1.4 (0.2–2.7) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

(Continued on next page)
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Table 3. Continued

Cytoplasmic transporta Mitochondrionb B12 bioavailability
d Remethylationc

Biological findings

Complete blood count

Anemia – n/N; % (95% CI) 52/416; 12.5 (9.3–15.7) 16/353; 4.5 (2.4–6.7) 25/32; 78.1 (63.0–93.3) 15/22; 68.2 (47.0–89.3)

Cytopenia – n/N; % (95% CI) 23/416; 5.5 (3.3–7.7) 8/353; 2.3 (0.7–3.8) 11/32; 34.4 (17.0–51.8) 3/22; 13.6 (0.0–29.2)

Hemoglobin (g/dL) – n;

median (IQR)

37; 8.4 (7.1–10.4) 7; 9.2 (7.6–10.2) 18; 7.4 (5.4–11.2) 18; 7.5 (6.3–8.5)

WBC (G/L) – n; median (IQR) 8; 3.945 (2.520–6.295) 6; 8.870 (5.250–16.800) 15; 5.980 (4.600–7.300) 1; 7.900 (�)

Platelets (G/L) – n; median (IQR) 15; 144 (87–231) 6; 313 (276–419) 14; 103 (55–198) 2; 165 (�)

Blood metabolic findings – n, median (IQR)

Homocysteine (mmol/L) 237; 99 (65–146) 11; 6.0 (5.1–9.3) 22; 4,726–60 18; 93 (71–136)

Methionine (mmol/L) 105; 127–21 5; 2,514–33 9; 1,915–21 17; 125–21

MMA (mmol/L) 72; 103–25 20; 270 (136–1040) 2; 148–17 0; –

C3-Carnitine (mmol/L) 58; 7.8 (5.8–11.2) 43; 13.0 (9.8–19.1) 3; 5.7 (4.2–8.8) 0; –

Vitamin B12 (pmol/L) 24; 501 (399–767) 6; 348 (216–750) 17; 149 (82–375) 5; 151 (105–240)

Ammonia (mmol/L) 7; 54 (26–108) 35; 199 (141–367) 0; – 0; –

Urine metabolic findings– n, median (IQR)

MMA (mM/mol creatine) 109; 710 (216–2045) 95; 2,903 (603–5699) 9; 154 (70–804) 0; –

MRI, EEG, and EMG findings – n/N, % (95% CI)

Head MRI 100/416; 24.0 (19.9–28.2) 62/353; 17.6 (13.6–21.6) 4/32; 12.5 (0.4–24.6) 8/22; 26.5 (11.5–41.4)

Abnormal signal reported 47/100; 47.0 (37.2–56.8) 36/62; 58.0 (46.7–71.3) 1/4; 25.0 (0.0–67.4) 4/8; 50.0 (15.4–84.6)

Cerebral atrophy reported 42/100; 42.0 (32.3–51.7) 4/62; 6.4 (0.3–12.8) 2/4; 50.0 (1.0–99.0) 4/8; 50.0 (15.4–84.6)

Without abnormality 17/100; 17.0 (9.6–24.4) 25/62; 40.3 (28.6–53.3) 1/4; 25.0 (0.0–67.4) 2/8; 25.0 (0.0–55.0)

Abnormal EMG finding reported 20/416; 4.8 (2.7–6.9) 0/353; 0.0 (0.0–0.0) 1/32; 3.1 (0.0–20.8) 2/22; 9.1 (0.0–22.1)

Abnormal EEG finding reportede 14/416; 3.4 (1.6–5.1) 1/353; 0.3 (0.0–0.8) 0/32; 0.0 (0.0–0.0) 2/22; 9.1 (0.0–22.1)

Therapy – n/N, % (95% CI)

Vitamin B12 supplementation 191/416; 45.9

(41.1–50.7)

73/353; 20.4 (15.6–25.2) 30/32; 93.8 (84.9–100.0) 21/22; 95.5 (86.0–100.0)

Liver transplantation 0/416; 0.0 (0.0–0.0) 16/353; 4.5 (2.4–6.7) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

Kidney transplantation 0/416; 0.0 (0.0–0.0) 14/353; 4.0 (1.9–6.0) 0/32; 0.0 (0.0–0.0) 0/22; 0.0 (0.0–0.0)

MMACHC, methylmalonic aciduria and homocystinuria type C protein; MMA, methylmalonic acid; MRI, magnetic resonance imaging; EEG, electro-

encephalography; EMG, electromyography.

One patient had two mutations for the ZNF143 gene, which is not classified in these gene clusters.
aGene cluster ‘‘cytoplasmic transport’’ regroups all patients with MMACHC and MMADHC variants responsible for combined mitochondrion and re-

methylation abnormalities.
bGene cluster ‘‘mitochondrion’’ regroups all patients with MMAA, MMAB, or MMUT variants and MMADHC variants responsible for mitochondrion

abnormalities.
cGene cluster ‘‘remethylation’’ regroups all patients with MTR, MTRR, and MMADHC variants responsible for remethylation abnormalities.
dGene cluster ‘‘B12 bioavailability’’ regroups all patients with CBLIF (alias, GIF), CUBN, AMN, TCN2, LMBRD1, CD320, or ABCD4 variants.
eAbnormal EEG pattern other than seizures.
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95% CI: 5.21–28.46); behavior abnormality (OR, 11.31; 95% CI:

2.64–48.41); high blood pressure (OR, 9.69; 95% CI: 2.24–

41.88); abnormal EMG finding (OR, 6.80; 95% CI: 2.01–

23.07); peripheral neuropathy (OR, 3.49; 95% CI: 1.92–6.33);

seizures (OR, 2.33; 95% CI: 1.44–3.75); and homocysteine

(for each 10 mmol/L increment) (OR, 1.14; 95% CI: 1.07–1.22)

(Figure 3A; Table S6, related to Tables 1–4). When compared

with the B12 bioavailability gene cluster as a reference compar-

ator, the following items were significantly associated with an

increased risk of belonging to the cytoplasmic transport func-

tional gene cluster, in the descending order of ORs: vitamin

B12 (for each 100 pmol/L increment) (OR, 2.58; 95% CI: 1.44–
4.63) and homocysteine (for each 10 mmol/L increment) (OR:

1.30; 95% CI: 1.14–1.49) (Table S6, related to Tables 1–4).

Mitochondrion gene cluster

We classified 353 patients in the mitochondrion gene cluster.

The median age was 0.1 years (IQR, 0–0.7). A total of 85.7%

of the patients were under 1 year old (251/293), 12.6% were

between 1 and 14 years old (37/293), and 1.7% were over 15

years old (5/293) (Table 3). Development delay (40.2%, 142/

353) and hypotonia (21.2%, 75/353) were the most frequently

reported manifestations. Acute metabolic decompensation

occurred in 26.3% (93/353) of the patients and digestive man-

ifestations occurred in 27.5% (97/353). Death was reported in

21.0% (74/353) of cases. Few ophthalmological manifestations
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Table 4. Comparison of the characteristics and clinical, biological, and imaging findings between the 161 patients with CblC from the

E-HOD registry and the 416 patients within the ‘‘cytoplasmic transport’’ cluster from the individual patient data meta-analysis

E-HOD registry – CblC n = 161 Individual patient data meta-analysis,

‘‘cytoplasmic transport’’ cluster, n = 416

p value

Patients’ characteristics

Gender (male) – n/N, % 93/161, 57.7 196/361, 54.3 0.47

Pre-clinically diagnosed – n/N, % 47/161, 29.2 38/416a, 9.1 <0.0001

Age at first symptoms (years) – n,

median (IQR)

93, 0.1 (0.0–0.3) 377, 0.3 (0.0–10.3) NS

Mutations reported – n/N, % 117/191, 61.3 416/416, 100 <0.0001

Clinical findings – n/N, %

Thromboembolic events

Stroke 3/113, 2.7 8/416, 1.9 0.60

Thromboembolic manifestations 5/113, 4.4 10/416, 2.4 0.26

Renal manifestations

Hemolytic uremic syndrome 17/113, 15.0 24/416, 5.8 0.001

Chronic kidney disease 2/113, 1.7 16/416, 3.9 0.25

Cardiac disease

Cardiomyopathy/cardiac malformation 5/113, 8.8 21/416, 5.1 0.14

Cardiac arrest/heart failure/death 2/113, 1.7 31/416, 7.5 0.02

Arterial hypertension 3/113, 2.7 19/416, 4.6 0.37

Digestive and liver manifestations

Feeding problems 68/113, 60 85/416, 20.4 <0.0001

Hepatomegaly 9/113, 8.0 6/416, 1.4 0.0002

Acute manifestation

Metabolic crises 20/113, 18 13/416, 3.2 <0.0001

Ophthalmological manifestations

Eye disease (optic nerve disease) 20/113, 18 100/416, 24.0 0.18

Nystagmus NR in E-HOD registry 70/416, 16.8 no data for comparison

Maculopathy or retinopathy NR in E-HOD registry 63/416, 15.1 no data for comparison

Strabismus NR in E-HOD registry 26/416, 6.3 no data for comparison

Psychiatric manifestations

Psychiatric disorders 6/113, 5 49/416, 11.8 0.04

Behavior abnormality NR 22/416, 5.3 no data for comparison

Neurological manifestations

Muscular hypotonia 38/113, 34 64/416, 15.4 <0.0001

Developmental delay 26/113, 23 147/416, 35.3 0.01

Seizures 19/113, 17 59/416, 14.2 0.46

Brain malformation 3/113, 3 not reported in the study no data for comparison

Microcephaly 9/113, 8 18/416, 4.3 0.11

Hydrocephalus 5/113, 4 not reported in the study no data for comparison

Myelopathy 4/113, 3 49/416; 11.8 0.006

Peripheral neuropathy NR in E-HOD registry 49/416; 11.8 no data for comparison

Walking difficulty NR in E-HOD registry 46/416; 11.1 no data for comparison

Pyramidal syndrome NR in E-HOD registry 25/416; 6.0 no data for comparison

Extrapyramidal syndrome NR in E-HOD registry 12/416; 2.9 no data for comparison

Laboratory findings

Homocysteine before treatment

mmol/L – n, median (IQR)

139, 123 (65–197) 237, 99 (65–146) NS

Anemia – n/N, % 32/113, 28 52/416, 12.5 0.0001

(Continued on next page)
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Table 4. Continued

Imaging findings

Abnormal MRI signal reported NR in E-HOD registry 47/100; 47.0 no data for comparison

Cerebral atrophy reported on MRI NR in E-HOD registry 42/100; 42.0 no data for comparison

Abnormal EMG findings reported NR in E-HOD registry 20/416; 4.8 o data for comparison

NR, not reported; NS, not significant.
aThe 38 children diagnosed by Newborn Screening are described in Table S9. List of publications including patients with an inborn error of vitamin B12

metabolism diagnosed by newborn screening. Related to Tables 1–4.
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or cardiological manifestations were noticed. Cerebral atrophy

on brain MRI was only noticed in 6.4% of the case (4/62),

whereas an abnormal signal was reported in 58.0% (36/62).

Liver transplantation was performed in 4.5% of cases (16/

353). Among the 190 MMUT variants described, c.572C > A

(27 occurrences) and c.655A > T (21 allele occurrences) were

the most frequent (Table S3, related to Tables 1–4). The

pathogenic c.433C > T variant was the most frequent among

the 31 MMAA variants, with 27 allele occurrences (Table S4,

related to Tables 1–4). Most of the variants reported in

MMAB were pathogenic and associated with early onset

(Table S5, related to Tables 1–4). In logistic regression analysis

with Bonferroni correction, the following items were signifi-

cantly associated with an increased risk of belonging to the

mitochondrion functional gene cluster, when compared with

the remaining functional gene clusters in the descending order

of ORs: acute metabolic decompensation (OR, 0.15; 95% CI:

5.84–17.63); 0 to 1 year age category (OR, 3.83; 95% CI:

2.62–5.62); death (OR, 3.51; 95% CI:2.27–5.44); C3-carnitine

(mmol/L) (OR, 1.24; 95% CI: 1.12–1.38); MMA, urine (for each

per 500 mmol/mol creatinine increment) (OR, 1.17; 95% CI:

1.09–1.25); and MMA, blood (for each per 10 mmol/L increment)

(OR, 1.14; 95% CI: 1.07–1.23) (Figure 3B; Table S6, related to

Tables 1–4).

B12 bioavailability gene cluster

We classified 32 patients in the B12 bioavailability gene cluster.

The median age was 0.3 years (IQR, 0.2–2.1). A total of 54.8%

(17/31) of the patients were less than 1 year old and 45.2%

(14/31) were in the 1–14-year-old subgroup (Table 3). Anemia

was the most frequently reported manifestation (78.1%, 25/

32), followed by feeding intolerance (59.4%, 19/32) and devel-

opment delay (46.9%, 15/32). No seizures were noticed, and no

other abnormal EEG patterns were reported. No ophthalmolog-

ical or psychiatric manifestations were observed. Only one pa-

tient with cardiological manifestation was reported. Chronic

kidney disease was observed in 18.8% (6/32), dermatologic

abnormalities in 12.5% (4/32), and intrauterine growth restric-

tion in 9.4% (3/32). Cytopenia was noticed in 34.4% (11/32)

despite B12 supplementation in as much as 93.8% (30/32)

of patients. In logistic regression analysis with Bonferroni

correction, the following items were significantly associated

with an increased risk of belonging to the B12 bioavailability

functional gene cluster when compared with the remaining

functional gene clusters in the descending order of ORs: cyto-

penia (OR, 11.66; 95% CI: 5.21–26.12); walking difficulty (OR,

5.04; 95% CI: 2.23–11.40); feeding intolerance (OR, 4.79;

95% CI: 2.32–9.88); 1 to 14 years age category (OR, 3.91;

95% CI: 1.88–8.15); and vitamin B12 (per 100 pmol/L) (OR,
0.57; 95% CI: 0.39–0.82) (Table S6, related to Tables 1–4;

Figure S2A, related to Tables 1 and 3).

Remethylation gene cluster

We classified 22 patients in the remethylation cluster. The me-

dian agewas 0.3 years (IQR, 0.1–5.0), with 57.1% (8/14) reported

as younger than 1 year, and only one patient older than 15 years

(7.1%) (Table 3). As expected, anemia was a predominant mani-

festation observed in 68.2% (15/22). Neurological manifesta-

tions were also frequently observed, with 45.5% (10/22) of the

patients exhibiting developmental delay, 36.4% (8/22) peripheral

neuropathy, and 18.2% (4/12) seizures and hypotonia. A total of

9.1% (2/22) of the patients had abnormal EEG finding reported

and 9.1% (2/22) had abnormal EMG finding reported. A total of

95.5% (21/22) of the patients were supplemented with vitamin

B12. In logistic regression analysis with Bonferroni correction,

only peripheral neuropathy (OR, 7.60; 95% CI: 3.06–18.89) was

significantly associated with an increased risk of belonging to

the remethylation functional gene cluster when compared with

the remaining functional gene clusters (Table S6, related to

Tables 1–4; Figure S2B, related to Tables 1 and 3).

Metabolic characteristics according to the presence of
anemia, neurological manifestations, or both or neither
of these two manifestations
Hematological manifestations associated with neurological

manifestations were mainly observed in the B12 bioavailability

gene cluster with a combined increase of homocysteine and

methylmalonic acid and decreased methionine. The methionine

concentration was significantly higher in cases with anemia and

without neurological manifestations than in those with anemia

and neurological manifestations or neurological manifestations

only. The concentrations of urinary methylmalonic acid were

significantly lower in cases with anemia associated with neuro-

logical manifestations than those with neurological manifesta-

tions without anemia (Table S7, related to Tables 1–4).

Assessment of predictors associated with death
In logistic regression analysis with Bonferroni correction, the

following items were significantly associated with an increased

risk of death, in the descending order of ORs: pulmonary hyper-

tension (OR, 7.08; 95% CI: 2.60–19.29); mitochondrion func-

tional gene cluster (OR, 3.51; 95% CI: 2.27–5.44); pathogenic

variants on the MMUT gene (OR, 3.47; 95% CI: 2.29–5.25);

acute metabolic decompensation (OR, 3.29; 95% CI: 2.04–

5.31); and 0 to 1 year age category (OR, 2.84; 95% CI: 1.58–

5.12). Conversely, the following predictors were significantly

associated with a decreased risk of death, in the descending or-

der of ORs: pathogenic variants on the MMACHC (OR, 0.36;
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95% CI: 0.23–0.56); cytoplasmic transport functional gene clus-

ter (OR, 0.35; 95% CI: 0.23–0.55); head MRI performed (OR,

0.34; 95% CI: 0.17–0.67); and nystagmus (OR, 0.08; 95% CI:

0.01–0.60) (Table S8, related to Tables 1–4; Figure S3, related

to Tables 1 and 3).

DISCUSSION

Our study investigated the clinical and metabolic characteristics

of a group of rare diseases of metabolism, in this case of vitamin

B12, by a systematic extraction of more than 800 individual re-

ports of genetically proven cases, using the names of diseases

and related genes and protein/enzymes. We extracted all the

manifestations described in the reports and built a database

that allowed us to characterize the main clinical, imaging, and

biological metabolic manifestations of these diseases according

to patient age and functional gene cluster groups. So far, the

characteristics of this group of diseases have been reported in

narrative reviews or registry studies focused on pediatric recruit-

ment and only part of inborn errors of intracellular metabolism of

vitamin B12. We classified the patients into age categories

defined in function of clinical practice and medical care.171 Dur-

ing the first year of life, clinical manifestations of inherited disor-

ders may be severe and require pediatric expertise.172 The >15

years period of life includes late adolescence (15–19 years)

and young adulthood (20–24 years). In this period, pediatric

expertise is less necessary, and most cases are in adult care

and examined by family physicians.171,173 Our study highlighted

the strong association of manifestations with age and functional

gene clusters.We showed that clinical manifestations diagnosed

in late adolescence/adulthood differ from those usually

observed in pediatric practice. We pointed out the need to revise

the rationale for investigating the cause of these manifestations,

for which the involvement of inborn errors of intracellular meta-

bolism of vitamin B12 is probably often overlooked in medical

practice.

Our study shows that patients older than 15 years had a

distinct clinical presentation and exhibited genetic variants

with less pathogenicity than newborns and children. In partic-

ular, we observed a strong association of specific neurological

and cardiovascular manifestations with age, as shown in Fig-

ure 2. Some manifestations also predominated explicitly in one

of the four functional gene clusters. They could reflect specific

pathomechanisms related to impaired methionine synthesis or

methylmalonyl-CoA catabolism. For example, peripheral neu-

ropathies and psychiatric manifestations were predominantly re-

ported in the remethylation cluster, episodes of acute metabolic

decompensation and renal or hemolytic-uremic syndrome man-

ifestations in the mitochondrion cluster, and cardiovascular and

ophthalmological manifestations in the cytoplasmic transport

cluster. Anemia was the predominant outcome reported in the
Figure 2. Influence of age in the manifestations reported by the Cochra

to 14 years,’’ and ‘‘over 15 years’’

(A) Neuropsychiatric manifestations include hypotony, abnormal EEG findings, se

walking difficulty, and cerebral atrophy reported on head MRI.

(B) Ophthalmological manifestations include nystagmus and strabismus.

(C) Cardiovascular and renal manifestations include thrombosis, blood pressure
clusters related to B12 availability and remethylation pathways

(Table 2).

Hematological findings were primarily reported in children and

were not as frequent as reported in reviews dedicated to mani-

festations of inborn errors of vitamin B12.
164,174,175 In the B12

bioavailability cluster, we observed that cases with anemia and

no neurological manifestation had higher methionine and

lower methylmalonic acid and no difference in homocysteine

compared with those with neurological manifestation and no

anemia (Table S7, related to Tables 1–4). These metabolic differ-

ences illustrate the need to study themolecular mechanisms that

could specifically trigger anemia versus neurological manifesta-

tions, including the cobalamin partitioning toward methionine

synthase and methylmalonyl-CoA mutase, the interactome of

methionine synthase with methionine synthase reductase,

MMCHC, and MMADHC, and the cellular status in methio-

nine.176,177 The cellular status in folate could play a role in the

increased methylmalonic acid concentration observed in cases

of the B12 bioavailability cluster with neurological manifestations

since a high folate status increases methylmalonic acid in

subjects with low blood concentrations of B12.
178

Neurological manifestations, such as walking difficulties, pe-

ripheral neuropathy, and pyramidal syndrome, were observed

in almost one-third of patients over 15 years and were strongly

dependent on age. MRI brain imaging clearly showed an age-

related increase of cerebral atrophy, with over 60% of cases

reported in adulthood, compared with only 13% in newborns

(Table 2; Figure 2). These data are consistent with cohort studies

of elderly subjects, which showed a link between vitamin B12 sta-

tus and brain atrophy during aging and a preventive effect of

vitamin B12 therapy.179,180 These manifestations are linked to

the impaired endogenous synthesis of methionine rather than

to the catabolism of methylmalonyl-CoA. Indeed, they were

mainly observed in patients in the remethylation and cytoplasmic

transport functional gene clusters, but not in those in the mito-

chondrial cluster, as shown in Table S6 (related to Tables 1–4).

These results are consistent with recent experimental studies

on cellular models, patients’ fibroblasts, and animal models. In

these studies, the cellular deficit in B12 altered the nucleo-cyto-

plasmic transport and splicing of mRNAs and increased reticu-

lum stress.181–183 The altered shuttling of RNAs results from

the decrease in SIRT1 (Sirtuin 1, also known as NAD-dependent

protein deacetylase sirtuin-1) expression and imbalanced phos-

phorylation and methylation of RNA binding proteins, including

ELAV1 (ELAV-like RNA binding protein 1, also known as human

antigen R).184 It produces an altered expression of genes needed

for neurodevelopment and neuroplasticity and inhibits neuronal

proliferation and differentiation.181,185,186 Deficiency also in-

creases neuronal apoptosis and homocysteinylation of proteins

involved in neurodegeneration, including the Tau protein.187 Un-

likeneurologicalmanifestations, ophthalmologicalmanifestations
n-Armitage test for trend in the three age categories, ‘‘0 to 1 year,’’ ‘‘1

izures, peripheral neuropathy, extrapyramidal syndrome, pyramidal syndrome,

, and chronic kidney disease.
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Figure 3. Predictors of inherited disorders of

vitamin B12 metabolism according to "Cyto-

plasmic transport" and "Mitochondrion"

functional gene clusters

(A) Forest plot illustrating the logistic regression

analysis results that assessed the predictors of the

‘‘cytoplasmic transport’’ gene cluster compared

with the remaining functional gene clusters. Only

binary variables are shown in the Forest plot. The

gene cluster ‘‘cytoplasmic transport’’ regroups all

patients with MMACHC variants and MMADHC

variants responsible for combined mitochondrion

and remethylation abnormalities. The black square

represents the OR and the horizontal line indicates

the 95% CI.

(B) Forest plot illustrating the results of the logistic

regression analysis that assessed the predictors of

the ‘‘mitochondrion’’ gene cluster in comparison

with the remaining functional gene clusters. Only

binary variables are shown in the Forest plot. The

gene cluster ‘‘mitochondrion’’ regroups all patients

withMMAA,MMAB, orMUT variants andMMADHC

variants responsible for mitochondrion abnormal-

ities. OR, odds ratio; EMG, electromyography; EEG,

electroencephalography. The black square repre-

sents the OR and the horizontal line indicates the

95% CI.
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are mainly observed in patients whose diagnosis is made in the

first year of life.188,189 Like the neurological manifestations, they

are mainly observed in combined deficits produced by altered

intracellular metabolism of B12 or bioavailability but not in the

mitochondrial cluster of methylmalonyl-CoA catabolism, sug-

gesting that the underlying pathomechanisms are presumably

the consequence of the impaired remethylation pathway.

Cardiovascular manifestations, such as thromboembolic disor-

ders, cardiomyopathy, and hypertension, accounted for the main

clinical characteristics of cases over 15 years. Theywere underes-

timated in previous reviews and registries, which evaluatedmostly
14 Cell Reports Medicine 3, 100670, July 19, 2022
cases reported in pediatrics (Table 4).174,175

The thromboembolic manifestations were

infrequent in the first year of life and were

strongly associated with age (Figure 2).

They may be related to the dramatic

increase of homocysteine. The negative re-

sults of interventional studies to lower

homocysteine in cases with mild hyperho-

mocysteinemia (<30 mmol/L) have confused

the debate regarding the management of

patients with intermediate to severe

hyperhomocysteinemia.190 In contrast, the

association between vitamin B12 and throm-

boembolic events was recently highlighted

in a study of patients with hyperhomoc-

ysteinemia >30 mmol/L hospitalized for

thromboembolic and other cardiovascular

manifestations among 1,006 patients con-

secutively recruited in a regional university

hospital center.191 Hyperhomocysteinemia
was related to vitamin B12 deficiency in 40% and mutations in

oneormoregenesofvitaminB12metabolism in11%ofstudiedpa-

tients.191 The increase in systolic blood pressure was also closely

associated with age (Figure 2). It was not explained by chronic

renal failure, as the latter was not associatedwith age. The link be-

tween systolic blood pressure and homocysteine level has been

well documented in interventional studies targeting MTHFR by

riboflavin supplementation.192,193 In contrast, increased systolic

blood pressure is not reported in the literature on inborn errors of

vitamin B12, probably because the published series of cases are

focused on newborns and children.183 The age-related increase
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of blood pressure is consistent with experimental data in rats, in

which vitamin B12 and folate deficiency during pregnancy pro-

duced hypertension, arterial remodeling, and cardiomyopathy

through homocysteinylation of extracellular matrix proteins and

altered angiotensin-AT2 and TGFB1 pathways in pups.194–197

Acute metabolic decompensations were observed not only in

the first year of life but also later with an associated risk of death.

These results illustrate the need for the careful monitoring of pa-

tients in adulthood. Our data point out also the predominance of

acute metabolic decompensation and death in the mitochon-

drion functional gene cluster (Table S6, related to Tables 1–4).

This illustrates the dramatic consequences of the impaired ad-

enosylcobalamin-dependent methylmalonyl-CoA conversion

into propionyl-CoA. This reaction is the last step of a crucial ana-

plerotic pathway, which fuels the metabolites resulting from the

catabolism of branched-chain amino acids, odd-chain fatty

acids, and the side chain of cholesterol into the tricarboxylic

acid cycle.198 The frequent occurrence of decompensation and

death among patients classified in the mitochondrion cluster is

also found in Mut knockout (KO) mice, where most homozygous

pups do not survive after 24 h of life.199,200 A hemizygous knockin

(KI) mouse model (Mut-KO/KI), which combines a KI missense

mutation with a KO allele, produces failure to thrive and kidney

dysfunction, consistent with the mild phenotype observed in

adult patients.201 Adding a 51% protein diet produced a more

severe phenotype with behavioral, cardiovascular, and hemato-

logical abnormalities, suggesting the influence of diet, particu-

larly on adult cases.202

The diagnosis at an age older than 15 years concerned 18%of

all cases with MMACHC mutations and could be related in part

to the lower pathogenicity of genetic variants (Table S2, related

to Tables 1–4). Among the ten most frequent genetic variants,

seven were annotated as pathogenic and produced a truncated

protein with presumed dramatic consequences on the intracel-

lular transport and processing of vitamin B12. Consistently, these

mutations were predominantly reported in newborns (Table S2,

related to Tables 1–4). In contrast, most cases diagnosed at an

age older than 15 years had either the p.Arg161Gln frequent

missense pathogenic mutation or missense mutations classified

as likely pathogenic. Similarly, the patients of the mitochondrion

cluster older than 15 years had genetic variants classified as

likely pathogenic or of uncertain significance in MMUT, MMAA,

and MMAB genes (Table S3–S5, related to Tables 1–4)

In our opinion, some key results of our study should be trans-

lated into clinical practice. We showed that neurological mani-

festations, such as hypotonia, EEG abnormalities, microcephaly,

nystagmus, and strabismus, could evoke an inherited disease of

vitamin B12 metabolism even in the absence of anemia in pediat-

ric practice. In contrast, walking difficulty, peripheral neuropa-

thy, extrapyramidal syndrome, depression, and cerebral atrophy

are muchmore frequent in patients over age 15 years. These pa-

tients are cared for by neurologists and internists who must be

aware of the diagnosis of inherited disease of vitamin B12 meta-

bolism. Our results also show that cardiovascular manifestations

are dramatically more frequent in adults than in children

presenting with inherited disorders of vitamin B12 metabolism.

The association of increased systolic blood pressure with age

is a heretofore unrecognized manifestation in this group of in-
heritedmetabolic diseases. The thromboembolic manifestations

observed in the absence of classic risk factors of thrombophilia

should lead to a search for hyperhomocysteinemia in association

with an inherited error of vitamin B12 metabolism, as was shown

very recently in an observational study.191 These rare diseases

may be underestimated or even ignored in the usual practice

of cardiovascular medicine. US and European Societies of Car-

diology do not recommend including hyperhomocysteinemia as

a risk factor of cardiovascular disease. Consequently, cardiolo-

gists lack consideration and/or knowledge to diagnose and treat

patients with intermediate and severe hyperhomocysteinemia

related to an inherited error of vitamin B12 metabolism. The

neurological and cardiovascular clinical profiles should prompt

clinicians to systematically check the metabolic markers of

vitamin B12 status, including homocysteine and methylmalonic

acid, when the usual causes of these manifestations are dis-

carded. Genetic analyses could be integrated into the diagnostic

workup of these patients, particularly among those with extreme

clinical phenotypes and/or a familial clustering. In this setting,

clinical-exome sequencing-based approaches could be used

as a straightforward first-tier diagnostic strategy in patients for

whom a diagnosis of inherited disorders of vitamin B12 meta-

bolism is suspected.203 Identifying an underlying genetic error

of vitamin B12 metabolism could allow a personalized therapeu-

tic approach to achieve partial or total restoration of metabolic

alterations with potential long-term benefits.191

The present meta-analysis has several strengths. First, we

report an individual patient data meta-analysis that collected

original data from 824 patients to assess the phenotypic land-

scape of patients with inherited disorders of vitamin B12 meta-

bolism and to look for clinical, biological, imaging, and electro-

physiological predictors significantly associated with age

category, functional gene clusters, and death. The report of 74

adults, 133 children, and 509 newborns allowed us to assess

the course and specificity of the manifestations according to

age. By comparison, the most extensive registry study involved

248 patients seen primarily in pediatric departments.175 Second,

the reported data covered the 15 genes known to be involved in

hereditary disorders of vitamin B12 metabolism, allowing to

perform updated annotation and pathogenicity prediction on

more than 300 genetic variants reported on the four most

frequently observed genes (MMACHC, MMUT, MMAA, and

MMAB). In contrast, the largest registry study of the literature re-

ported only on patients with cblC, cblG, cblE, cblD, and cblJ dis-

eases.175 Third, the meta-analysis of individually reported cases

allowed the compilation of unselected patients, thereby reducing

the risk of population heterogeneity. We did not consider studies

of registries and case series with aggregated data to avoid any

bias related to the study designs. This approach allowed us to

consider manifestations that were not reported in registries,

including nystagmus, maculopathy, retinopathy, peripheral neu-

ropathy, walking difficulty, pyramidal syndrome, extrapyramidal

syndrome, and cerebral atrophy reported on MRI.

We acknowledge several limitations. First, we used data

extracted from available case reports through a systematic

retrospective search, with the risk of missing data. For example,

laboratory findings were not available for all patients. Second,

the low number of case reports of inherited disorders of vitamin
Cell Reports Medicine 3, 100670, July 19, 2022 15
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B12 absorption did not allow to evaluate whether they presented

a clinical profile distinct from the other disorders of the B12 avail-

ability cluster. The number of cases was lower than expected in

regard to a recent study of our reference center for rare meta-

bolic diseases, which showed mutations in GIF, AMN, and

CUBN genes as the leading causes of hyperhomocysteinemia

due to vitamin B12 deficiency.191 Moreover, the diagnosis of

Imerslund-Gräsbeck disease is probably underestimated since

the Schilling test is no longer available. Likewise, the determina-

tion of the soluble intrinsic factor receptor in the urine has limited

use despite its diagnostic value in the different subsets of the dis-

ease.204–206 Third, we reported the single literature case with

ZNF143 mutation but not cases with mutations in HCFC1,

THAP11, and PRDX1. These genes are not directly involved in

vitamin B12 metabolism and their mutations produce manifesta-

tions related to altered expression of MMACHC and/or other

genes. HCFC1 is a transcriptional co-regulator that interacts

with THAP11 and ZNF143 DNA-binding proteins to jointly regu-

late the expression of target genes that includeMMACHC.207–209

The HCFC1/THAP11 complex also acts as a transcriptional

regulator of ribosome biogenesis during development.210 Muta-

tions in any of the two genes produce decreased MMACHC

expression with milder metabolic and more severe neurological

manifestations than MMACHC mutations. Some mutations can

also result in complex syndromes exhibiting aspects of both

cblC disease and ribosomopathies. In addition, some variants

in HCFC1 produce X-linked intellectual disability even in the

absence of metabolic abnormalities of inherited disorders of

vitamin B12 metabolism. The single case in the literature of two

mutations in the ZNF143 gene had combined methylmalonic

acidemia and hyperhomocysteinemia and bilateral cleft palate,

microcephaly, severe neurological manifestations, and a ventric-

ular septal defect.209 PRDX1 is a gene neighboring MMACHC.

Mutations in PRDX1 produce the epi-cblC type of inherited dis-

orders of vitamin B12 metabolism.147 This disorder is due to an

epimutation at the MMACHC promoter, which results from

PRDX1 splicing mutations with an aberrant extension of anti-

sense transcription through theMMACHC promoter.147 The anti-

sense readthrough transcripts also encompass the promoter of

the TESK2 neighboring gene, resulting in the silencing of both

MMACHC and TESK2 genes.211 So far, 20 cases have been re-

ported, with a much higher frequency of severe metabolic

decompensation than in patients with MMACHC mutations.212

The fourth limit of our systematic review is the exclusion of

case reports not written in English, which could have potentially

led to selection bias. However, a previous study that examined

non-English publications’ influence on combined estimates of

published meta-analyses did not reveal a significant effect after

excluding non-English publications.213 Fifth, we did not use ma-

chine learning and natural language processing methods that

could represent attractive tools to decrease the manual burden

during the literature collection and review process. However,

these methods are limited by their potential bias toward a low

detection rate.214 Furthermore, machine learning methods did

not apply to some old publications without a digital format that

were included in our systematic review.

In conclusion, our meta-analysis and phenome-wide associa-

tion study of the clinical, phenotypic, and genetic landscape of
16 Cell Reports Medicine 3, 100670, July 19, 2022
824 patients with a genetically proven diagnosis of an inherited

disorder of vitamin B12 metabolism pointed out inborn errors of

vitamin B12 metabolism as potential etiologies deserving

consideration in the diagnostic algorithm of atypical neurological

manifestations and thromboembolic disorders not explained by

classical etiologies in children and adult cases. We highlighted a

high frequency of inherited disorders of vitamin B12 metabolism

in patients older than 15 years. Compared with younger cases,

adults harbored fewer pathogenic mutations and had a higher

prevalence of cardiovascular manifestations, including thrombo-

embolic outcomes and increased blood pressure. Neurological

manifestations were also strongly dependent on age, with a pre-

dominance in gene clusters that impair the remethylation

pathway. In contrast, metabolic decompensation and death

were predominant in clusters that impair the adenosylcobala-

min-dependent methylmalonyl-CoA conversion into propionyl-

CoA, regardless of age.
Limitations of the study
This systematic review has several limitations: (1) we used data

extracted from available case reports through a systematic

retrospective search, with the risk of missing data; (2) we did

not use machine learning and natural language processing

methods that could represent attractive tools to decrease the

manual burden during the literature collection and review

process; (3) the low number of case reports of inherited disor-

ders of vitamin B12 absorption did not allow to evaluate

whether they presented a clinical profile distinct from the other

disorders of the ‘‘B12 availability’’ cluster; (4) we excluded non-

English case reports, which could have potentially led to selec-

tion bias.
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186. Pourié, G., Martin, N., Daval, J.L., Alberto, J.M., Umoret, R., Guéant, J.L.,
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(2020). Mechanisms of homocysteine-induced damage to the endothe-

lial, medial and adventitial layers of the arterial wall. Biochimie 173,

100–106. https://doi.org/10.1016/j.biochi.2020.02.012.
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205. Guéant, J.L., Saunier, M., Gastin, I., Safi, A., Lamireau, T., Duclos, B.,

Bigard, M.A., and Gräsbeck, R. (1995). Decreased activity of intestinal

and urinary intrinsic factor in Gräsbeck-Imerslund disease. Gastroenter-

ology 108, 1622–1628. https://doi.org/10.1016/0016-5085(95)90122-1.

206. Namour, F., Dobrovoljski, G., Chery, C., Audonnet, S., Feillet, F., Sperl,

W., and Gueant, J.L. (2011). Luminal expression of cubilin is impaired

in Imerslund-Grasbeck syndrome with compound AMN mutations in

intron 3 and exon 7. Haematologica 96, 1715–1719. https://doi.org/10.

3324/haematol.2011.043984.

207. Quintana, A.M., Yu, H.C., Brebner, A., Pupavac, M., Geiger, E.A., Wat-

son, A., Castro, V.L., Cheung, W., Chen, S.H., Watkins, D., et al.

(2017). Mutations in THAP11 cause an inborn error of cobalamin meta-

bolism and developmental abnormalities. Hum. Mol. Genet. 26, 2838–

2849. https://doi.org/10.1093/hmg/ddx157.

208. Watkins, D., and Rosenblatt, D.S. (2016). Lessons in biology from pa-

tients with inherited disorders of vitamin B12 and folate metabolism. Bio-

chimie 126, 3–5. https://doi.org/10.1016/j.biochi.2016.05.001.

209. Watkins, D., and Rosenblatt, D.S. (2022). Inherited defects of cobalamin

metabolism. Vitam. Horm. 119, 355–376. https://doi.org/10.1016/bs.vh.

2022.01.010.

210. Chern, T., Achilleos, A., Tong, X., Hill, M.C., Saltzman, A.B., Reineke,

L.C., Chaudhury, A., Dasgupta, S.K., Redhead, Y., Watkins, D., et al.

(2022). Mutations in Hcfc1 and Ronin result in an inborn error of cobal-

amin metabolism and ribosomopathy. Nat. Commun. 13, 134. https://

doi.org/10.1038/s41467-021-27759-7.

211. Oussalah, A., Siblini, Y., Hergalant, S., Chéry, C., Rouyer, P., Cavicchi,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Please see Section: "Description of the whole population of the 824 patients with inherited disorders of vitamin B12 metabolism".

METHOD DETAILS

Study aims
The aims of the study were: 1) to assess the clinical, biological, genetic cause, imaging, and electrophysiological findings among

patients with inherited disorders of vitamin B12 metabolism in the whole population, according to previously established age cate-

gories (<1 year; 1–15 years; and >15 years)171–173 and functional gene clusters; 2) to look for clinical, biological, imaging, and elec-

trophysiological predictors significantly associated with functional gene clusters and death.

Electronic search query
We conducted the literature search on MEDLINE-indexed literature using the PubMed search engine from the National Center for

Biotechnology Information (www.pubmed.gov) (January 1966 to August 2019) to identify case reports describing individual-level

data of patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. We developed a highly sen-

sitive electronic query using keywords, indexed terms, medical subject headings (MeSH), and free text words (e.g., gene names,

complementation groups, disease name, metabolites, enzymes) to elaborate three electronic search panels: Panel #1 addressed

the concepts of vitamin B12, one-carbon metabolism, hyperhomocysteinemia, or methylmalonic acidemia; Panel #2 addressed

the concepts related to genetic diseases; and Panel #3 addressed the concepts of inborn errors metabolism. The detailed electronic

strategy reporting the plain text query, the electronic search query, and the NCBI translations for each panel are available in the Sup-

plemental Methods. We built the electronic search strategy using the three electronic panels, as follows: Panel #1 AND (Panel #2 OR

Panel #3) to identify from all the publications that were related to genetic disorders or inborn errors of metabolism those reporting

case reports of patients with an inherited disorder of vitamin B12 metabolism. Additional articles were retrieved from primary search

references. EndNote X7.8 was used for reference management.215 This systematic review was performed in compliance with the

MOOSE (Meta-analysis Of Observational Studies in Epidemiology) Statement.216

Study selection
We retained a case report in the systematic review if it reported clinical findings and molecular diagnosis of an inherited disorder of

vitamin B12 metabolism. The exclusion criteria were as follows: i) non-English language publication; ii) editorial, narrative review, or

congress abstract; iii) study reporting aggregated data without individual-level data; iv) case report without a molecular diagnosis; v)

genome-wide association studies or genetic association studies on candidate gene of gene panels for the potential association with

vitamin B12 and/or one-carbon metabolism markers; and vi) studies reported in animals.

Data extraction
Two investigators (AW, AO) reviewed the titles and abstracts of all citations identified by the literature search. Ten investigators re-

viewed eligible articles (AW, NL, MT, MJ, JPM, BA, PD, TA, MF, AO). All data directly related to the disease were extracted without

any filter. The following data were extracted and assigned to 10 domains: Domain #1: Case report characteristics (Author, Year,

Country);Domain #2: Patient’s demographics (Age, Gender);Domain #3: Clinical manifestations expressed as binary outcomes

(Group 1: Intrauterine growth restriction, Microcephaly; Group 2: Cardiomyopathy, Thrombosis; Group 3: Feeding intolerance;

Group 4: Acute metabolic decompensation; Group 5: Maculopathy, Retinopathy, Nystagmus; Group 6: Hypotonia, Pyramidal syn-

drome, Extrapyramidal syndrome, Walking difficulty, Peripheral neuropathy, Seizures, Development delay, Absence of neurologic

disorders;Group 7: Arterial hypertension, Acute renal failure, Hemolytic–uremic syndrome, Chronic renal failure;Group 8: Hyperpig-

mentation; Group 9: Gout). Domain #4: Laboratory findings expressed as continuous outcomes [vitamin B12 (pmol/L); methionine

(mmol/L); homocysteine (mmol/L); methylmalonic acid (mmol/L); C3-carnitine (mmol/L); ammonia (mmol/L); urinary methylmalonic

acid (mmol/mol of creatinine)];Domain #5:Molecular diagnosis according to the HumanGenome Variation Society (HGVS) nomen-

clature to report DNA and protein sequences variants, using the GRCh37 built and the reference sequence (RefSeq) database. Two

investigators (AW, AO) manually curated and annotated each variant to assess its pathogenicity according to the standards and
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guidelines of the American College of Medical Genetics and Genomics217 using the VarSome tool,218 ClinVar,219 and bibliographical

evaluation. We used the gnomAD Exomes database (Version: 2.1.1)220 to report the alternative allele frequencies of the reported

variants considering the whole studied population. Domain #7: Electrophysiological evaluation expressed as binary outcomes

(electroencephalography abnormality, electromyography abnormality); Domain #8: Magnetic resonance findings expressed as

binary outcomes (cerebral atrophy, T2 signal hyperintensity in the white substance); and Domain #9: Therapy and patient’s

evolution expressed as binary outcomes (Vitamin B12 supplementation, liver transplantation, kidney transplantation, and death).

Main outcomes and measures
The systematic review’s primary outcome was to report on the clinical, laboratory, electrophysiological, and magnetic resonance

findings of subjects diagnosed with an inherited disorder of vitamin B12 metabolism. Main clinical findings: intrauterine growth

restriction; microcephaly; cardiomyopathy; thrombosis; feeding intolerance; acute metabolic decompensation; maculopathy; reti-

nopathy; nystagmus; hypotonia; pyramidal syndrome; extrapyramidal syndrome; walking difficulty; peripheral neuropathy; seizures,

developmental delay; hypertension; acute renal failure; hemolytic–uremic syndrome; chronic kidney failure; hyperpigmentation; gout;

Laboratory findings: vitamin B12; methionine, homocysteine, C3-carnitine; ammonia; blood and urinarymethylmalonic acid; genetic

diagnosis; Electrophysiological evaluation: electroencephalographic abnormality; electromyographic abnormality; Magnetic

resonance findings: cerebral atrophy, T2 signal hyperintensity in the white substance; Therapy and patient’s evolution: vitamin

B12 supplementation, liver transplantation, kidney transplantation, and death.

Functional gene clusters
We classified the patients into four functional gene clusters according to the affected gene. The ‘‘B12 bioavailability’’ gene cluster

regrouped all patients with CBLIF (alias, GIF), CUBN, AMN, TCN2, LMBRD1, CD320, or ABCD4 variants. The ‘‘cytoplasmic’’ gene

cluster regrouped all patients with MMACHC variants and those on MMADHC that are responsible for combined mitochondrion

and remethylation abnormalities.221–223 The ‘‘Remethylation’’ gene cluster regrouped all patients with MTR or MTRR variants and

those on MMADHC that are responsible for remethylation abnormalities.221–223 The ‘‘Mitochondrion’’ gene cluster regrouped all

patients withMMAA,MMAB, orMUT variants and those onMMADHC that are responsible for mitochondrion abnormalities.17,18,19

QUANTIFICATION AND STATISTICAL ANALYSIS

Categorical variables were summarized as frequency counts and percentages with the 95% confidence interval (95% CI). Quantita-

tive variables were expressed as medians and interquartile range (IQR, 25th and 75th percentiles). We studied the influence of age,

reported in the three age categories, on patients’ manifestations using the Cochran–Armitage test for trend. We used univariate

logistic regression with Bonferroni correction to look for the clinical, biological, imaging, and electrophysiological predictors

significantly associated with functional gene clusters: ‘‘B12 bioavailability’’ vs. remaining functional gene clusters, ‘‘Mitochondrion’’

vs. remaining functional gene clusters, ‘‘Cytoplasmic transport’’ vs. remaining functional gene clusters, ‘‘Remethylation’’ vs. remain-

ing functional gene clusters, and ‘‘Cytoplasmic transport’’ vs. ‘‘B12 bioavailability’’). For each predictor, we reported the beta

coefficient, the standard error, and the odds ratio (OR) with the corresponding 95% confidence interval (95% CI). We also assessed

the predictors significantly associated with death. All statistical analyses were conducted using MedCalc, version 19.5.3 (MedCalc

Software, Ostend, Belgium) and SVS (v8.8.1; Golden Helix, Inc., Bozeman, MT, USA).
e3 Cell Reports Medicine 3, 100670, July 19, 2022
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