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Glassy states and super-relaxation in populations
of coupled phase oscillators
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Large networks of coupled oscillators appear in many branches of science, so that the kinds of

phenomena they exhibit are not only of intrinsic interest but also of very wide importance. In

1975, Kuramoto proposed an analytically tractable model to describe these systems, which

has since been successfully applied in many contexts and remains a subject of intensive

research. Some related problems, however, remain unclarified for decades, such as the

existence and properties of the oscillator glass state. Here we present a detailed analysis of a

very general form of the Kuramoto model. In particular, we find the conditions when it can

exhibit glassy behaviour, which represents a kind of synchronous disorder in the present case.

Furthermore, we discover a new and intriguing phenomenon that we refer to as super-

relaxation where the oscillators feel no interaction at all while relaxing to incoherence. Our

findings offer the possibility of creating glassy states and observing super-relaxation in real

systems.
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T
he Kuramoto model (KM)1 was introduced and developed
to provide an analytically tractable description of the
populations of coupled phase oscillators that so often

appear in real life. It has been applied successfully in many
fields2,3, for example, to describe the collective behaviour of
lasers4,5, neurons in the brain6,7, Josephson junction arrays8 and
even humans9.

The widespread applications of the KM to real problems has
ensured that the basic model, together with its variants and
modifications10–24, has been studied very extensively over the
past few decades. The practical usefulness of these studies stems
from widespread abundance of user-defined systems that can be
described by the KM, for example, the above-mentioned laser
arrays4,5 and Josephson junction circuits8, where one can adjust
the coupling between the oscillators quite freely. Therefore, if
some new behaviour has been uncovered theoretically, it can
immediately be implemented and observed in practice.
Furthermore, for those systems where the exact configuration is
not known precisely and cannot be changed, such as interacting
neurons in the brain6,7, it is obviously useful to know what kinds
of dynamics the different forms of KM can demonstrate, so that
the observed behaviour can be matched with an appropriate
existing model and thus explained.

The KM has been found to exhibit a remarkable diversity of
interesting phenomena and states and, by now, most of them
have been thoroughly investigated. There is, however, one
important exception—the so-called ‘oscillator glass’ state25.
Thus, many systems, including networks of interacting
spins26,27, dipoles28, and electrons29, have been found to
display behaviour reminiscent of a glass structure30, and it has
been suggested25 that populations of coupled oscillators can also
demonstrate glassy states of some kind. Studies of such states are
expected to be very fruitful, in the same way as were the studies of
spin glasses, which led to many new techniques and applications
in other fields (biology, computer science, economics and so
on27). However, the provenance and properties of the oscillator
glasses are still subject to debate25,31–36.

Here we report the analysis of a very general, yet analytically
tractable, form of KM. We derive a set of equations describing its
steady-state behaviour and show that, for a particular class of
distributions, the consideration may be reduced to a much
simpler model. Thus, in the limit t-N, the system can
demonstrate the same macroscopic behaviour for different
coupling configurations, enabling one to select and study the
simplest one. This is, in itself, an interesting theoretical result. It
also implies that there may be cases where it is, in principle,
impossible to infer the underlying coupling structure from the
observed data.

We also discuss when and how the full-time evolution of the
system parameters can be obtained and find some interesting
features related to this question. Among the phenomena that the
model can exhibit, we find states with a glassy structure that can
be studied analytically within the framework presented, and we
discuss these states and their properties in detail. Finally, we
describe a completely new phenomenon which we refer to as
super-relaxation where, under certain conditions, the coupling
between the oscillators effectively disappears during their
relaxation to incoherence.

Results
Outline of the results. To make what follows clearer and easier to
understand, we start by summarizing the main results of the
work. First, we derive equations (18–22) describing the stationary
states (SSs) of the system (1). Then we reduce the macroscopic
steady-state behaviour of the system (1) (five distributed

parameters) to a much simpler model (29) (two distributed
parameters) for a large class of distributions (equation (23)). We
discover new states in the coupled oscillator populations,
which are in some sense similar to physical glasses, and we
establish the conditions for their appearance (equations (36) and
(37)). And finally, we discover the emergence of a super-relaxa-
tion phenomenon, where the oscillators evolve interaction-free,
irrespectively of the couplings between them, if the conditions
(41), (42), (43) are fulfilled. After reviewing the background and
terminology, each of these results is obtained and considered in
detail below.

The model. We consider the KM in the form

_yi ¼ oi�
ki

N

XN

j¼1

qj sinðyi� yj� bi� gjÞ; ð1Þ

where N is the number of oscillators, yi(t) and oi are the ith
oscillator’s phase and natural frequency, respectively, and kiqj

(biþ gj) represent the coupling strengths (phase lags) between the
ith and jth oscillators; all parameters Ci�{oi, ki, qi, bi, gi} are
drawn from a joint probability density G(C)�G(o, k, q, b, g).
The case considered earlier10 corresponds to (1) with qi¼ 1,
bi¼ gi¼ 0.

The KM has not previously been treated in such a general form
(1), though it actually includes as special cases the many KM
modifications and extensions studied earlier. Thus, not much is
known about the possible behaviour of the system except in those
particular cases. To study it, we first generalize the recently
presented framework10 to encompass (1), and then we proceed to
a consideration of the phenomena that it can exhibit.

Main equations. The oscillators’ collective behaviour in (1) can
be described by two complex parameters

Z � ReiC � 1
N

XN

j¼1

eiyj ; Y � WeiF � 1
N

XN

j¼1

qje
igj eiyj ; ð2Þ

where Z is the mean field whose amplitude R quantifies the extent
of the agreement between the oscillators’ phases yi, while Y
represents the weighted mean field, with amplitude W reflecting
the agreement between yiþ gi (þp for qio0), weighted by
|qi|. With the use of the definition (2), the model (1) can be
rewritten as

_yi ¼ oi� kiW sinðyi� bi�FÞ: ð3Þ
As can be seen, the dynamics of the system is governed mathe-
matically by the weighted mean field Y, which determines the
effective interaction between the oscillators. The ordinary mean
field Z, on the other hand, represents a more physical macro-
scopic variable, being the one that is most often observed in
practice (for example, it quantifies the overall output current of a
Josephson junction array8). Note that, unlike the mean fields’
phases F and C individually, their difference F�C is invariant
under the phase shifts yi-yi�j(t), and thus represents another
meaningful parameter.

In the continuum limit N-N, the system (1) is treated using
the probability density function f(y,C,t), which reflects the
probability that the oscillator has parameters C and phase y at
time t. It can be further factorized as

f ðy;C; tÞ � rðy; t jCÞGðCÞ ð4Þ
where r(y,t|C) is the conditional probability density function
(CPDF), reflecting the probability that at time t the oscillator has
a phase y, given its parameters C. By definition, the CPDF should
satisfy

R p
�p rðy; t jCÞdy ¼ 1, which leads to the continuity
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equation

@trðy; t jCÞþ @yf½o� kW sinðy�b�FÞ�rðy; t jCÞg ¼ 0; ð5Þ
where we have used expression (3) for _y.

The CPDF can usually37–40 be represented using the ansatz
introduced by Ott and Antonsen (OA-ansatz)41

rðy; t jCÞ ¼ 1
2p

1þ 2Re
aðC; tÞe� iy

1� aðC; tÞe� iy

� �
; jaðC; tÞ j � 1

)
Z p

�p
eiyrðy; t jCÞdy ¼ aðC; tÞ;

ð6Þ

where we use a(C,t)¼ a*(C,t) instead of the original OA-
variable41 a(C,t), and the * denotes complex conjugate.

Finally, by substituting equation (6) into equations (5) and (2),
one obtains the full system of equations describing the dynamics
of the system (1):

@a
@t
� ioaþ kW

2
ða2e� iðbþFÞ � eiðbþFÞÞ ¼ 0; ð7Þ

Y ¼WeiF ¼
Z

qeigaðC; tÞGðCÞdC; ð8Þ

Z ¼ ReiC ¼
Z

aðC; tÞGðCÞdC; ð9Þ

where here and below, unless otherwise specified, the integration
over dC�dodkdqdbdg is taken over the whole domain ((�N,
N) for o, k, q and (�p, p) for b, g).

Parameter redundancy. It should be clarified that parametrizing
the KM (1) with both bi and gj is, in a strict sense, mathematically
redundant, since one of these phase shifts can be removed by a
change of variables. Thus, in terms of ~yi ¼ yi� bi, the system
equation (1) becomes

_~yi ¼ oi�
ki

N

X
j

qj sinð~yi� ~yj�egjÞ; egi ¼ giþbi ð10Þ

with the new distribution of parameters eGðeCÞ being given aseGðo; k; q;egÞ ¼ R Gðo; k; q; b; gÞdðeg� b� gÞdbdg. Taking into
account the relationship between the variables in equations (10)
and (1), it is clear that the conditional distribution of the new
phases erð~y; t jo; k; q;egÞ is related to the original one as
rðy; t jo; k; q; b; gÞ ¼ erðy�b; t jo; k; q; bþ gÞ. Substituting this
into equation (2), it can be shown that the weighted mean fields
in terms of yi and ~yi are equal, eYðtÞ ¼ YðtÞ, but that the ordinary
mean fields can, in general, change in a non-trivial fashion,eZðtÞ 6¼ ZðtÞ.

Nevertheless, both bi and gj can sometimes be practically
relevant, that is, have physical meanings. For example, such a
coupling structure can be designed artificially in the case of user-
defined systems (for example, laser arrays4,5), but we expect it to
appear in the observation-only systems as well (for example,
interacting neurons6,7). Hence, in some cases, the full model (1)
will actually provide a more straightforward and meaningful
description of the system, while equation (10) will represent only
a mathematical formulation. Thus, for example, Z might be
related to the real physical quantity, such as the total power
output of the laser array4,5, while eZ will then be a purely
mathematical characteristic. To preserve generality, therefore, and
to avoid complicating the discussion by introducing different
variable transformations, we study the model (1) including both b
and g. Furthermore, as will be seen below, the distributed b also
has significant consequences in terms of the non-equilibrium
dynamics, which cannot be straightforwardly obtained from the
transformed system equation (10).

It should also be noted, that the model (1) is invariant under
(ki,bi)-(� ki,biþ p) or (qi,gi)-(� qi,giþ p) or rescalings
(ki,qi)-(ki/r,rqi); to preserve generality, we retain this ambiguity,
as the normalization can be fixed at any time, and there is no
universal choice (see Methods).

Terminology and notation. We adopt terminology similar to
that introduced earlier10,42. The KM form (1) is invariant under
y0 ¼ y�Ot, which just changes the natural frequencies to
o0 ¼o�O, so the parameter distribution becomes G0(o0, k, q,
b, g)¼G(o0 þO, k, q, b, g). Thus, one can consider the KM in
different frames rotating at frequency O with respect to some
reference frame. For the latter, we select the frame with zero mean
frequency /oS�

R
oG(C)dC¼ 0 and call it the natural frame;

the distribution G(C) is defined in this frame. We define a SS as a
state with time-independent CPDF qtr(y,t|C)¼ 0, which also
implies qtZ¼ qtY¼ 0. The state can be stationary only in a
particular rotating frame, so it is characterized by its frame
frequency O and mean fields Z,Y. We refer to SSs with O¼ 0 as
natural states, while SSs with Oa0 are travelling wave states. For
later convenience we define

G�O ðCÞ � Gð�oþO; k; q; b; gÞ; Lðx;DÞ � D=p
x2þD2 ;

Pðf; rÞ � ð1� r2Þ=2p
ð1þ rÞ2þ 4r sin2ðf=2Þ

¼ r� 1ð1� r2Þeif=2p
ðeif� rÞðr� 1� eifÞ ;

ð11Þ

where 0rrr1; the distribution P(f,r) and the way to simulate
it are discussed in Methods. Note, that P(f,0)¼ 1/2p and
P(f,1)¼ d(f).

We also introduce

Iðo; kÞ �
Z

eibGðCÞdqdbdg; I �O � Ið�oþO; kÞ;

Jðo; kÞ �
Z

qeiðbþ gÞGðCÞdqdbdg; J �O � Jð�oþO; kÞ:

ð12Þ

As will be seen below, I and J represent an effective complex
distribution of o,k to be used for the determination of Z and Y,
respectively.

Validity of the OA-ansatz. In what follows, we will make fre-
quent use of the OA-equations (7–9). For the case ki¼ const,
qi¼ 1, bi¼ gi¼ 0 and for a very large class of frequency dis-
tributions, their validity has been proven39,40 in the asymptotic
limit t-N, corresponding to system’s steady-state behaviour;
though not justified rigorously, this result seems to hold for
distributed k, q, b, g as well (based on numerical simulations).
As the next step, Pikovsky and Rosenblum37,38 derived more
general equations and showed that the full dynamics of the
model—for all t and almost any parameter distribution—obeys
equations (7)–(9) only if the initial phase configuration also
belongs to the OA-manifold

rðy; 0 jCÞ ¼ Pðy�f0ðCÞ; r0ðCÞÞ ð13Þ

with any f0(C) and r0(C). Although not given explicitly by
Pikovsky and Rosenblum37,38, equation (13) can be deduced from
their equation (3) in ref. 38, which generates (13) in the case of a
uniform distribution of the constants of motion ck (for which the
OA-description was proven to hold37,38); see also the work of
Marvel et al.43 Note that the OA-ansatz often provides a good
approximation to the system dynamics even when equation (13) is
not satisfied (for example, for r(y,0|C)¼R(0)d(y)þ (1�R(0))/2p).
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In addition, it might sometimes be useful to analytically
continue a(C,t) into the complex plane over some of C, for
example, to consider o to be complex. This is required to apply
the conventional OA-reduction procedure41 (see also refs 13–15)
which, where possible, allows one to obtain a finite-dimensional
system of equations for Y(t),Z(t). However, one should always
have |a(C,t)|r1 as, otherwise, the OA-ansatz (6) becomes ill-
defined. Hence, a(C,t) can be considered only in the region of C
for which

jaðC; 0Þ j ¼
����Z eiyrðy; 0 jCÞdy

����� 1; ð14Þ

@t jaðC; tÞ j
����j a j¼1 ¼� ImðoÞþ ðW=2Þ�

Re½kðeibe� ij� e� ibeijÞ� � 0

ð15Þ

at any W and j�arg[a(C,t)]�F. The condition (14) establishes
that |a|r1 is satisfied at t¼ 0, while (15) then guarantees that it
holds at all other times too. Some manifestations of the issues
related to (14) and (15) can be found in Section 3.2.0.1 of ref. 38
and in refs 11,13–15. Note that (14) is always satisfied when there
is no correlation of initial phases with the system parameters C:

rðy; 0 jCÞ ¼ Pðy�Cð0Þ;Rð0ÞÞ: ð16Þ

Unless otherwise specified, we will assume that the system starts
from such a configuration.

Stationary states. Having reviewed the background and related
issues, we now proceed to the derivations. We start by finding
possible configurations into which the system (1) can settle as t-
N. Although in specific cases it can converge to some inherently
time-dependent solution, such as a standing wave43 or an
oscillating p-state44, we restrict the consideration to SSs only,
treating them in frames where they are stationary. The effective
parameter distribution therefore becomes G(C)-GO

þ (C), with O
denoting SS frame frequency. By definition and equation (6), the
SSs satisfy qta¼ 0. Using this in equation (7) and taking account
of the OA validity condition |a|r1, one finds that all possible SSs
in their own rotating frames correspond to

asðCÞ ¼ eiðFþ bÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2W2 �o2
p

þ io
kW if jo j�jk jW;

i o� signðoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � k2W2
p

kW if jo j4 jk jW:

8<:
ð17Þ

The stationary distribution of the oscillators’ phases is then
recovered by substituting equation (17) into equation (6), which
gives

rsðy jCÞ ¼
dðy�b� arcsinð o

jkjWÞ�FþpHð� kÞÞ if jo j�jk jW;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � k2W2
p

=2p
jo� kW sinðy� b�FÞj if jo j4 jk jW;

8<: ð18Þ

where H(� k) denotes a Heaviside function. As can be seen, the
oscillators with |o|o|k|W (in a rotating frame) are frozen around
the positions determined by b, o, k and the weighted mean field
Y¼WeiF, while the others are incoherent.

It should be noted that, in addition to as(C) given by equation
(17), there exists one more stationary solution of equation (7): the
same as equation (17), but with a minus before the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2W2�o2
p

for |o|r|k|W; however, this solution is never realized in reality
because it corresponds to the unstable position on the phase
circle, as can be seen by recovering the respective CPDF (which
will be the same as equation (18), but with y-yþ p for
|o|r|k|W).

Self-consistency and stability conditions. While the solution
(18) gives a qualitative picture of how the phases are distributed
in the stationary regime, one cannot infer directly from rs(y|C)
the stability of such a configuration or the macroscopic para-
meters W,O for which it can be realized. To find the latter, we
first note that the equation (17) was derived from equation (7)
only, without taking account of equation (8), which it should also
satisfy. Therefore, substituting equation (17) into equation (8),
one obtains the self-consistency conditions (SCCs)

W ¼
Z

dk
kW

Z jkjW
�jkjW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2W2�o2
p

J þO doþ i
Z

oJ þO do

(

� i
Z 1
jkjW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2� k2W2
p

½J þO � J �O �do
)
� eF½J �O ;W�;

ð19Þ
where J �O are as defined in equation (12). Taking the real and
imaginary parts of equation (19) yields two equations from which
the SS parameters W,O can be determined. These can then be
used to determine Z as well, for which, using equation (17) in
equation (9), one gets

ReiðC�FÞ ¼ eF½I �O ;W� ð20Þ
The SS stability, on the other hand, is generally hard to study

analytically. For the incoherent state (W¼ 0), however, it can be
analysed using the approach of ref. 45. Thus, performing a linear
stability analysis of (5) above incoherence and using a self-
consistency argument (see Methods), one can show that
incoherence changes stability when there exists a solution x to
the equations

pIm
R

kJðx; kÞdkþRe
R kJðoþ x;kÞ

o dodk ¼ 0;

pRe
R

kJðx; kÞdk� Im
R kJðoþ x;kÞ

o dodk ¼ 2:

(
ð21Þ

Interestingly, from equations (21) and (12) it follows that in the
case G(C)¼G(o, q, b, g)p(k) the stability of incoherence does not
depend on a particular form of p(k), but only on the mean
coupling strength /kS�

R
kp(k)dk, as noticed previously for a

simpler model10,15. Note also that, if phase shifts g or b are
present then, with increasing coupling strength, the incoherence
can not only lose, but also gain46,47 stability at the transition
points determined from equation (21).

To estimate (at least approximately) the stability of the SSs with
W40, one can utilize the approach of ref. 10 and devise the
empirical stability conditions (ESCs) which, for the considered
model (1), take the form (see Methods)

@WReeFþWð@OImeFÞo1;
ð@WReeF� 1Þð@OImeFÞ� ð@WImeFÞð@OReeFÞ40:

�
ð22Þ

where eF � eF½J �O ;W� (see equation (19)). Despite being empirical
and thus approximate, the ESCs (22) work well in the majority of
cases, though not in all, for example, they can fail in the presence
of standing waves10; their performance also becomes less good
when arg[J(o,k)]a0. Nevertheless, ESCs seem to be exact if
arg[J(o,k)]¼ 0 and the distribution G(C) is unimodal over o.

Uncoupled distributions. As discussed above, for the system (1),
the parameters of its possible SSs can be found from the SCCs
(19) and (20), their stability can be deduced from equation (21)
for the incoherent state, and (approximately) from equation (22)
for other SSs, while the associated phase distributions are given by
equation (18). The corresponding expressions, however, are
generally quite complicated, but it turns out that they simplify
greatly if we consider the distribution of q, b, g to be uncorrelated
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with o, k. In what follows, we will therefore assume that

Gðo; k; q; b; gÞ ¼ gðo; kÞhðq; b; gÞ; g �O � gð�oþO; kÞ;
ð23Þ

so the effective (o,k)-distributions (12) become

Iðo; kÞ ¼j I jeifI gðo; kÞ; Jðo; kÞ ¼j J jeifJ gðo; kÞ;

j I jeifI �
Z

eibhðq; b; gÞdqdbdg;

j J jeifJ �
Z

qeiðbþ gÞhðq; b; gÞdqdbdg:

ð24Þ

The SCCs (19) then simplify to

FWðW;OÞ ¼W cosfJ= j J j; FOðW;OÞ ¼ �W sinfJ= j J j; ð25Þ
where

FWðW;OÞ �
Z

dk
kW

Z jkjW
� jkjW

g þO
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2W2�o2
p

do;

FOðW;OÞ �
Z

dk
kW

(Z
og þO do:

�
Zþ1
jkjW

½g þO � g �O �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2� k2W2
p

do

9>=>;
ð26Þ

are fully analogous to FR,O in ref. 10; the expression (20) for R and
F�C reduces to

R ¼ j I jW= j J j; F�C ¼ fJ �fI ; ð27Þ
the incoherence stability conditions (21) becomeR kgðoþO;kÞ

o dodk ¼ � 2sinfJ

jJj ;R
kgðO; kÞdk ¼ 2cosfJ

pjJj ;

(
ð28Þ

and the ESCs (22) can be simplified usingeF½J �O ;W�¼j J jeifJ ðFW þ iFOÞ.

System reduction. From equations (25–28) it is evident that, for
uncoupled distributions (23), all the macroscopic properties
of the SSs are completely characterized by g(o, k), |J| and fJ (see
equation (24)), irrespectively of the particular form of h(q, b, g),
while |I|, fI serve merely to specify Z (27). Instead of (1),
therefore, one can consider the system

_yi ¼ oi�
ki j J j

N

XN

j¼1

sinðyi� yj�fJÞ ð29Þ

with the same distribution of oi, ki defined by g(o, k). Then each
SS of (29) corresponds to an SS of (1), and their parameters are
related as

O ¼ OSK; W¼ j J jRSK; R¼j I jRSK; ð30Þ
where the subscript SK denotes the states of the model (29); the
stability of the corresponding states will also be the same, as
follows from equation (28) for incoherence, and from the ESCs
(22) and numerical evidence for other SSs.

Hence, for any distribution of q, b, g obeying (23), one can
reduce the consideration of the steady-state behaviour of (1) to
the much simpler Sakaguchi–Kuramoto model (29). This elegant
and unexpected result is illustrated in Fig. 1. Interestingly,
something similar was noted earlier21, but for a significantly less
general model than (1). The reduction (30), however, relates only
to the macroscopic properties of SSs (t-N), whereas the full
evolutions Z(t),Y(t) and the microscopic properties of the
resultant states cannot be obtained in this way. Note that

equation (30) implies Wr|J|,Rr|I|, that is, the distribution of q,
b, g imposes an upper bound on the SSs’ mean field strengths,
which they cannot exceed however strong the coupling is.

Definition of glassy states. Ordinary glass30 is a state of matter
which, in contrast to the liquid state, is solid; but, in contrast to
the crystalline state, has a structure without any long-range
translational order. States that are in some sense similar were
reported in several other systems26–29, but whether or not there
can exist glassy analogues in networks of coupled oscillators—
oscillator glasses—has remained unclear25,31–36.

However, a very basic question is how to define an oscillator
glass, that is, what properties the system should possess in order
to qualify for this title. Obviously, one should draw an analogy
with known glassy states in order to illuminate this issue. Thus,
the defining feature of the structural glasses30—frozen disorder—
can be specified as: (i) the particles, for example atoms, lack any
long-range translational order, similarly to the liquid state; (ii) the
particles are frozen, that is, do not move with respect to each
other, similarly to the solid state. Later, states with frozen spins
lacking long-range orientational order were discovered in spin
systems, and by analogy were called spin glasses26,27. The
canonical spin glasses, in addition to properties (i) and (ii), are
characterized by: (iii) a significantly redundant ground state, so
that the same macroscopic behaviour can be realized by many
microscopic spin configurations, not related to each other by any
simple symmetry transformation; (iv) frustration, that is, no spin
configuration can simultaneously satisfy all energy bounds;
(v) slow non-exponential relaxation of the order parameter
(magnetization for spin systems), as well as other exotic
dynamical features.

Relating the phases yi of the oscillators to the positions of
the particles in space, or the spin orientations, the analogies
of the above properties for populations of oscillators will be
(all for t-N)

Uniform distribution of phases at any time :
rðy; tÞ �

R
rðy; t jCÞGðCÞdC ¼ 1=2p;

ð31Þ

Existence of a ðfrozenÞ group of oscillators
not moving with respect to each other :

Q � 1
NðN � 1Þ

P
i;j;i 6¼ j

hei½yiðtÞ� yjðtÞ�i
�� ��40;

where h:::i denotes time average;

ð32Þ
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0

W(t→∞)

Figure 1 | Numerical confirmation of system reduction. The SS

parameters W (green), R (red) and O (black), as calculated for the original

system (1) (circles) and obtained from the reduced system (29), (30)

(diamonds), are shown in dependence on coupling K; solid lines correspond

to theoretical predictions based on (25–28). The distribution for the original

system was: gðo; kÞ � dðk�KÞ½o2þ e�o2 �� 1; hðq; b; gÞ � e� ðq� 1Þ2=0:02

½Pðb� p=8;0:8Þþ Pðbþ p=2;0:9Þ�Pðg�p=3;0:7Þ, but the same picture

appears for any h(q, b, g) with identical fJ, |J|, |I| (24). The simulations

were performed for 500 s, and the values presented are averages over the

last 100 s.
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Nonuniqueness of limt!1½yiðtÞ� yjðtÞ�
for the frozen oscillators; which might
therefore end up in different places;
depending on the initial conditions;

ð33Þ

Frustration; that is; ðarguablyÞ nonexistence
of stable phase configurations with all
_yiðtÞ ¼ 0; even if all oi ¼ 0;

ð34Þ

Slow nonexponential relaxation of RðtÞ:
limt!1RðtÞelt ¼ 1; 8l40:

ð35Þ

Generally, it is quite a subtle issue to decide what is a ‘true’
oscillator glass, that is, should it satisfy all the criteria (31–35), or
only some of them? Thus, the state reported by Daido25 has
properties (31), (34) and (35), but not (32) and (33), since the
oscillators there, although adjusting their mean phase velocities to
some extent, perform a diffusive motion and thus, are never
frozen (Q¼ 0). This state, therefore, bears more analogy to spin
glasses than to structural glasses.

Here, we utilize a different approach, considering state to be
glassy if it satisfies the first two criteria (31), (32). To avoid
possible terminological issues, we refer to such states as quasi-
glassy. They are thus defined as the states with a uniform
distribution of phases yi (31), indistinguishable from incoherence
but where, in contrast to the latter, some macroscopic portion of
oscillators are frequency-locked (32), that is, have equal phase
velocities _yi.

It should be noted that the condition for the absence of phase-
locking is sometimes taken as R¼ 0. However, although being
implied by equation (31), it is not as rigorous as the latter. Thus,
there might be many configurations for which R¼ 0 but where
the oscillators actually adjust their phases. Examples include two
phase-locked populations of the same size, which are in the anti-
phase with each other. States with R¼ 0 satisfying condition (32),
but not condition (31), will be called spurious glassy, according
to ref. 31 where they were first discovered. All SSs with R40,
including the usual synchronized states, p-states19,20 and
travelling waves, will be classified as coherent.

As a simplified picture, the distinctions between the states can
be understood in terms of a group of people doing cyclical
exercises, each with their own tempo and other parameters. The
incoherent state is when everyone proceeds independently; the
coherent state is when they all move synchronously, at any given
time having similar poses; spurious glassy is when they exercise at
the same tempo but remain pairwise in the opposite poses, and
quasi-glassy is when they adjust their tempos, but always remain
in the independent random poses, thus representing a kind of
synchronous disorder.

Realization of glassy states. Considering model (1) with the
uncoupled distribution (23), it can be shown (see Methods) that if
the marginal distribution of b is uniform and |J|40, then all SSs
except incoherence satisfy equations (31) and (32). Therefore, the
quasi-glassy states appear whenZ

hðq; b; gÞdqdg ¼ 1=2p; ð36Þ

W40)j J j�
���Z qeiðgþbÞhðq; b; gÞdqdbdg

���40: ð37Þ

Representing h(q, b, g)�h1(b)h2(q, g|b), equation (36) becomes
h1(b)¼ 1/2p. Thus, to satisfy also condition (37), the distribution
of q, g should be specifically correlated with b. The simplest
examples are h(q, g|b)¼ d(q� q0)P(gþb,r) and h(q, g|b)¼
L(q� q0cosb, D)P(g� g0, r).

For spurious glassy states, the condition (36) is not satisfied,
but R¼ 0, which in the present case, is equivalent to
|I|�|

R
eibh1(b)db|¼ 0, as can be seen from equation (27). There

are many possible h1(b) satisfying this condition, for example,
h1(b)¼ P(b�b0,r)þP(b�b0� p,r).

Examples of the four types of states occurring in the model (1)
are shown in Fig. 2, presented in the natural frame where the
population does not move as a whole (/oS¼ 0). In the (y,o)-
plane, the only difference between the quasi-glassy state and
incoherence is that, in the former, phases within the glassy cluster
(|o|o|k|W) are frozen around random angles b (static disorder),
as seen in (y, b)-plane; this is in contrast to their asynchronous

�

Incoherent state
(W= 0, R= 0, �(�,t) = 1/2�)

–�

�

−3 0 3
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0

Quasi-glassy state
(W> 0, R= 0, �(�,t) = 1/2�)

−3 0 3

�
–� �0

Spurious glassy state
(W> 0, R= 0, �(�,t) ≠ 1/2�)
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�
–� �0

Coherent state
(W> 0, R> 0, �(�,t) ≠1/2�)
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Figure 2 | Different kinds of states. The states that can appear in the model (1), illustrated by snapshots of positions in the y, o (upper panel) and y, b
(bottom panel) planes of (the same) 1,000 randomly selected oscillators (out of N¼ 25,600). Tiny vertical arrows show the oscillators movements during

0.25 s (for a dynamic version of the figure see Supplementary Movie 1). Red-dashed lines show boundaries between the clusters and incoherent

populations. In all cases, g(o, k)¼ L(o, 1)d(k� K), h2(q,g|b)¼ d(q� 1)d(gþb), and (a) K¼ 1, h1(b)¼ 1/2p; (b) K¼ 3, h1(b)¼ 1/2p; (c) K¼ 3, h1(b)¼
(1/2)[P(b�p/2,0.8)þ P(bþp/2,0.8)]; (d) K¼ 3, h1(b)¼ P(b, 0.8). The pictures will be the same for any h2(q, g|b) satisfying |J|¼ 1, fJ¼0 in each case.

All states have O¼0 and are presented in the natural frame (/oS¼0); depending on the distribution G(C) of parameters in (1), similar states

may also appear in a rotating frames (Oa0), corresponding to quasi-glassy, spurious glassy or coherent travelling waves.
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movement (dynamic disorder), observed for incoherence. Draw-
ing an analogy between the oscillators’ phases and the particles’
positions in space, the incoherent state of the system (1) can be
related to a liquid or gaseous state of matter; coherent to the
crystalline state; spurious glassy to a crystal with a specific
structure; and quasi-glassy to a glass.

As discussed previously, the model (1) can be reduced to a
form without b (10) by a change of variables. Thus, any quasi-
glassy or spurious glassy state in terms of yi (1) can be
transformed to a coherent state in terms of ~yi ¼ yi�bi.
Contrariwise, glassy states of the system (1) can always be viewed
as coherent states but in a specifically disordered coordinate
system, being therefore redundant in a strict mathematical sense.
In practice, however, the coordinates are chosen based on their
physical meaning, so that these states are realizable when the
actual interaction between the oscillators contains phase shifts b,
which can be achieved, for example, in a real systems with
programmable coupling48,49. A similar situation occurs for the
Mattis spin glass50: it can be transformed to a ferromagnetic state
by change of variables26,27. Nonetheless, the Mattis model found
a number of applications51–53 and proved to be a useful starting
point in studies of spin glasses. Note that, combining the results
of the present work with those of refs 22,32,33,54, one can modify
the model (1) to observe states exhibiting most of the glassy
properties (31–35) (see Methods).

Relaxation dynamics. Up to now, we have concentrated mainly
on the behaviour of the system (1) in the asymptotic limit t-N,
restricting our consideration to a set of its possible SSs. The
relaxation to these states is determined by the parameter dis-
tribution and can take various forms. It is hard to analyse in
general, but for particular G(C) the full-time evolutions Y(t),Z(t)
can be obtained analytically by using the OA-reduction proce-
dure41, which can be extended to incorporate the distributed
phase shifts. Thus, consider the distribution

GðCÞ ¼ Lðo;DÞdðk�KÞdðq� 1ÞdðbÞPðg�f0; r0Þ ð38Þ
In this case, a(C,t) can be analytically continued inside the unit
circle of zg¼ eig, as the condition (15) is satisfied there. Hence, in
equations (8) and (9), one can integrate over g by changing
the integration to the unit circle of zg and taking the residue at
the pole zg ¼ r0eif0 of P(g�f0,r0) (see equation (11)). The
integration over o is performed in the usual way41, that is, by
taking the residue at o¼ iD. Then, from equations (8) and (9)
one obtains ZðtÞ ¼ aðiD; eig ¼ r0eif0 ; tÞ, YðtÞ ¼ r0eif0 ZðtÞ.
Substituting this into equation (6) and solving the resultant
equations, one gets finally

WðtÞ ¼
j J j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� 2D

KJ
j

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ ½ð1� 2D

KJ
Þðj J j=Wð0ÞÞ2� 1�e�ðKJ � 2DÞt j

q
_FðtÞ � OðtÞ ¼ KJ tanfJ

2

�
W2ðtÞ
j J j2 þ 1

�
; KJ � K j J jcosfJ

RðtÞ ¼j I jWðtÞ= j J j; FðtÞ�CðtÞ ¼ fJ �fI ;

ð39Þ
where we have represented all in terms of I, J (see equation (24)),
which in the present case are j I jeifI ¼ 1, j J jeifJ ¼ r0eif0 .
Obviously, a similar procedure to that outlined here can be
applied if the distribution of g has a few poles inside the
unit circle.

Now consider the KM (1) with distributed b:

GðCÞ ¼ Lðo;DÞdðk�KÞdðq� 1ÞPðb�f0; r0ÞdðgÞ; ð40Þ
in which case, one has Z(t)¼Y(t) by definition (2). By the change

of variables ~yi ¼ yi�bi, the present case can be reduced to the
already-studied KM with distributed g (see equation (38)). Then,
because ZðtÞ ¼ YðtÞ ¼ eYðtÞ (see discussion of equation (10)),
the macroscopic parameters should still evolve according to
equation (39), although one should now use j I jeifI ¼j J jeifJ ¼
r0eif0 in the latter. The same result may be obtained by applying
the OA-reduction, with the integrals (8) and (9) over b being
evaluated by taking residues inside the unit circle of eib, similarly
to what was done in the previous case.

However, the behaviour predicted by equation (39), and the
actual behaviour of Z(t),Y(t), agree only for distributed g, but not
for distributed b, as demonstrated in Fig. 3. The reasons for this
are, first, that one cannot continue a(C,t) inside the unit circle of
b, as (15) is not satisfied there, which makes OA-reduction
impossible when b is distributed. Second, the evolution of
Y(t),Z(t) for (40) cannot be obtained from the system of
~yi ¼ yi� bi, at least if starting from the standard initial
conditions (16), as assumed here. This is because such
transformation introduces a correlation of the initial phases with
system parameters. For example, if all yi(0)¼ 0, then one will
have ~yið0Þ ¼ �bi ¼ �egi, so that eaðeC; 0Þ ¼ e� i~g and the OA-
reduction cannot be applied because now (14) is not satisfied.
Therefore, although the cases (38) and (40) can be transformed
into each other by changes of variables, the time evolution for
distributed b appears to be much more complex than for
distributed g, and cannot be obtained in a simple form.

Super-relaxation. Astonishingly, for a class of distributions G(C),
and a very large family of initial configurations, the oscillators do
not feel any interaction at all while relaxing to incoherence. This
behaviour occurs when the following three conditions are satisfied:Z

qeigGðo; k; q; b; gÞdkdqdbdg ¼ 0; 8o; ð41Þ

Initial conditions rðy; t ¼ 0 j CÞ are not
correlated with q or g; either directly or
indirectly ðthrough the other parametersÞ;

ð42Þ

Incoherence is the only stable state
of the system:

ð43Þ

Thus, conditions (41) and (42) imply W(0)¼
R

eiyr(y,0|C)qeigG(C)
dydC¼ 0. Based on numerical evidence, the weighted mean field
then stays at zero during the whole evolution W(t)¼ 0, leading to
an effective disappearance of interaction between the oscillators, as
follows from equation (3). As a result, the oscillators evolve freely
( _yi ¼ oi) and so the relaxation (both its rate and form) depends

Time (s)
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0 1 2 3 4 5
0

0.5

1

W
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0

0.5

1
Theory
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Figure 3 | Theoretical and numerical system behavior. The main plot and

inset display time evolutions of R(t) and W(t), respectively. Dashed lines

show the behaviour predicted by (39), while solid lines correspond

to the results of numerical simulations: blue—distributed g (38), red—

distributed b (40). In (38) and (40), we used f0¼p/6, r0¼0.5.
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only on the marginal distribution of o:

RðtÞ ¼ Rð0Þ
��� Z eiotGðCÞdC

���: ð44Þ

This phenomenon, which we refer to as super-relaxation, is
illustrated in Fig. 4. Note that for uncoupled distributions,
equation (23), the condition (41) reduces to

R
qeigh(q, b, g)

dqdbdg¼ 0.
The claim that W(t)¼ 0 if all the conditions (41), (42) and (43)

are satisfied can be proven rigorously for particular distributions,
for example, G(C)¼G(o, k, q, bþ g)/2p (see Methods), though
we were unable to prove it in general; based on simulations,
however, it seems to be satisfied in most (if not all) cases. Thus, it
is clear that the system always has a solution with W(t)¼ 0 if
conditions (41) and (42) are fulfilled: in this case, to have
W(t)40, the distribution r(y, t|C) should acquire a particular
dependence on the system parameters; but evolving according to
equation (5) with W(t)¼ 0, it can become dependent only on o,
which in turn cannot increase W(t) above zero if condition (41)
holds. The stability of this solution is rather hard to prove, but it
appears to be stable if the incoherence is the only stable state
(condition (43)). Nevertheless, even if W(t) is not exactly zero,
below some relatively high threshold its value seems to have a

negligible effect on the dynamics of R(t), as will be seen in Fig. 5
below.

Super-relaxation can appear only if the final state is incoherence
(W¼ 0), while relaxation to SSs with W40 will generally be
coupling dependent, even if conditions (41) and (42) are satisfied.
In the latter case, relaxation occurs in two stages as shown in Fig. 5
for the example of quasi-glassy states. The phases first begin to
disorder in the same way as for incoherence, but are slowly
entrained while passing their equilibrium positions. When the field
of the entrained oscillators, characterized by W, becomes strong
enough, they begin to force the unentrained ones to take their
positions, so the relaxation switches to a faster, coupling-dependent
regime. This switch occurs sooner for stronger coupling.

Discussion
We have generalized our earlier approach10 to make it applicable
to the more general KM (1) so that, using equations (19–22), one
can immediately obtain a macroscopic characteristics of possible
SSs. The generalized KM (1) encompasses a variety of KM
variants studied earlier10,13–15,19,21,24, allowing one readily to
reproduce and extend many of the previous results. Remarkably,
the steady-state behaviour of (1) with any distribution h(q,b,g)
(see equation (23)) can be obtained from the simple Sakaguchi–
Kuramoto model (29), (30). It should be noted, however, that
(17–22) describe only SSs, being inapplicable to inherently
non-stationary solutions such as standing waves55 or oscillating
p-states44. Note also that most expressions can straightforwardly
be extended to the case G(C)-G(C,R,W) (see Methods); for
examples when this might be relevant see refs 56–59.

Most interestingly, we have found, that the model (1) can
exhibit exotic behaviour, such as glassy states and super-
relaxation, thereby opening new horizons for KM-related
investigations, both theoretical and practical. These discoveries
have a far-reaching implications. For example, it should now be
possible to create, observe and study glassy behaviour in real
systems of coupled oscillators, where a variety of novel
phenomena may be anticipated. As one possible application, if
some physical quantity can be associated with the weighted mean
field W (equation (2)) in laser arrays5 described by the KM, it
might be possible to construct a laser exhibiting zero intensity
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Figure 4 | Examples of super-relaxation. Interaction-independent relaxation of the order parameter to incoherence for different parameter distributions

(all satisfying (41)), which are indicated in the figure; u(x, b) denotes uniform distribution of x in [� b, b], while L(x, D) and P(x, r) are defined in (11).
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(R¼ 0) but for which the other effects are nonvanishing (W40);
similar considerations apply to a wide range of different KM
applications. Furthermore, the phenomenon of super-relaxation
might be used to design systems whose dynamics remains highly
stable in the face of different perturbations and parameter
changes.

Methods
Numerical simulations. Except where otherwise specified, all simulations were
performed by integrating the full system equation (1) using a 6th order Runge–
Kutta method with a time step of 0.01 s. The number of oscillators used was
N¼ 25,600 for Fig. 2, N¼ 105 for Fig. 1 and N¼ 106 for all other cases. Additional
details are provided in figure captions.

Parameter normalization. Since the model (1) is invariant under (ki, bi)-(� ki,
biþ p) or (qi, gi)-(� qi, giþp) or rescalings (ki, qi)-(ki/r, rqi), there exist some
ambiguity in the parameter definitions. To remove this ambiguity, one can fix the
normalization of qi and specify a rule for choosing the sign of ki, qi; but different
choices might be preferred in different situations. For example, the normalizationP

qi¼ 1 is inapplicable when qi¼ cos(gi) with gi being uniform;
P

|qi|¼ 1, on the
other hand, fails for a Lorenzian distribution of qi. The most universal choice seems
to be

R
|
R

qei(bþ g)G(C)dqdbdg|dodk¼ 1, which additionally assures Wr1. How-
ever, when qi¼ 1 and bi are distributed (so Y¼Z), this normalization will lead to a
rescaling of qi (so YaZ), which might be inconvenient. Therefore, because the
normalization can be fixed at any time, we retain the associated ambiguity in order
to preserve generality. Note that W (equation (2)) but not R and not |k|W, changes
under the (k,q)-rescalings and thus can be higher than unity.

Phase distribution. The distribution P(f, r), equation (11), represents a Poisson
kernel for the unit disc and is very common for the KM. For example, it
can be shown that the OA-ansatz (equation (6)) can be rewritten43 as r(y,
t|C)¼ P(y� arg[a(C, t)], |a(C, t)|). Because P(f, r) has one pole inside and one
outside the unit circle of zf�eif, it is very convenient in relation to analytic
derivations, for example, one has

R p
�p eifPðf�f0; rÞdf ¼ reif0 . To simulate this

distribution, one sets fi ¼ 2 arctan½1� r
1þ r tanðpðpi � 1=2ÞÞ�, where piA[0,1] are

uniformly distributed random numbers.

Derivation of the incoherence stability conditions. To perform a linear stability
analysis of incoherence, we examine the maximum growth rate for small pertur-
bation eZ(y, t|C) added to the incoherent solution r(y, t|C)¼ 1/2p. Following
ref. 45, this perturbation is expressed as

Zðy; t jCÞ ¼ cðCÞe� iyelt þ c	ðCÞeiyel
	 t þ Z?ðy; t jCÞ; ð45Þ

where the Fourier expansion of Z>(y, t|C) contains only terms einy with |n|41 (so
that

R
(e±iy)Z>(y, t|C)dy¼ 0). Substituting r(y,t|C)¼ 1/2pþ eZ(y,t|C) and (45)

into (5), and collecting the terms proportional to e� iy, to the first order in e one
obtains

ecðCÞðl� ioÞelt ¼ keib

2
YðtÞ: ð46Þ

Considering the part Beiy of equation (5), one will get the complex conjugate of
equation (46), while for terms Bein y with |n|41 the growth rate of the associated
perturbations qt[eZ>(y,t|C)] can be shown to be O(e2), so that they are of no
interest for linear analysis.

From (46) it follows that c(C)¼ (keibY(t)e� lt)/(2e(l� io)). Substituting this
into Y(t)¼

R
eiyr(y,t|C)qeigG(C)dydC¼ eeltR qeigc(C)G(C)dC and dividing both

sides by Y(t)/2, one self-consistently obtains

2 ¼
Z

kqeiðbþ gÞGðCÞdC
l� io

¼
Z

kJðo; kÞdodk
l� io

; ð47Þ

where we have used the definition of J(o,k) (see equation (12)). The incoherence
changes stability when Re[l] crosses zero. Hence, denoting l¼ lrþ ili, taking the
limit lr-0 in equation (47) and using limlr!0½lr� iðo� liÞ�� 1 ¼ pdðo� liÞ
þ i½o� li�� 1, one obtains (21) with x¼ li.

Derivation of the ESCs. The ESCs (22) cannot be derived rigorously but, rather,
are based on empirical assumptions. Thus, we first assume that the perturbations to
the SS obey

d _Y ¼ A
Z

asðC;Y þ dYÞGþOþ dOðCÞdC�ðY þ dYÞ
� �

ð48Þ

where dY¼ (dWþ iWdF)eiF and dO are the deviations of the SS parameters from
their stationary values Y and O, respectively; A is a constant, GþO is defined in (11)
and as(C,Y) is the OA stationary solution (17). The latter can be represented in

unified form for all o, k as

asðC;YÞ ¼ eib

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2 jY j2 �o2 j

p
exp
�
� i arg½k2jYj2 �o2 �

2

�
þ io

kY	
ð49Þ

Although equation (48) represents a purely empirical assumption, some of the
motivation behind it is that for incoherence it gives the correct transition points
(equation (21)), as can be checked by performing a linear stability analysis of
equation (48) with Y¼ 0.

For Y40, based on trial and error we set A40, dO¼W2dF in equation (48).
Then using equation (49) and retaining in (48) only the terms of the first order in
dW, dF, one obtains

d_W
d_F

	 

¼ A @W Re eF� 1 W2ð@ORe eFÞ

W � 1ð@W Im eFÞ Wð@OIm eFÞ
	 


dW
dF

	 

ð50Þ

where we have expressed all in terms of eF � eF½J �O ;W� (equation 19). For A40,
the system (50) is stable only if the trace and determinant of the corresponding
matrix are lower and higher than zero, respectively, which gives (22).

Glassy conditions for the model considered. For the system equation (1) with
the uncoupled distribution, equation (23), it is easy to see that the conditions
(31,32) for observing quasi-glassy states can be rewritten as (36,37). Thus, the
phases of the oscillators with |oi|r|ki|W in a stationary regime are frozen at
yi¼ biþ arcsin(oi/|ki|W)þpH(� ki) (all in the rotating frame), as follows from
equation (18). Therefore, for states with W40, an absence of phase locking
between the oscillators (condition (31)) is equivalent to a uniform distribution of bi

(equation (36)). Next, W40 (37) is the necessary and sufficient condition for (32):
necessary because, otherwise, all oscillators have _yiðtÞ ¼ oi ¼ 0, as implied by
equation (3); and sufficient because it establishes frequency locking of the oscil-
lators with |oi|r|ki|W (since their phases are constant). Finally, as is clear from
equation (25), for the uncoupled distributions (23), SSs with W40 can appear only
if |J|40, as additionally indicated in equation (37).

Glassy states exhibiting nearly all glassy properties. One can modify the model
(1) to observe glassy states with most of the desired properties (31–35), and not
only the first two of them. Thus, frustration (34) can be introduced, for example, by
considering the van Hemmen type of interactions32,33, while the high multiplicity
of states (33) can be achieved by using the higher-order coupling22,54. As an
example, it can easily be checked numerically that a state satisfying conditions
(31–34) appears in the system

_yi ¼ oi �
10
N

X
j

ðkiqj þ qikjÞ sin½3ðyi � yj � bi� gjÞ�; ð51Þ

where ki and qi are independent random variables taking values ±1 with equal
probability, bi¼ � gi are uniformly distributed and the frequencies oi are drawn
from g (o)B[1þo2]� 1. Regarding the last glassy property (35), it might be
possible to satisfy it with an appropriate choice of the parameter distribution,
which, to a large extent, determines the relaxation of R(t). However, most
interestingly, it turns out that for systems of the type (51), there exist many
configurations with R(t-N)40, and the latter is proportional to the initial R(0).
Thus, in many cases the phases do not disorder completely, so the basic criterion
(31) becomes violated if starting from initial conditions other than incoherence.

Super-relaxation claim W(t)¼0. In some cases, one can rigorously prove that
W(t) remains zero at all times if the conditions (41), (42) and (43) are fulfilled.
Thus, consider the distribution

GðCÞ ¼ Gðo; k; q;bþ gÞ=2p: ð52Þ

Changing the variables to ~yi ¼ yi � bi, one obtains the system (10) witheGðeCÞ ¼ Gðo; k; q;egÞ, characterized by the same weighted mean field eWðtÞ ¼WðtÞ
(see discussion of (10)). Under such a change, however, one subtracts from each yi

a uniform random variable bi, so that any initial conditions for yi satisfying (42)
will be mapped to a uniform initial condition for ~yi ; moreover, since G(C) depends
only on the sum gþ b, these initial ~yi will not be correlated with egi ¼ gi þ bi , as
would be otherwise. Therefore, one has erð~yi; 0 j eCÞ ¼ 1=2p) eaðeC; 0Þ ¼ 0. Then,
taking into account that eWð0Þ ¼ Wð0Þ ¼ 0, it follows from equations (7) and (8)
that eaðeC; tÞ ¼ 0) eWðtÞ ¼WðtÞ ¼ 0. Finally, because the incoherent state for yi

is stable (condition (43)), it will obviously be stable in terms of ~yi as well, so that the
perturbations to the weighted mean field will decay, ensuring that it stays at zero.

Generalization to G(C)-G(C,R,W). In some cases56–59, the parameter
distribution might depend on R and/or W, for example, the coupling can be
influenced by the mean field strength G(C, R, W)Bd(k�K(R)). One can easily
extend all expressions describing the SSs to such cases. Thus, proceeding in the
usual way, the stationary OA solution (17) and the associated phase distribution
(18) can be shown to have the same form. Next, the SCCs equations (19) and (20),
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from which the SS parameters are determined, will also be the same except

Iðo; kÞ ! Iðo; k;R;WÞ �
Z

eibGðC;R;WÞdqdbdg;

Jðo; kÞ ! Jðo; k;R;WÞ �
Z

qeiðbþ gÞGðC;R;WÞdqdbdg;
ð53Þ

Note, however, that if the parameter distribution depends on R (qRG(C,R,W)a0),
and q or g are distributed (so that WaR), then equations (19) and (20) become
coupled and should be solved at the same time to get all the R,W,O,F�C. Such
situation occurs because, in this case, the effective interaction between the
oscillators, although explicitly determined by W (3), has additional implicit
dependence on R; as a result, the dynamics of the model becomes more
sophisticated, and its analysis appears to be an interesting topic for future research.

Assuming that limR!0;W!0 RnWm@n
R@

m
W GðG;R;WÞ ¼ 0; 8n;m 
 0; nþm40,

the conditions for incoherence stability can be derived in the usual way and take
the same form (21), except that J(o, k)-J(o, k, 0, 0) (53). The ESCs (22), on the
other hand, cannot so easily be generalized to field-dependent distributions, at least
if qRG(C, R, W)a0 and WaR; otherwise, that is, when G(C)-G(C, W), they
preserve the original form of equation (22), but with a modified J given by equation
(53) (though it is not clear how well they work in this case). Having obtained
the general equations, their simplification for the uncoupled distributions
G(C, R, W)¼ g(o, k, R, W)h(q, b, g, R, W) to analogues of equations (24–28)
is straightforward.
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