

Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review)

YE DING^{1,2} and YONG YU^{1,2}

¹Henan Key Laboratory of *Helicobacter Pylori* and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China;
²Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China

Received September 18, 2024; Accepted January 30, 2025

DOI: 10.3892/mmr.2025.13474

Abstract. Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti-tumor and anti-inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti-tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.

Contents

- 1. Introduction
- 2. Current status of different types of GI cancer treatment

Correspondence to: Professor Yong Yu, Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, 3 Kangfu Street, Zhengzhou, Henan 450052, P.R. China

E-mail: 13838290678@126.com

Key words: flavonoids, gastrointestinal types of cancer, signaling pathway, drug delivery system

- 3. Classification of flavonoids
- 4. Absorption and metabolism of flavonoids in vivo
- 5. The role of flavonoids in different types of GI cancer
- 6. Regimens to enhance the efficacy of flavonoids in preclinical models
- 7. Strategies to improve therapeutic efficacy and bioavailability of flavonoids
- 8. Limitations and potential consequences
- 9. Conclusion and prospects

1. Introduction

There are numerous natural products in nature that have anti-cancer activity, for example, alkaloids represented by harringtonine and vincristine, terpenoids represented by artemisinin and paclitaxel, and flavonoids represented by genistein and baicalein (1). The therapeutic effects of flavonoids in various types of cancer such as breast cancer, colorectal cancer (CRC) and liver cancer have been established (2-4). Flavonoids, a class of polyphenolic compounds serving as secondary metabolites in plants, are primarily sourced from plant foods, which are distributed in vegetables, fruits, green tea and grains (5,6). Flavonoids exhibit a basic skeletal structure of diphenyl propanes (C6-C3-C6). According to the different hydroxylation and glycosylation, and other modifications of this core molecule, flavonoids are categorized into seven subclasses: Flavonols, flavones, isoflavones, anthocyanidins, flavanones, flavanols and chalcones (7-10). Flavonoids exert their anticancer effects by regulating key molecular targets such as mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) or by reducing levels of reactive oxygen species (ROS) to regulate biological processes such as DNA damage, inflammation, cell death and metastasis of cancer cells (11,12).

The various types of gastrointestinal (GI) cancer are associated with the digestive system and its accessory organs, including gastric cancer (GC), liver cancer, esophageal cancer (EC), pancreatic cancer (PC), and CRC. They represent a few of the most prevalent types of malignant tumors in the world (13). Different types of GI cancer account for a quarter of global cancer incidences and 1/3 of mortality due to cancer globally (14). According to the global cancer statistics of the

2020 Global Cancer Observatory database, the number of new mortalities of liver, stomach and rectal tumors ranked second, third and fifth among the 36 types of cancer in 185 countries respectively (15). The cause of different types of GI cancer is multifactorial, involving lifestyle, dietary habits, chemical damage and other factors (16). Types of early-stage GI cancer often lack more convenient and cost-effective screening methods beyond routine endoscopy for early detection (17). In addition, delayed surgical intervention and limited efficacy of radiotherapy and chemotherapy have led to an increase in the mortality of GI cancer year by year. Flavonoids have inhibitory effects on a variety of types of cancer and are recognized as a promising class of anti-tumor drugs, which are expected to improve the current high mortality rate caused by different types of GI cancer. Therefore, it is necessary to thoroughly investigate the molecular mechanism of its treatment, fully evaluate its safety and pharmacological properties, and propose solutions to possible difficulties, so that therapies can be applied in clinical practice as early as possible.

The present review elucidated the therapeutic effects of flavonoids on the occurrence and progression of different types of GI cancer from the perspective of signaling pathways. Various types of flavonoids exert therapeutic roles by modulating signaling pathways associated with different types of GI cancer and regulating the expression of target genes involved in these pathways (18). The present review provided a more comprehensive theoretical foundation for understanding the molecular mechanisms underlying the therapeutic potential of flavonoids in treating different types of GI cancer. In addition, the oral bioavailability of flavonoids is limited due to their poor water solubility, low permeability and inferior stability (19). To address this issue, several widely used drug delivery strategies for flavonoids are listed, the limitations and challenges of current research in this field are highlighted and key areas that require further investigation to advance future research on enhancing the efficacy of flavonoids in treating different types of GI cancer are identified.

2. Current status of different types of GI cancer treatment

Currently, the most common option for treating the different types of GI cancer is triple therapy: Surgery, chemotherapy and radiotherapy (20). For resectable localized lesions, radical surgery is the most important treatment (21). Different types of GI cancer have different surgical methods according to their anatomical characteristics. EC can be treated by transhiatal or transthoracic esophagectomy, GC can be treated by total gastrectomy and subtotal gastrectomy, PC can be treated by Whipple surgery, liver cancer can be treated with portal vein embolization and partial hepatectomy, and CRC can be treated with complete mesocolic excision with central vascular ligation (22-26). Disadvantages of surgery include large trauma, several postoperative complications, and high tolerance requirements for patients. With the development of endoscopic technology, early types of GI cancer or precancerous lesions can be detected and treated by endoscopy, thereby improving the prognosis, reducing the risk of recurrence and improving the quality of life of patients (27). Endoscopic submucosal dissection can be used to treat superficial gastrointestinal lesions. Endoscopic cholangiopancreatography has an important role in the treatment of unknown biliary strictures and malignant biliary obstructive diseases (28). The first case of laparoscopic gastrectomy for early GC was reported in 1994 and since then the advantages of laparoscopic surgery are being recognized (29). The key to the success of GC surgery is the ability to carry out an extended lymphadenectomy. Studies have found that there is no difference in the number of lymph nodes removed between laparoscopic gastrectomy and open gastrectomy, but the intraoperative blood loss and hospitalization time of laparoscopic gastrectomy are considerably decreased when compared with those of open gastrectomy (30-32). In addition, for some rare gastrointestinal tumors, such as retrorectal tumors, laparoscopic surgery has the potential advantages of being minimally invasive and is associated with reduced mortality compared with traditional surgical resection (33). However, because the organs are preserved in minimally invasive surgery, there is a risk of recurrence (34).

Perioperative chemotherapy is used in the treatment of esophagogastric adenocarcinoma (OGAC) (35,36). Compared with manual surgery, OGAC has considerably improved survival outcomes (37). Some studies have found that postoperative chemotherapy can effectively improve the overall survival of patients with OGAC treated with preoperative chemotherapy and surgery (38). During a 5-year follow-up, patients with locally advanced rectal cancer received short-term radiotherapy before total mesorectal resection, followed by six cycles of capecitabine + oxaliplatin or nine cycles of oxaliplatin + leucovorin + fluorouracil. It was found that the probability of disease-related treatment failure in the experimental group was decreased compared with that in the control group (39). Another study showed similar results, patients with operable GC, gastro-esophageal junction and lower esophageal adenocarcinoma received three cycles of epirubicin + cisplatin + 5-fluorouracil chemotherapy before and after surgery. Compared with the simple operation group, pathological evaluation of the tumor in the perioperative chemotherapy group showed a reduction in tumor volume as well as lymph node disease and patients had considerably prolonged progression-free survival (40). According to the aforementioned research conclusions, chemotherapy can effectively control the recurrence of cancer and improve the success rate of surgery, which are key for the management and treatment of cancer. However, liver cancer is not sensitive to the effect of chemotherapy, and patients with impaired liver function are usually unable to tolerate systemic chemotherapy (41). In addition, the biggest issue faced by chemotherapy in clinical practice is the emergence of drug resistance during treatment, and treatment failure for >90% of patients are caused by multidrug resistance (MDR) (42).

National Comprehensive Cancer Network guidelines recommend preoperative concurrent radio chemotherapy (nCRT) as a standard treatment for locally advanced rectal cancer (43). For resectable lesions, nCRT can reduce pathological stage and increase pathologic complete response (defined as the absence of residual cancer cells in the surgical specimen after treatment, which can be considered a sign of successful treatment and indicates that the tumor has been completely eliminated), but there is no considerable improvement in long-term survival. For unresectable lesions, nCRT can control and reduce tumor growth and spread in the treated area, improve patient local

control and cancer-specific survival (44,45). Intraoperative radiation therapy can improve local control and reduce postoperative complications in patients with unresectable tumors and a high risk of local recurrence (46). The current issue in radiotherapy is effectively using the differences between tumor and host tissues for improved control of the radiation dose (47). The advantage of particle therapy (PT) is that the radiation dose can be targeted on the target tissue which avoids indirect damage to normal tissues (48). To compare the effects of charged particle therapy (CPT) and photon radiotherapy on clinical outcomes and toxicity in patients with hepatocellular carcinoma (HCC) in a systematic review and meta-analysis, patients with HCC treated with CPT were revealed to have an increased survival rate than conventional radiotherapy and decreased radiotoxicity than photon radiotherapy (49). In addition, studies are investigating the combination of PT and endoscopic techniques, such as endoscopic ultrasound (EUS), to implant radioactive particles directly into the target tissue to achieve brachytherapy (50). Direct irradiation of EUS-guided iodine-125 particles into the celiac ganglion can effectively relieve pain and the consumption of analgesics in patients with unresectable PC (51).

Cancer immunotherapy and targeted therapy have become the focus of research (52,53). Cancer immunotherapy refers to the blocking of the programmed death protein 1 (PD-1)/PD-ligand 1 (PD-L1) immune checkpoint. PD-1 inhibitors, such as pembrolizumab, nivolumab and camrelizumab, have considerable effects on patients with refractory advanced GC and advanced EC (54). In a Phase 3 clinical trial, camrelizumab + paclitaxel and cisplatin prolonged overall survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma (55). However, the efficacy of immune checkpoint inhibitors (ICIs) in combination with chemotherapy drugs remains uncertain. In a clinical trial, pembrolizumab + cisplatin did not markedly improve the treatment effect compared with single-agent chemotherapy in patients with advanced or metastatic esophageal squamous cell carcinoma, but nivolumab + oxaliplatin markedly improved the treatment effect compared with single agent chemotherapy, it may be due to oxaliplatin being stronger in inducing immunogenic cell death than cisplatin against different types of GI cancer (56). Research has revealed that there may be a synergistic effect between radiation therapy (RT) and ICIs. For example, RT can upregulate the expression level of PD-L1 in EC (57). Adjuvant durvalumab therapy after triple therapy can markedly improve one-year recurrence-free survival in patients with esophageal and gastroesophageal junction adenocarcinoma (58). However, since tumors can become radioresistant by up-regulating PD-L1 expression, and ICIs can restore antitumor immunity by targeting similar markers, further studies are needed to select which type of ICIs to combine with RT for optimal therapeutic effects (59). Perioperative targeted therapy has a considerable therapeutic effect on patients with GC with corresponding mutation sites. Anti-HER2 and anti-vascular endothelial growth factor (VEGF) therapies are recommended as the first-line and second-line treatment for advanced GC. The median overall survival of patients with GC treated with trastuzumab plus chemotherapy (18.6 months) was increased when compared with that of patients treated with single-agent chemotherapy

(11.1 months) (60). The incidence of anastomotic leakage after esophagogastric resection in patients with GC treated with bevacizumab plus chemotherapy was increased when compared with that in patients treated with chemotherapy alone group, and the 3-year overall survival was not considerably different from that in patients treated with chemotherapy alone group (48.1 vs. 50.3%) (61). Another VEGFR-2 monoclonal antibody, ramucirumab, combined with paclitaxel can markedly improve overall survival in patients with previously treated advanced GC and can be used as the standard second-line treatment for patients with advanced GC (62). Molecular targeted therapies for HCC mainly target VEGF and other angiogenic pathways. In a randomized, double-blind, placebo-controlled Phase 3 trial, injection of ramucirumab markedly improved overall survival, was well tolerated and demonstrated controllable safety in patients with HCC (63).

In conclusion, with the development of treatment technology, the effective treatment rate of different GI cancer types is increasing year by year, but it is still unable to avoid its own limitations (64). As a large group of natural drugs, flavonoids have attracted attention over the years (65-67). Flavonoids have potent anti-tumor effects and considerable preventive and therapeutic effects on numerous types of GI cancer (68-72). Studies have found that flavonoids combined with chemotherapy drugs can improve sensitivity to the chemotherapy drugs and markedly improve the occurrence of MDR (73,74). In terms of improving radiotherapy, flavonoids have good radioprotective and radio sensitizing effects, which can kill tumor cells with minimal damage to normal tissues or cells (75,76). In conclusion, flavonoids can be used not only as a single anti-tumor drug but also in combination with a variety of treatment methods to improve the success rate of existing treatment measures, positing it as a promising drug.

3. Classification of flavonoids

Phenolic compounds are metabolites derived from the secondary metabolic pathway of plants, which are mainly distributed in fruits, seeds and leaves of plants. They have an important role in regulating the growth and development of plants (77). The basic structure of phenolics comprises at least one hydroxyl group that is directly attached to the benzene ring. These can then be divided into phenolic acids, flavonoids, tannins, coumarins, lignans, quinones, stilbenes and curcuminoids, according to the complexity of the structure (78,79). Flavonoids are the largest group of natural phenolic compounds and their basic structure is a flavan nucleus, which is composed of two aromatic rings labeled as A and B in Fig. 1 connected by a dihydropyrone ring, labeled as C in Fig. 1 (80). According to different substituent groups, flavonoids can be divided into seven subclasses: Flavonols, flavones, isoflavones, anthocyanidins, flavanones, flavanols and chalcones (7,9) (Fig. 1).

The structure of flavonol, flavan-3-ols is characterized by the presence of a hydroxyl group at the 3 position of the C ring. Flavonols are primarily sourced from fruits, vegetables, tea and red wine (81). Kaempferol, quercetin, fisetin, isorhamnetin and myricetin are the five most common dietary forms (82). Flavonols are most notable for their multifaceted cardiovascular protective effects, which manifest through three primary mechanisms: Inhibition of epinephrine- and ADP-induced

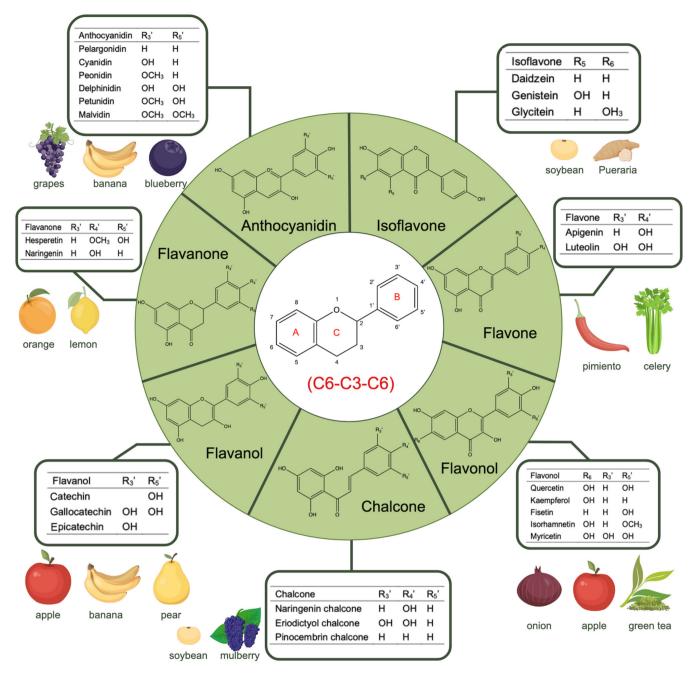


Figure 1. Schematic of the basic structure, types and food sources of flavonoids. Flavonols are primarily sourced from onions, apples and green tea, according to the different substitution groups on R_6 , R_3 and R_5 , the main compounds are quercetin, kaempferol, fisetin, isorhamneti and myricetin. Flavones are primarily sourced from pimientos and celery, according to its substitution groups at R_3 and R_4 , the main compounds are apigenin and luteolin. Isoflavones are primarily sourced from soybeans and Puerarias, according to their substitution groups at R_5 and R_6 , the major isoflavones are daidzein, genistein and glycitein. Anthocyanidins are primarily sourced from grapes, bananas and blueberries, according to the different substitution groups on R_3 and R_5 , the main compounds are pelargonidin, cyanidin, peonidin, delphinidin, petunidin and malvidin. Flavanones are primarily sourced from oranges and lemons, according to the different substitution groups on R_3 , R_4 and R_5 , the main compounds are hesperetin and naringenin. Flavanols are primarily sourced from apples, bananas and pears, according to the different substitution groups at R_3 and R_5 , the main compounds are catechin, gallocatechin and epicatechin. Chalcones are primarily sourced from soybeans and mulberries, according to its different substitution groups on R_3 , R_4 and R_5 , the main compounds are naringenin chalcone, eriodictyol chalcone and pinocembrin chalcone.

glycoprotein IIb/IIIa and P-Selectin expression, regulation of platelet function, and prevention of platelet adhesion (83). Additionally, they activate nitric oxide synthase, promoting nitric oxide synthesis in endothelial cells and enhancing vascular endothelial function (84). They also inhibit the oxidation of low density lipoprotein (LDL), increase paraoxonase activity and remove oxidized lipids from atherogenic lesions and lipoproteins (85). Among them, quercetin exhibits the most

marked cardioprotective effect on cardiovascular diseases (CVDs) by inhibiting inflammatory responses and oxidative stress damage and improving myocardial fibrosis (86,87).

The structure of flavone is 4H-chromen-4-one, characterized by the presence of a double bond between the 2nd and 3rd positions of the C ring, and the 4th position of the C ring is replaced by a ketone group (88). Flavones usually exist in the form of 7-O-glycosides and are present in celery, tea,

pimiento and oranges, representing the largest category of flavonoids (89). The two most common dietary flavones are apigenin and luteolin (90). Apigenin (4',5,7-trihydroxyflavone) is primarily derived from chamomile, parsley and onions, and is found in plants in its glycosylated form (91). It can be used as a natural anticancer, neuroprotective and antioxidant agent (92,93). Apigenin can exert its anticancer effects by regulating various cellular signaling pathways (94). Moreover, apigenin can also inhibit the production of ROS by scavenging free radicals and enhancing the activity of antioxidant enzymes, reduce the damage of brain neurons caused by oxidative stress, delay apoptosis of neuronal cells and assume a preventive and therapeutic role in the neurodegenerative diseases (95).

The basic chemical structure of isoflavones is a 3-phenylchromen-4-one backbone and is categorized as a type of phytoestrogens (96,97). In plants, isoflavones are usually modified to β-glucosides and 6-O-malonylglucosides by O-glycosidation, and stored in vacuoles (98). Isoflavones are primarily sourced from soybean or other legume derivatives, isoflavone-rich compounds include daidzein, genistein and glycitein (96). Due to their classification as phytoestrogens, isoflavones can be used in hormone replacement therapy to alleviate various symptoms and manifestations caused by estrogen reduction in menopausal women (99). Moreover, isoflavones, such as estrogen, can induce vasodilation by binding to the β -estrogen receptor in vascular endothelial cells. In terms of anticancer properties, isoflavones can competitively bind to estrogen receptors with phytoestrogens, exerting an antagonistic effect against estrogen, which is beneficial for treating estrogen-related tumors, such as breast and uterine cancer (100,101).

Anthocyanidins, which are plant pigments, exist predominantly in glycosylated forms due to their inherently unstable monomeric state (102). Anthocyanidins are responsible for the orange-red to blue-purple hues observed in plants such as fruits and flowers and primary dietary sources including grapes, bananas and some berries (103). Structurally, anthocyanidins feature glycoside attachment at the C3, C5 and C7 positions, typically comprising polyhydroxy and polymethoxy derivatives of 2-phenylbenzopyrylium or flavylium salts (104). Pelargonidin, cyanidin, peonidin, delphinidin, petunidin and malvidin are the six most prevalent anthocyanidins in the natural pelargonidin (105). The health benefits of anthocyanidins are commonly known (106,107). Anthocyanins can traverse the blood-brain barrier and blood-retinal barrier and are highly distributed in ocular tissue (108). Bilberry anthocyanins can improve night vision, and blackcurrant anthocyanins can improve adaptation of eyesight to the dark and eye fatigue in patients with open-angle glaucoma (109,110). In addition, research has demonstrated that anthocyanidins exert inhibitory effects on various malignant tumors such as CRC and breast cancer (111,112).

The chemical structure of flavanones (dihydroflavones) is characterized by the saturation of the double bond between C2 and C3 and the absence of substituents at the C3 position (113). Flavanones are mainly present in citrus fruits as glycosylated forms, and the most prevalent flavanones are hesperetin and naringenin (114). Flavanones have considerable therapeutic effects on CVDs. Epidemiological evidence indicated a substantial inverse relationship between the consumption of

citrus fruit and the incidence of CVDs (115,116). Moreover, flavanones exhibit inhibitory effect on the high-risk factors of CVDs. Specifically, naringenin reduces the levels of low-density lipoprotein-cholesterol and total cholesterol, regulating blood lipid levels (117). Both naringenin and hesperetin promote the apoptosis of cancer cells, cause arrest of the cell cycle and inhibit the proliferation of cancer cells through the upregulation of apoptotic protein expression (118,119). In addition, flavanones can be combined with other anticancer chemotherapeutic drugs to enhance the efficacy of chemotherapeutic drugs (120).

The structure of flavanols (flavan-3-ols) is characterized by the substitution of a hydroxyl group at the 3 position of the C ring and the absence of a double bond between C2 and C3. Flavanols are mainly abundant in fruits such as bananas, apples and pears. Common flavanols include catechin, gallocatechin and epicatechin (121,122). Flavanols have been shown to enhance cognitive function (123). Intake of flavanol-rich foods can effectively improve blood flow in the middle cerebral artery and enhance regional cerebral perfusion of the brain (124,125). Studies have demonstrated that flavanol intake in elderly individuals with mild cognitive impairment considerably improves the verbal fluency tests core and cognitive function (126-128). Additionally, oxidative stress and ROS production are associated with neurodegenerative diseases, which may explain the improvement of cognitive-related symptoms due to the antioxidant properties of flavanols (129,130). Flavanols are also associated with the immune system. Flavanols regulate metabolic pathways and immune responses by regulating gut microbiota, exerting therapeutic effects on both metabolic and immune-related diseases (131).

Chalcones (1,3-diaryl-2-propen-1-ones) are simple chemical scaffolds found in several natural plant products and are considered precursors to flavonoids and isoflavonoids (132). Chalcones can carry up to three modified or unmodified C5-, C10-, and C15-prenyl moieties on both the A and B rings. Chalcones are primarily found in Fabaceae and Moraceae plants (133). Chalcones exhibit a variety of biological activities, such as anti-inflammatory, anticancer, antiviral and antioxidant properties, among which the most prominent is their anticancer activity (134,135). For example, Chalcone Xanthohumol, isolated from beer, can prevent the progression of prostatic hyperplasia to prostate cancer (136). Naringenin chalcone and glucoside isosalipurposide isolated from *Helichrysum* maracandicum can inhibit the formation of epidermal papilloma and the progression of skin cancer (137).

4. Absorption and metabolism of flavonoids in vivo

Dietary flavonoids are ingested into the human body mainly in the form of glycosides (138). An improved understanding of the metabolism of flavonoids in human body is important to comprehend the therapeutic effect of flavonoids on cancer (89). A limited number of studies have investigated the effect of saliva on the oral absorption of flavonoids. Saliva has certain catechin esterase activity, which can convert (-)-epigallocatechin-3-gallate (EGCG) to (-)-epigallocatechin (EGC) and lead to absorption of EGC by the oral mucosa (139). Procyanidin oligomers are relatively stable in the mouth and esophagus, as they cannot be decomposed or modified in saliva for up to

30 min (140). Due to the characteristics of rapid absorption, rapid decomposition and poor absorption efficiency in the stomach, the metabolic pathways of flavonoids in the stomach remain unclear. Research found that procyanidins decompose into different oligomeric units after 0.1-3.0 h incubation in simulated gastric juice (141). In vitro experiments reveal that flavonoid glycosides can be absorbed in the human stomach and subsequently cleaved by β-glucosidase (142). The liver is an important organ for metabolism of flavonoids. There are two key metabolic pathways: i) Oxidation reaction and ii) glucuronidation, methylation and sulfation reaction (143,144). Oxidation reaction in phase I metabolism is carried out by the cytochrome P450 enzyme system. Glucuronidation, methylation and sulfation reaction in phase II metabolism involves the addition of an endogenous substance to the polar functional groups introduced in phase I metabolism, such as glucuronidation, methylation and sulfation (145,146). Gut microbiota has an important role in the intestinal absorption of flavonoids. The oxygen-containing heterocyclic ring of flavonoids is broken under the action of glycosidases produced by gut microbiota and then recombined by uridine diphosphate UDP-glucuronosyltransferases or sulfotransferases. Products are reabsorbed into the blood and reach the liver through the hepatic portal vein completing their enterohepatic circulation (147,148). In normal conditions, the products are excreted into the urine by transporters present in the proximal renal tubular cells. In addition, the products can be reabsorbed into the kidney by organic anion transporter 4 outside of the cellular basement membrane of tubules. Flavonoids in the kidney may undergo bioconversion under the action of some enzymes (138,143). Microorganisms in the large intestine are mainly composed of various anaerobic bacteria which participate in the reduction reaction. Flavonoids are degraded into smaller phenolic acids, which will be excreted into the feces (149).

5. The role of flavonoids in different types of GI cancer

The role of flavonoids in esophageal cancer. EC is a malignant tumor originating from the esophageal mucosa, and it is the seventh leading cause of mortality due to cancer in the world (150). There are two common histological types of EC: Esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) (151). ESCC is relatively common, and it is closely associated with smoking and drinking (152). EAC is closely associated with gastroesophageal reflux disease (153). Surgical resection combined with neoadjuvant chemoradiotherapy can considerably prolong the median overall survival of patients with EC. However, prognosis for patients remains poor due to the high invasiveness of the disease (154,155).

Flavonoids have been shown to have a therapeutic effect against EC in preclinical models. A study by Liu *et al* (156) revealed that 5 and $10 \mu g/ml$ of quercetin administration effectively inhibits the invasion of the human EC cell line, Eca109. Another study reports that the expression levels of matrix metalloproteinase (MMP) 9, MMP2 and vascular endothelial growth factor A are decreased in human umbilical vein vascular endothelial cells (CLR-1730) following quercetin treatment, indicating reduced angiogenic capacity. Licochalcone A (LCA) is a flavonoid isolated from *Glycyrrhiza uralensis* (157).

LCA reduces mitochondrial membrane potential, promotes apoptosis by upregulating apoptosis-related proteins, such as Caspase-3, Caspase-9 and Bax *in vitro*, and induces G_2/M cell cycle arrest in EC cells (158). It has been reported that flavonoids extracted from *Malus asiatica* Nakai leaves can effectively inhibit EC-induced visceral tissue changes by increasing the levels of interleukin-10 (IL-10) and monocyte chemotactic protein 1 and decreasing the levels of tumor necrosis factor alpha (TNF- α) and interferon- γ in 4-nitroquinoline N-oxide-induced EC mice (159).

A previous meta-analysis studied patients with EC who were given different doses and types of flavonoids. Total flavonoids, anthocyanidins, flavanones and flavones were revealed to potentially reduce the risk of developing EC (160). In a case-control study where patients with EAC (white male; n=161) and ESCC (white male; n=114; black male; n=218) along with corresponding controls were included, a negative correlation between anthocyanidin intake and cancer in white males was observed following adjustment for dietary fiber (161). Barrett's Esophagus (BE) is a precancerous lesion that can lead to EC (162). Polyphenon E (Poly E) is a mixture extracted from green tea containing catechins, including EGCG (163). A double-blinded, placebo-controlled and dose-escalated study which included 44 patients with BE assigned to receive placebo (n=11) or Poly E (n=33) revealed that EGCG considerably reduced the severity of dysplasia in BE when reaching a certain tissue concentration (164). Similarly, dietary flavonoids, anthocyanidins, were revealed to reduce the risk of developing BE in another case-control study (165). A different case-control study conducted in Urumqi and Shihezi (Xinjiang Uygur Autonomous Region; China) recruited 359 patients with EC and 380 controls and assessed the consumption of soy food data obtained through personal follow-up. Logistic regression analysis revealed that habitual consumption of soy food was associated with a reduced risk of developing EC, and isoflavone intake was inversely associated with EC risk (166).

A number of *in vitro* studies investigating the molecular mechanism of action of flavonoids in EC have revealed that flavonoids work through different signaling molecules and pathways (167-169). The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family that can be divided into three subtypes: JNK1, JNK2 and JNK3 (170,171). JNK is involved in regulation of apoptosis and survival by two mechanisms. JNK1 promotes cell survival and participates in the malignant transformation of cancer cells, while JNK2 facilitates apoptosis (172-174). TGF-β-activated kinase 1 (TAK1) is a core component of the JNK pathway. It can activate MAPK kinase-4 (MKK-4) and MKK7 under the stimulation of inflammatory cytokines, Toll-like receptors and ligation of antigen receptors, leading to phosphorylation and activation of the downstream JNK to regulate cell growth (175). Casticin is a type of flavonoid isolated from Vitex species (176). It can inhibit proliferation and promote the apoptosis of EC cells by activating the JNK signaling pathway (177) (Fig. 2A). MAPK/extracellular signal-regulated kinase (ERK) signaling pathway is a key signaling pathway involved in the regulation of a variety of cellular processes. K-RAS mutations are the most frequently mutated oncogene as it appears in ~30% of all cancer types (178). The binding of growth factors to growth-factor-receptor bound-2 (GRB2) on

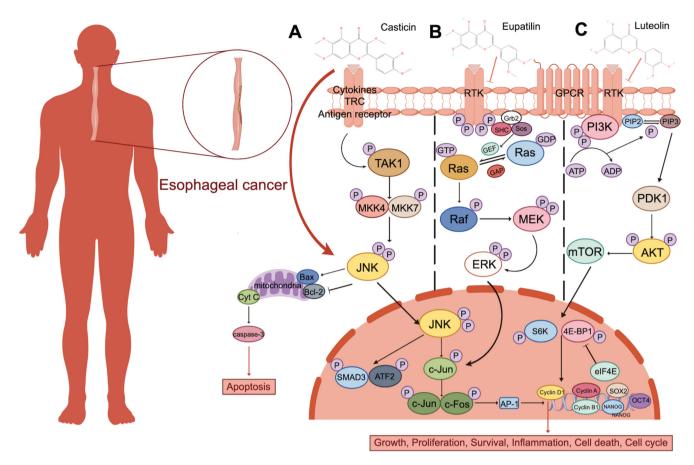


Figure 2. Role of flavonoids in esophageal cancer. (A) Casticin exerts its anti-EC effect by activating the JNK pathway. Activating TAK1, then phosphorylates MKK4 and MKK7. The downstream JNK is activated by phosphorylation to activate the transcriptional activity of c-Jun. Phosphorylated c-Jun can promote the formation of the c-Jun/c-Fos heterodimer. It binds to its binding site in the AP-1 promoter region to regulate the transcription of associated genes. In addition, JNK activation can also phosphorylate SMAD3 and ATF2, which Scutellarin involved in the occurrence of inflammation and fibrosis. Activated JNK can also regulate apoptosis through the mitochondria-mediated apoptosis pathway. (B) Eupatilin exerts its anti-EC effect by inhibiting the MAPK/ERK pathway. When the corresponding ligand binds to RTKs, it phosphorylates the tyrosine residues at their tails. It recruits GRB2/Shc/SOS to the cell membrane to convert GDP-bound Ras to active GTP-bound Ras. Upon Ras activation, the serine/threonine kinase, Raf, is recruited to the cell membrane and activated by phosphorylation. Direct regulation of MEK ultimately leads to the phosphorylation of downstream ERK. Phosphorylated ERK enters the nucleus and activates the key transcription factors c-Jun and c-Fos to bind to the binding site in the AP-1 promoter region and regulate the transcription of associated genes. (C) Luteolin exerts its anti-EC effect by inhibiting the PI3K/Akt pathway. Receptor binding to ligand results in the activation of GPCR and RTK, which activate PI3K. Activated PI3K phosphorylates PIP2 to PIP3, PIP3 further activates PDK1, phosphorylates downstream AKT and activates mTOR. Finally, mTOR acts on substrates S6K and 4E-BP1, eIF4E binds to 4E-BP1 to inhibit its transcription, and p-4E-BP1 loses its binding ability to eIF4E. It promotes S6K and 4E-BP1 transcription to regulate cell growth and development. JNK, c-Jun NH2-terminal kinase; TAK1, TGF-β-activated kinase 1; MAPK, mitogen-activated protein kinase; MKK4, MAPK kinase 4; MKK7, MAPK kinase 7; AP-1, activator protein 1; ATF2, activate transcription factor 2; EC, esophageal cancer; ERK, extracellular signal-regulated kinase; GRB2, growth-factor-receptor bound-2; SOS, son of sevenless; GDP, guanosine diphosphate; GTP, guanosine triphosphate; Ras, Rat sarcoma; Raf, Raf protein kinase; PI3K, phosphatidylinositol 3-kinase; AKT, serine/threonine kinase B; GPCR, G protein-coupled receptor; RTK, receptor tyrosine kinases; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PDK1, phosphoinositide-dependent protein kinase-1; mTOR, mammalian target of rapamycin; S6K, S6 kinase 1; 4E-BP1, 4E binding protein.

the cell membrane initiates the RAS-RAF-Mitogen-activated protein kinase (MEK) cascade, leading to ERK activation. Phosphorylated ERK regulates transcription factor activity and gene expression from the cytoplasm into the nucleus (179). Clinical research revealed that eupatilin could inhibit the proliferation of the human EC cell line, TE-1, by regulating the protein kinase B (AKT)/GSK-3 β and MAPK/ERK signaling pathways (180) (Fig. 2B). The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is abnormally activated in numerous types of cancer (181,182). The mutation in the PI3KCA gene, encoding the p110 α catalytic subunit of PI3K, is the most common (183). Activated PI3K can activate and phosphorylate the downstream kinase AKT, thereby regulating cell biological behaviors, such as growth, differentiation and metabolism. This process is often accompanied by the inactivation

of tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (184). Luteolin can reduce the levels of phosphorylated (p-)AKT and UBR5 expression by inhibiting the PI3K/AKT pathway, and it can weaken the stem-like properties of paclitaxel (PTX) resistant cells by downregulating the expression of the SOX2 protein. In addition, luteolin can block epithelial-mesenchymal transition to inhibit the migration and invasion of PTX-resistant EC cells (185). Quercetin can inhibit the invasion and proliferation of EC cells and promote apoptosis through the miR-1-3p/TAGLN2 axis (186) (Table I).

The role of flavonoids in gastric cancer. GC is a malignancy originating from the gastric mucosa, and it is the fifth most common cancer and the third most common cause of cancer-associated mortality in the world (187). According to the

Table I. Role of flavonoids in esophageal cancer.

First author/s, year	Flavonoids	Chemical structure	Model	Target	Effect	(Refs.)
Qiao, 2019	Casticin		In vitro, in vivo	Bcl-2, Bax, Caspase-3, Caspase-9, PARP, cytochrome C, p-JNK	Promotes apoptosis of EC cells <i>in vitro</i> by downregulating the expression of Bcl-2 and upregulating the expression of Bax, Caspase-3 and Caspase-9. Decreases mitochondrial membrane potential and promotes cytochrome <i>c</i> release. JNK is involved in the anti-proliferative and pro-apoptotic effects of Casticin. Downregulation of Bcl-2 expression and upregulation of p-JNK, Bax, Caspase-3 and Caspase-9 protein expression results in the reduction of tumor volume and weight in an <i>in vivo</i> xenograft model.	(177)
Wang, 2018	Eupatilin		In vitro, in vivo	Akt/GSK 3β, MAPK/ERK	Inhibition of EC cell proliferation and colony formation <i>in vitro</i> . Inhibition of Akt/GSK 3β and MAPK/ERK signaling pathways inhibits cell proliferation. The levels of p-Akt and p-ERK in tumor tissues are decreased, and the tumor volume and weight are decreased in an <i>in vivo</i> xenograft mouse model.	(180)
Zhao, 2021	Luteolin		In vitro	SOX2, OCT4, NANOG, UBR5, PI3K/Akt	Downregulation of SOX2 expression attenuates the stem cell properties of PTX-resistant cancer cells. Inhibition of PI3K/Akt pathway reduces the expression of p-AKT and UBR5. Inhibition of migration and invasion of PTX-resistant cancer cells by blocking epithelial-mesenchymal transition.	(185)
Wang, 2022	Quercetin		In vitro	miR-1-3p/TAGLN2	Inhibits colony formation, migration and invasion of EC cells and promotes apoptosis. Inhibition of TAGLN2 expression by inducing miR-1-3p expression. The inhibitory effect on EC cells is blocked by miR-1-3p inhibitors. Inhibition of EC cells by inducing miR-1-3p.	(186)

EC, esophageal cancer; Bcl-2, B-cell lymphoma-2; Bax, BCL2-associated X; PARP, poly(ADP-ribose) polymerase; p-JNK, phosphorylated c-Jun NH2-terminal kinase; Akt, serine/threonine kinase B; GSK 3β, glycogen synthase kinase 3β; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; SOX2, sex determining region (SRY)-box 2; OCT4, octamer-binding transcription factor 4; NANOG, Nanog homeobox; UBR5, ubiquitin protein ligase 5; Pl3K, phosphatidylinositol 3-kinase; TAGLN2, transgelin 2.

World Health Organization classification, GC can be divided into the following subtypes: Adenocarcinoma, adenosquamous carcinoma, squamous cell carcinoma, undifferentiated carcinoma and unclassified carcinoma, among which adenocarcinoma accounts for the highest proportion, accounting for 55-74% of diagnoses (188). *Helicobacter pylori*, one of the few bacteria directly associated with cancer, is closely associated with the occurrence and development of GC (189). *Helicobacter pylori* carry a variety of pathogenic genes such as CagA, VacA and BabA, which can cause damage to the gastric mucosa and accelerate the progress from gastritis to GC (190). Endoscopic resection is currently an optimal treatment for early GC. Perioperative or neoadjuvant chemotherapy can improve the survival rate of patients with advanced GC (191).

The therapeutic effect of flavonoids against GC has been demonstrated in various preclinical models. For instance, the effect of luterolin on the GC cell line SGC-7901 was previously assessed on cell proliferation, apoptosis and G₀/G₁ cell cycle arrest. Analysis revealed that the combination of luteolin and oxaliplatin was superior to single drug, suggesting that combined treatment produced improved synergistic anti-tumor effect. Additionally, the combined treatment could also enhance the sensitivity of GC cells to oxaliplatin (192). Hesperetin, a common citrus flavanone, has been shown to have an inhibitory effect on GC in both in vitro and in vivo models (193). Hesperetin decreases the migration, invasion and damage of telomeric silencing-1-like expression levels in GC cells. Additionally, hesperetin inhibits the methylation of histone H3 at lysine residue 79 in tumor tissues of mice, and it considerably reduces lung metastasis in immunodeficient mice (194). Calycosin is a key active ingredient in Astragalus membranaceus, which is mainly used in the treatment of cancer and liver disease (195,196). Calycosin can improve intestinal metaplasia and dysplasia of gastric mucosal cells, and improve microvascular abnormalities and parietal cell morphology in rats with precancerous lesions. These findings indicate that calycosin protects the gastric mucosa in GC (197).

A Korean case-control study reports a negative relationship between dietary flavonoids and risk of developing GC (198). In a multi-center population-based study in the United States, flavanone intake was associated with 34% lower risk for death in patients with gastric adenocarcinoma compared with controls (199). In a cohort study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, a negative relationship between total dietary intake of flavonoids and GC risk was reported in females. However, no meaningful association was found in males (200). In a case-control study where 230 patients with histologically confirmed GC and 547 controls without a history of cancer completed a food frequency questionnaire (FFQ), dietary flavonoids were inversely associated with GC risk (201). Furthermore, other studies have revealed that flavonoids could prevent GC by inhibiting urease, damaging genetic material, inhibiting protein synthesis and promoting host cell adhesion against Helicobacter pylori (202-204). Collectively, flavonoids are a potential drug candidate for the treatment of GC.

PI3K/AKT/mammalian target of rapamycin (mTOR) signaling pathway has an important role in the pathogenesis of GC, and it serves as a regulator of apoptosis and autophagy (205).

Activated and p-AKT activates serval downstream apoptosis-related genes such as Bcl-2 associated X (BAX) and forkhead box protein O1, revealing a role in the GC pathway. Autophagy is mainly regulated by a set of autophagy-related genes involved in mTOR signaling pathway (206,207). Studies have revealed that the PI3K/AKT/mTOR signaling pathway is engaged in the mechanism of action of various flavonoids in GC (208-210). For example, procyanidin B2 can promote the apoptosis of GC cells and induce autophagy by inhibiting the AKT/mTOR signaling pathway (208). Similar effects are also observed in numerous other flavonoids, such as acacetin and isoliquiritigenin (ISL) (209,210) (Fig. 3A). Mitochondrial ROS participates in stress signaling in normal cells in vivo, but it can also lead to cancer development and expansion of tumor cell phenotypes (211). In response to pathological changes, such as tumor, ischemia/reperfusion or traumatic brain injury, ROS accumulates in cells and affects cell homeostasis and function, leading to oxidative stress and mitochondrial damage. This process is accompanied by autophagy induction (212,213). Autophagy deficiency will elevate the expression of hypoxia inducible factor (HIF)-1α through the ROS-NF-κB-HIF-1α pathway and affect cell metabolism, in turn promoting glycolysis, growth and metastasis of GC cells in vivo (214). Jaceosidin (JAC) is a natural flavonoid that can induce apoptosis in GC cells through the ROS-mediated MAPK/STAT3/NF-κB signaling pathway. Additionally, JAC can induce cell cycle arrest in the G₀/G₁ phase by inhibiting the AKT pathway, and it can also inhibit cell migration by influencing the Wnt/GSK3β/β-catenin pathway (215) (Fig. 3B; Table II).

The role of flavonoids in pancreatic cancer. PC, a highly malignant tumor originating from the pancreatic ductal epithelium and acinar cells, is the seventh leading cause of cancer-associated mortality worldwide (216). The pancreas performs both endocrine and exocrine functions. PC can be sub-divided into two categories based on the origin of the tumor cells: Endocrine tumors and exocrine tumors. The common malignant exocrine pancreatic tumors mainly include pancreatic ductal adenocarcinomas (PDAC) and acinar cell carcinomas. PDAC is more common that accounts for $\sim\!\!90\%$ of all diagnosed PCs (217,218). Surgical resection remains the most effective treatment for PC (219). However, it is not applicable in 80-85% of patients who are at an advanced stage at initial diagnosis, and PC is not sensitive to most chemotherapeutic drugs (220). These factors lead to poor survival rates in patients with PC.

Various preclinical models have confirmed the therapeutic effect of flavonoids against PC. Silibinin has an inhibitory effect on PC both *in vivo* and *in vitro* (221,222). Silibinin can inhibit proliferation of PC cells, promote their apoptosis, induce cell cycle arrest in G₁ phase, inhibit tumor growth in a xenograft nude mouse model, and lead to the reduction of tumor volume and weight (223). Research reveals that myricetin can inhibit the proliferation of PC cells and induce their apoptosis, but has no significant effect on normal pancreatic ductal cells, and it can significantly reduce the tumor volume in a PC mouse model (224). Quercetin is a flavonoid compound that can be used in combination with chemotherapy for the treatment of PC. An animal experiment found increased quercetin



Figure 3. Role of flavonoids in gastric cancer. (A) Procyanidin B2, acacetin and isoliquiritigenin exerts anti-GC effects by inhibiting the PI3K/Akt/mTOR pathway. When ligands bind to GPCR and RTKs to activate PI3K, activated PI3K phosphorylates PIP2 to PIP3, which in turn activates PDK1, phosphorylates downstream AKT, which in turn activates FoxO and mTOR. It regulates the transcription of associated genes. (B) Jaceosidin activates multiple signaling pathways by aggregation of ROS. ROS regulates ERK, p38 and JNK, thereby activating STAT3 to regulate the mitochondria-dependent apoptotic pathway. ROS is also involved in the NF-κB pathway, which is inhibited by IκBα and downregulation of NF-κB (p50 and p65). NF-κB enters the nucleus, inhibits the transcription of HIF-1α and regulates the occurrence of inflammation. ROS could also reduce the stability and transcriptional activity of HIF-1α by inhibiting the MAPK/p38 and MAPK/ERK pathways. ROS also inhibits AKT and Wnt/GSK 3β/β-catenin pathways, downregulates p-AKT and β-catenin, arrests the cell cycle and inhibits cell migration. FoxO, forkhead box protein O; STAT3, signaling transducer and activator of the transcription 3; ROS, reactive oxygen species; NF-κB, nuclear factor-κB; IκBα, inhibitors of NF-κB α; Wnt, wingless/integrated; GSK-3β, glycogen synthase kinase 3β; HIF-1α, hypoxia-inducible factor-1α; p-AKT, phosphorylated AKT.

accumulation in PC tissue of nude mice and gemcitabine cotreatment with quercetin reduced the absorption of quercetin in the mouse circulatory system and liver (225).

In a cohort study including 326 patients with PC and 652 healthy controls, FFQ analysis showed a negative relationship between the intake of flavonoids including proanthocyanidins and risk of developing PC. Additionally, a study revealed eating fruits rich in proanthocyanidins reduces the risk of developing PC by ~25% (226). Similarly, Australian native fruits containing flavonoids are also reported to have therapeutic effect against the development of PC (227). A multi-ethnic cohort study evaluated the role of quercetin, kaempferol and myricetin in PC incidence, and revealed that all three flavonols could reduce the risk of developing PC, especially in smokers (228). A similar finding was also reported in a Finnish investigation (229).

Flavonoids mainly exert their therapeutic effect in PC through different signaling pathways. The RAS gene family includes KRAS, HRAS and NRAS and they are under the regulation of guanine nucleotide-exchange factors and GTPase-activating proteins (GAPs). Under pathological conditions, the interaction between RAS and GAP decreases,

and the rate of GAP-stimulated GTP hydrolysis decreases. In the meantime, the interaction between guanine nucleotide exchange factor and RAS improves, resulting in continuous activation of RAS (230,231). In the RAS family, KRAS mutation has an important role in the occurrence and development of PC and it occurs in nearly 90% of patients with PDAC (232). Research reveals that epicatechin has no obvious effect on normal pancreatic ductal epithelial (PDE) cells, but it reduces the proliferation and transcriptional activity of precancerous and malignant KRAS-activated PDE cells (233) (Fig. 4A). Cancer stem cells (CSCs) are known to cause treatment resistance and early PDAC progression. It has been established that EGCG, epicatechin gallate and catechin gallate have anti-CSCs activity. Flavonoids can induce apoptosis and inhibit cell migration and levels of the MMPs, MMP9 and MMP2 by downregulating the level of KRAS (234,235). The PI3K/AKT/mTOR signaling pathway also participates in the growth, survival, proliferation and metabolism of PC cells (236). Grape seed proanthocyanidin extract can induce apoptosis and cell cycle arrest in G₂/M phase in PC cells in vitro, and inhibit the growth of transplanted tumors in nude mice. The levels of PI3K and p-AKT were also considerably

Table II. Role of flavonoids in gastric cancer.

First author/s, year	Flavonoid	Chemical structure	Model	Target	Effect	(Refs.)
Li, 2021	Procyanidin B2		In vitro	Caspase-3, Caspase-9, LC3, Beclin1, Atg5, Akt/mTOR	Induces apoptosis of GC cells and promotes the activities of Caspase-3 and Caspase-9. Induces autophagy in GC cells by increasing the expression of LC3, Beclin1 and Atg5. 3-MA can reduce the effect of PB2 on EC cells by inhibiting autophagy. Procyanidin B2 can considerably reduce the expression of p-Akt and p-mTOR proteins in EC cells and induce apoptosis and autophagy.	(208)
Zhang, 2022	Acacetin		In vitro, in vivo	PI3K/Akt/Snail, MMP2, MIMP9, TGF-β1, E-cadherin, N-cadherin, Vimentin	Inhibits the proliferation, invasion and migration of GC cells by inhibiting the expression of EMT-associated proteins. Reverses the morphological changes of cells in the TGF-\beta1-induced EMT model and inhibits the invasion and migration of GC cells by regulating EMT. Inhibition of PI3K/Akt pathway activation in GC cells. Delays the peritoneal metastasis of gastric cancer in nude mice.	(209)
Zhang, 2018	Isoliquiritigenin	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	In vitro	LC31, LC3II, Beclin1, p62, Pl3K/Akt/mTOR	Inhibits the proliferation, migration and invasion of GC cells and promotes apoptosis. Induces autophagy in GC cells by upregulating the expression of autophagy-related proteins. Influences apoptosis of GC cells and autophagy by regulating the PI3K/Akt/mTOR pathway.	(210)
Liu, 2024	Jaceosidin (JAC)		In vitro	p-JNK, p-p38, IκB-α, p-ERK, p-STAT3, NF-κB, p21, p27, p-Akt, CDK2, CDK4, CDK6, Cyclin D1, Cyclin E, Wnt-3a, p-GSK 3β, N-cadherin, β-catenin, E-cadherin	JAC activity was associated with ROS, AKT and MAPK pathways. Upregulates p21 and p27 protein expression and downregulates of p-AKT, CDK 2, CDK 4, CDK 6, Cyclin D1 and Cyclin E protein expression by ROS accumulation resulting in cell arrest at the G ₀ /G ₁ phase. The expression of Wnt-3a, p-GSK-3β, N-cadherin and β-catenin proteins is downregulated, E-cadherin protein expression is upregulated and cell migration is inhibited by ROS accumulation.	(215)

matrix metalloproteinase 9; TGF-β1, transforming growth factor-β1; p62, sequestosome-1; P13K, phosphatidylinositol 3-kinase; p-JNK, phosphorylated JNK; p-p38, phosphorylated p38 MAPK; IκB-α, inhibitors of NF-κB α; p-ERK, phosphorylated ERK; STAT3, signaling transducer and activator of the transcription 3; NF-κB, nuclear factor-κB; p21, cyclin dependent kinase inhibitor p21; p27, cyclin dependent kinase inhibitor p27; p-Akt, phosphorylated Akt; CDK2, cyclin dependent kinase 2; CDK4, cyclin dependent kinase 4; CDK6, cyclin dependent kinase 6; Wnt-3a, wingless/integrated-3a; p-GSK LC3, microtubule-associated protein 1 light chain 3; Atg5, autophagy related gene 5; Akt, serine/threonine kinase B; mTOR, mammalian target of rapamycin; MMP2, matrix metalloproteinase 2; MMP9, 3β, phosphorylated GSK 3β.

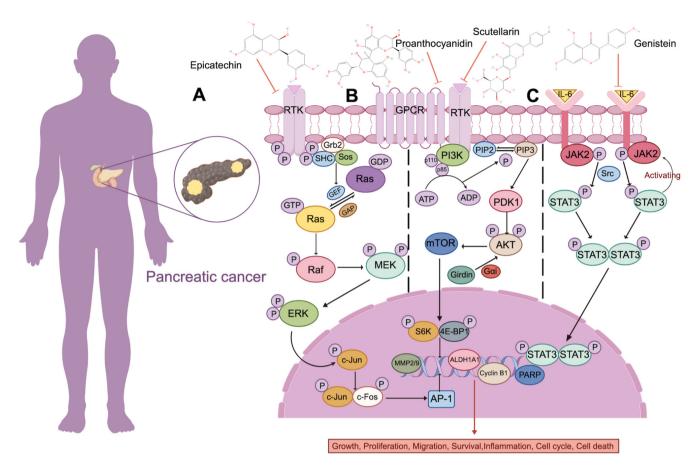


Figure 4. Role of flavonoids in pancreatic cancer. (A) Epicatechin exerts its anti-PC effect by inhibiting the MAPK/ERK pathway. When the ligands bind to RTKs, the tyrosine residues at their tails are phosphorylated, recruiting GRB2/Shc/SOS to the cell membrane, and converting GDP-bound Ras to active GTP-bound Ras. Upon Ras activation, Raf is recruited to the cell membrane and phosphorylated. It directly regulates MEK and ultimately leads to downstream ERK phosphorylation. Phosphorylated ERK enters the nucleus and activates the key transcription factors c-Jun and c-Fos to bind to the binding site in the AP-1 promoter region and regulate the transcription of associated genes. (B) Proanthocyanidin and Scutellarin exert their anti-PC effects by inhibiting the PI3K/Akt/mTOR pathway. When ligands bind to GPCR and RTKs to activate PI3K, activated PI3K phosphorylates PIP2 to PIP3, which further activates PDK1 and phosphorylates downstream AKT. Girdin, as a substrate of AKT, can mediate AKT activation, and this process is regulated by Gai. Activated AKT in turn activates downstream mTOR, which phosphorylates substrates S6K and 4E-BP1 to regulate transcription of associated genes. (C) Epicatechin exerts its anti-PC effect by inhibiting the IL-6/JAK2/STAT3 pathway. When IL-6 binds to its receptor and activates JAK2, it recruits SRC to bind to the SH2 domain-containing STAT3 to activate downstream STAT3. The two activated STAT3 monomers form a dimer that enters the nucleus and binds to specific DNA response elements on target genes to induce gene transcription. Over-activation of STAT3 also induces IL-6 production, forming positive feedback that reinforces activation of the pathway. PC, pancreatic cancer; IL-6, interleukin-6; JAK2, Janus kinase 2; SRC, SRC proto-oncogene.

decreased in both PC cells in vitro and transplanted tumor tissue following treatment. These findings demonstrate that grape seed proanthocyanidin extract can inhibit PC progression through the PI3K/AKT pathway (237). Girdin, an AKT substrate, has been found to prolong AKT activation and DNA replication and have a role in cell migration and invasion (238). Flavonoid Scutellarin can considerably reduce the angiogenic ability of PC cells by inhibiting Girdin signaling (239) (Fig. 4B). Interleukin (IL)6 is an important inflammatory cytokine in the human body that has a role in the development of PDAC. In comparison with healthy individuals and patients with chronic pancreatitis, patients with PC have increased levels of serum IL-6 (240,241). IL-6 activates the downstream Janus kinase 2/STAT3 signaling pathway by binding to membrane receptors. Overactivation of STAT3 also induces IL-6 production, forming a positive feedback loop and in turn promoting PC cell proliferation and tumor formation in vivo (242). The flavonoid genistein has a therapeutic effect against PC by inhibiting the STAT3 signaling pathway (243) (Fig. 4C; Table III).

The role of flavonoids in liver cancer. Liver cancer is a common malignant tumor and is usually the terminal state of chronic liver disease (244). Of all cases of liver cancer, ~82% are in developing countries with 55% being in China alone (154). HCC is the most common primary malignant tumor of the liver. Hepatitis B virus (HBV) and aflatoxin are considered to be the main causes of liver cancer (245). Current treatment approaches for early-stage HCC include surgical resection and liver transplantation, while radical resection often results in a high recurrence rate (246). As understanding of disease pathogenesis increases, multiple therapies, including molecular targeted therapy, immuno-oncology monotherapy and combination therapy, have achieved encouraging results in patients who are diagnosed with advanced disease stages and cannot receive radical treatment (247).

The therapeutic effect of flavonoids against HCC has been reported in several preclinical models. Hesperidin was reported to have a protective effect in rats with diethylnitrosamine-induced HCC. Analysis revealed that hesperidin considerably reduced the levels of liver function enzymes,

Table III. Role of flavonoids in pancreatic cancer.

First author/s, year	Flavonoid	Chemical structure	Model	Target	Effect	(Refs.)
Siddique, 2012	Epicatechin		In vitro, in vivo	Ras, Bcl-2, Bax, Caspase-3, Caspase-8, PARP116, NF-κB, p-IκB-α, p-p38	No induction of NF-κB in normal PDE cells, but the transcriptional activity of Nf-κB is reduced in Kras activated PDE cells. Promotes apoptosis by upregulating the expression of Caspase-3, Caspase-8, and Bax, and downregulating the expression of Bcl-2 and PARP116. Inhibits the activation of p-p38 and MAPK to exert pro-apoptotic and antiproliferative effects. Inhibits of Kras-PDE cell-derived tumor growth in xenograft mice.	(233)
Prasad, 2012	Proanthocyanidin		In vitro, in vivo	PI3K/Akt, Bax, Bcl-xl, Bcl-2, Caspase-3, Cyclin B1, Cdc25B, Cdc25C	Apoptosis is induced by downregulating Bcl-2 and Bcl-xl and upregulating Bax and Caspase-3 levels. The expression levels of Cyclin B1 and cell cycle regulatory proteins Cdc25B and Cdc25C are decreased and the cells are arrested in the G ₂ /M phase. Regulates pancreatic cancer cells (Miapaca-2, PANC-1 and AsPC-1) by inhibiting the PI3K/Akt pathway. Inhibits tumor volume and number in a xenograft mouse model.	(237)
Hayashi, 2023	Scutellarin		In vitro	Girdin	Inhibits Girdin phosphorylation, inhibits the invasion and migration of pancreatic cancer cells. Activation of Girdin has no effect on the expression of VEGF-A.	(239)
Bi, 2018	Genistein		In vitro	Caspase-3, Caspase-9, MMP2, MMP9, Cyclin D1, ALDH1A1, surviving, p-STAT3	Exerts anti-proliferative and pro-apoptotic effects by upregulating the expression of cytochrome c , Bax, Caspase-3 and Caspase-9 and down-regulating the expression of Bcl-2. Inhibits STAT3 phosphorylation and downregulates Cyclin D1, ALDH1A1 and survivin which causes cell cycle arrest at G0/G1 phase. Downregulation of MMP2 and MMP9 inhibits the migration of pancreatic cancer cells. Induces apoptosis by producing large amounts of ROS and reducing mitochondrial membrane potential.	(243)

Ras, Rat sarcoma; Bcl-2, B-cell lymphoma-2; Bax, BCL2-associated X; PARP116, poly(ADP-ribose) polymerase 116; NF- κ B, nuclear factor- κ B; p-I κ B- α , phosphorylated inhibitors of NF- κ B- α ; p-p38, phosphorylated p38 MAPK; PI3K, phosphatidylinositol 3-kinase; Akt, serine/threonine kinase B; Bcl-xl, B-cell lymphoma-extra large; Cdc25B, cell division cyclin 25B; MMP2, matrix metalloproteinase 2; ALDH1A1, aldehyde dehydrogenase 1 family member A1; STAT3, signaling transducer and activator of the transcription 3.

serum α-fetoprotein and markers of oxidative stress (248). γ-glutamyl transpeptidase (GGT) is a tumor marker that can be detected in liver lesions induced by carcinogens (249). Carrasco-Torres et al (250) found that quercetin was able to prevent and even reverse precancerous lesions in rat liver, and the number and area of GGT-positive lesions were decreased considerably after quercetin administration, indicating that quercetin could prevent precancerous lesions. Insulin-like growth factor 1 (IGF-1) is an indicator of liver functional status. A study reports that IGF-1 levels is markedly restored following quercetin treatment. Another study reveals that both baicalein or silymarin alone and their combination effectively inhibit the proliferation of HCC cells. Notably, the cumulative effect exerted by their combination could be observed at 24 h and the synergistic effect could be observed at 48 h, inducing apoptosis and G_0/G_1 cell cycle arrest to a greater extent, but almost no effect was observed in non-tumor Chang liver cells (251).

A case-control study conducted in Greece found that patients with HCC with or without hepatitis B or C virus infection inversely correlated to the intake of flavonoids (252). In a clinical study that investigated the relationship between dietary and urinary isoflavonoids contents and the risk of liver cancer in a Shanghai cohort of women, urinary genistein content was revealed to be negatively associated with the risk of developing liver cancer (253). 8-hydroxydeoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, in a population at high risk of developing HCC (254). A randomized, double-blinded, placebo-controlled phase IIa trial evaluated the regulatory effect of green tea polyphenols (GTPs) on 8-OHdG, and significantly lower levels of 8-OHdG excreted into the urine was observed in patients treated with GTPs compared with those given placebo treatment (255). This implies that GTPs can effectively reduce oxidative DNA damage and prevent the occurrence of HCC in high-risk populations. A cohort study nested within the European prospective investigation into cancer and nutrition study reported a negative relationship between flavanols and HCC risk. This finding indicates that a higher intake of flavanols is associated with a reduced risk of HCC (256).

p53 is a tumor suppressor gene that has an important role in the occurrence of HCC. Mutation of p53 can lead to loss of normal p53 function (anti-tumor effect) and gain of mutant function of p53 (carcinogenic effect) (257). Mouse double minute (MDM)2 and MDM4 are negative regulators of p53 (258). MDM2 is an E3 ubiquitin ligase that can degrade p53 by ubiquitination (259). MDM4 can negatively regulate the inhibitory effect of p53 on tumors by binding to the transcriptional activation domain of p53 (260). Resveratrol, a flavonoid isolated from the roots of white hellebore, can induce autophagy in hepatoma cells by activating p53 and inhibiting the PI3K/AKT signaling pathway, thereby inhibiting cell proliferation, invasion and migration (261) (Fig. 5A). Studies have revealed that p53 can form a complex with Bcl-xl and Bcl-2, which can alter mitochondrial outer membrane permeability and then induce the release of cytochrome c. As a consequence, apoptosis is directly initiated (262-264). p53 is also a positive transcriptional activator of the pro-apoptotic protein Bax and a negative transcriptional activator of the anti-apoptotic protein Bcl-2 (265). Activated normal p53 can downregulate β-catenin, leading to ubiquitination or proteasomal degradation of β -catenin. The activity of GSK-3 β , a core component of β-catenin, is subsequently reduced, resulting in loss of function (266). Silymarin is a mixture of the following four isomeric flavonoids: Silibinin, isosilibinin, silydianin and silychristin. Silymarin increases the level of p53 protein in hepatoma cells with increasing drug concentration. Additionally, silymarin can induce cell cycle arrest in G₀/G₁ phase by downregulating the expression of β -catenin, cyclin D1, c-Myc and proliferating cell nuclear antigen. It is also found that silymarin could induce mitochondrial membrane depolarization and cytochrome c release into the cytoplasm, regulate the expression of apoptosis-related proteins and promote the apoptosis of HepG2 cells (267). Doxorubicin (DOX) is commonly used as a routine chemotherapeutic drug for the treatment of liver cancer (268). However, its clinical application is limited due to the liver, kidney and heart toxicity that is dose-dependent (269,270). Certain studies reported that flavonoids selectively enhance the toxic effect of DOX on liver cancer cells and the combined use of flavonoids and DOX produces an improved therapeutic effect (271,272). For example, quercetin increases the activity of Caspase 3/9 by upregulating the expression of p53 and downregulating the expression of Bcl-xl, thereby promoting the DOX-induced apoptosis in liver cancer cells (273) (Fig. 5B; Table IV).

The role of flavonoids in colorectal cancer. CRC is a general term for malignant tumors occurring in the colon and rectum. It is the third most common malignancy and the fourth leading cause of cancer-associated mortality in the world (274). Endoscopic resection is feasible for early CRC, but 50% of patients experience local recurrence or distant metastasis of different degrees within 2 years after resection (275). The liver is the most common metastatic site of CRC (276). Radiofrequency ablation, local radiotherapy, preoperative radiotherapy and chemotherapy can reduce the risk of local recurrence (277). Molecular targeted drugs have been used for the treatments of CRC, such as the anti-VEGF drug bevacizumab and anti-epidermal growth factor receptor drug cetuximab. These drugs have achieved good efficacy in the management of metastatic CRC (278).

A number of studies using preclinical models have identified the therapeutic effect of flavonoids against CRC. Naringin has a preventive effect against precancerous lesions in rats with CRC induced by chemical carcinogens. Analysis reveals that administration of 200 mg/kg naringin effectively reduces the number of aberrant crypt foci, argyrophilic nucleolar organizing regions/nucleus and mitosis in rats with 1,2-dimethylhydrazine-induced CRC. Additionally, naringin also reduces cell proliferation and levels of iron in tissues and promotes the recovery of the antioxidant minerals such as copper, magnesium and zinc (279). Apigenin has been revealed as a promising flavonoid that can inhibit the growth of CRC cells (280). Apigenin reduces the number of intestinal polyps in APC mice with multiple intestinal neoplasia. A clinical study reported that apigenin increases the expression of p53 and non-steroidal anti-inflammatory drug activated gene-1 (NAG-1) proteins in human colon cancer cells, facilitating apoptosis. Apigenin also increases p21 protein expression levels and induces cell cycle arrest (281). ISL exerts an

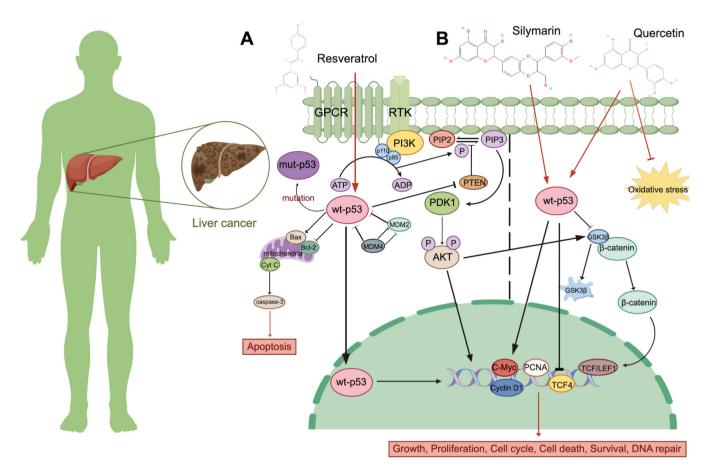


Figure 5. Role of flavonoids in liver cancer. (A) Resveratrol exerts its anti-HCC effects by activating p53 and inhibiting the PI3K/Akt pathway. Wt-p53 can inhibit the activation of the PI3K/Akt pathway by inhibiting phosphatase and tensin homologue deleted on PTEN. Phosphorylated AKT can also indirectly inhibit wt-p53 through activation of MDM2. (B) Silymarin can activate wt-p53 and downregulate β-catenin simultaneously. β-catenin undergoes ubiquitination and proteasome degradation, dissociates from GSK-3β, and enters the nucleus to regulate the transcription of downstream TCF4, C-Myc, PCNA and Cyclin D1, and regulates the cell growth, proliferation and cell cycle. At the same time, p53 can also directly repress TCF4 transcription. In addition, p53 can also induce mitochondria-mediated apoptosis pathway by inhibiting the expression of Bcl-2 and promoting the expression of Bax, regulating the permeability of the mitochondrial outer membrane, promoting the release of cytochrome c, and then activating caspase-3 to induce apoptosis of liver cancer cells. Quercetin increases the expression of p53 induced by DOX in HCC cells. Moreover, DOX-induced oxidative stress is reduced to increase the survival of normal hepatocytes. p53, tumor protein 53; TCF4, T-cell factor 4; PCNA, proliferating cell nuclear antigen; Bcl-2, B-cell lymphoma-2; Bax, BCL2-associated X; DOX, doxorubicin; HCC, hepatocellular carcinoma.

anticancer effect in mice with colitis-associated cancer (CAC), which is associated with the gut microbiota. ISL intervention reduces the abundance of opportunistic pathogens in the gut of CAC-induced mice, increases the levels of probiotics and alters gut microbiota composition (282).

An FFQ was applied in a multi-center case-control study from Italy and reported that increased intake of isoflavones, anthocyanidins, flavones and flavonols considerably reduced the risk of CRC (283). Similarly, questionnaire data from a Korean case-control study showed that a high intake of soy products, which contain high levels of isoflavones, is associated with a reduced risk of CRC development, especially distal and rectal types of cancer (284). In a study where CSCs derived from patients with colorectal liver metastases were sampled to evaluate whether curcumin can provide additional benefits over fluorouracil and folinic acid, fluorouracil and oxaliplatin (FOLFOX); the combination of curcumin and FOLFOX chemotherapy outperforms chemotherapy alone (285). A clinical study showed that curcuminoid complex improves erythrocyte sedimentation rate and serum C-reactive protein (CRP) levels, reduces systemic inflammatory response and improves quality of life for patients with CRC (286). Flavonoids are also used to reduce the risk of recurrence following CRC resection. A clinical study investigated the efficacy of apigenin combined with EGCG in patients with CRC receiving surgical resection and adenoma polypectomy and performed colonoscopy surveillance and questionnaire survey after a follow-up period of 3-4 years. The tumor recurrence rate was 7% in patients treated with flavonoids following surgical resection and 47% in untreated control patients. This result suggests that long-term treatment with flavonoids can considerably reduce tumor recurrence in patients with CRC receiving surgical resection (287). Moreover, colonoscopy at the end of the fourth year showed that dietary flavonol supplementation decreased the risk of recurrence in patients with CRC (288). Another two cohort studies revealed that an increased intake of flavonol resulted in a decreased rate of mortality in patients with CRC during follow-up (289).

Nuclear factor-κB (NF-κB) is a B-cell specific transcription factor (290). It has considerably high levels of expression in a variety of tumor tissues and is associated with tumor metastasis and disease prognosis (291,292). The p50-p65

	cancer
	liver
	Ξ
	avonoids
2	Ξ
	Kole
1	<u>:</u>
-	lable

First author/s, year	Flavonoid	Chemical structure	Model	Target	Effect	(Refs.)
Zhang, 2018	Resveratrol		In vitro	Beclin1, p62, LC3 I/II, p53, PI3K/Akt	Upregulates the expression of autophagy-related proteins Beclin1 and LC3 I/II and downregulates the expression of p62 to promote autophagy in liver cancer cells. Autophagy inhibitor 3-MA counteracts the inhibitory effects of Resveratrol on the proliferation, invasion and migration of HCC cells. The expression of p53 protein is upregulated and the ratio of p-Akt/Akt was decreased. Activation of p53 and inhibition of PI3K/Akt pathway induces autophagy to inhibit the proliferation, invasion and migration of HCC.	(261)
Ramakrishnan, 2009	Silymarin		In Vitro	Cytochrome C, p53, Bax, Bcl-2, APAF-1, Caspase-3, survivin, β-catenin, Cyclin D1, c-Myc, PCNA	Up-regulating the expression of pro-apoptotic proteins (p53, Bax, APAF-1 and Caspase-3) and down-regulating the expression of anti-apoptotic proteins (Bcl-2 and survivin) promotes the apoptosis of liver cancer cells. Decrease the expression of proliferation-related proteins (β-catenin, Cyclin D1, c-Myc, PCNA) and inhibit the proliferation of liver cancer cells. Silymarin decreases the mitochondrial transmembrane potential, thereby increasing the level of cytochrome C.	(267)
Wang, 2012	Quercetin (Que)		In Vitro In Vivo	P53, Bcl-xl, Bcl-2, Caspase-3, Caspase-8, Caspase-9, PARP, Bax, Bid	Increased adriamycin-mediated apoptosis in HCC cells is p53-dependent and occurs through downregulation of Bcl-xl expression. Z-VAD inhibitor (caspase inhibitor), pifithrin-a (p53 inhibitor), or overexpression of Bcl-xl reduced the effect of quercetin on DOX-mediated apoptosis. Co-treatment with DOX significantly reduced the growth of HCC xenografts in mice. Decreased serum levels of alanine aminotransferase and aspartate aminotransferase increased. Reverse the pathological changes of the liver induced by adriamycin in mice.	(273)

p62, sequestosome-1; LC3 I, microtubule-associated protein 1 light chain 3 I; LC3 II, microtubule-associated protein 1 light chain 3 II; p53, tumor protein 53; PI3K, phosphatidylinositol 3-kinase; Akt, serine/threonine kinase B; Bax, BCL2-associated X; Bcl-2, B-cell lymphoma-2; APAF-1, apoptotic protease activating factor-1; PCNA, proliferating cell nuclear antigen; Bcl-xl, B-cell lymphoma-extra large; PARP, poly(ADP-ribose) polymerase; Bid, BH3-interaction domain death agonist.

heterodimer is the most common form of NF-κB, and it can bind to inhibitors of NF-κB (IκB) in the cytoplasm (293). IκB is mainly regulated by IkB kinase (IKK). IKK is activated through trans-autophosphorylation by the catalytic domains of IKKα and IKKβ, leading to phosphorylation and ubiquitin-mediated degradation of IκB. NF-κB is then released into the nucleus, resulting in the transcription, translation and expression of NF-κB related genes (292,294,295). Chronic inflammation is one of the main risks of CRC and patients with inflammatory bowel disease have an increased risk of colitis-associated CRC. Chronic intestinal inflammation leads to tissue hyperplasia and affects key cytokine-mediated signaling pathways (296-298). A study has reported that activated NF-κB in intestinal epithelial cells is an important factor leading to the occurrence of colon cancer in colitis-induced mice (299). NF-κB is a key regulator of the inflammatory response and overactivation of NF-κB can aggravate the occurrence of chronic inflammation (300). Baicalin has an anti-CRC role by promoting apoptosis and regulating the tumor immune microenvironment through the TLR4/NF-κB signaling pathway (301). Silibinin has been reported to inhibit the growth and progression of colon cancer by promoting TNF-α-induced NF-κB activity (302) (Fig. 6A). The Wnt/β-catenin signaling pathway is also involved in the occurrence of CRC. In normal conditions, Wnt binds to Frizzled/low-density lipoprotein-related protein 5/6 to maintain the stability of β -catenin in the cytoplasm. APC is a component of the β -catenin degradation complex and it is also the most commonly mutated gene that leads to inactivation in CRC (303). Under pathological conditions, the β-catenin degradation complex is inactivated. p-β-catenin is recognized and ubiquitinated by β-transducing repeats-containing proteins, leading to proteasome degradation. When the β-catenin degradation complex is inactivated, a large amount of accumulated β-catenin enters the nucleus and binds to the transcription factor T cell factor/lymph enhancer factor 1, initiating the expression of downstream target genes (304-306). A large number of studies have shown that the occurrence of CRC is associated with the activation of the Wnt/β-catenin signaling pathway (307,308). Proanthocyanidins can enhance the sensitivity of colon cancer cells to oxaliplatin through the Wnt/β-catenin signaling pathway, and they can inhibit CSCs in CRC and tumorigenesis (309). EGCG can inhibit colorectal CSCs by downregulating the Wnt/β-catenin signaling pathway (310). In addition, scutellarin and apigenin can improve CRC by weakening the Wnt/β-catenin signaling pathway (311,312) (Fig. 6B; Table V).

6. Regimens to enhance the efficacy of flavonoids in preclinical models

Poor water solubility, low permeability and inferior stability of most flavonoids result in their low bioavailability and limit their clinical use (19). Based on relevant preclinical experiments, the following four main ways improve the efficacy of flavonoids in preclinical models: Changing the drug dosage form and preparation technology, improving the extraction and separation methods of flavonoids, combining with other drugs or components and studying the biotransformation of flavonoids by intestinal bacteria.

The bioavailability and efficacy of flavonoids can be improved by changing their pharmaceutical dosage forms and preparation techniques. For example, the study by Guo et al (313) prepared myricetin microemulsion (MYR-ME), and the optimized MYR-ME showed a 1,225-fold increase in solubility compared with myricetin. In the cell model, the anti-proliferative activity of MYR-ME was revealed to be stronger than that of myricetin on the human hepatoma cell line HepG2, while it had little effect on the normal liver cell line LO2. MYR-ME also considerably enhanced the antioxidant activity of myricetin. In the same study, oral administration of MYR-ME to Sprague-Dawley rats revealed oral availability of MYR-ME to be 14.43 times greater than myricetin suspension. Encapsulation of tangeretin in whey protein-stabled emulsions considerably improved the low solubility and oral bioavailability of tangeretin. In vivo, pharmacokinetics showed that the emulsion increased the plasma concentration of tangeretin from 4-fold to 20-fold and prolonged the release time of tangeretin to 22 h in rats (314).

The purity and activity of flavonoids can be improved by optimizing extraction and separation methods (315). Ultrasound-assisted extraction produces mechanical and thermal effects on plant cells by ultrasonic energy, causing cell wall rupture and releasing bioactive components into the solvent medium (316). Parameters such as extraction temperature and ultrasonic power required for ultrasound-assisted extraction can promote the solubility of flavonoids, resulting in the acquisition of plant active compounds with high extraction rates and increased bioaccessibility of oral compounds (317). The study by Lin et al (318) extracted total flavonoids by ultrasound-assisted extraction, which effectively increased the total flavonoid content and antioxidant activity. Supercritical fluid extraction has been commonly used in the pharmaceutical industry, with its excellent performance in extracting ginkgolides and flavonoid compounds in Ginkgo biloba (319). Supercritical carbon dioxide (SC-CO₂) is the most commonly used solvent as it is non-toxic, safe, readily available and easy to remove. The study by He et al (320) extracted flavonoid compounds from pomelo [Citrus grandis (L.) Osbeck] peels with SC-CO₂ and found an increased flavonoid yield and antioxidant activity than flavonoids obtained from conventional extraction solvents.

The efficacy of flavonoids can be enhanced by combining them with other drugs or components. For example, the study by Wang et al (321) prepared a phospholipid complex by binding total flavones of Hippophae rhamnoides L. (TFH) to phospholipids (TFH-PC). The solubility of isorhamnetin, kaempferol and quercetin in TFH-PC was increased 22.0-26.8-fold compared with TFH alone. After oral administration of TFH-PC to rats, the bioavailability of the three flavonoid classes was considerably increased. Flavonoids can combine with certain metal ions to form flavonoid-metal ion complexes. Most of the classified flavonoid-metal ion complexes exhibit affinity for DNA. It can interact with the DNA by binding either to the major or minor grooves or by intercalation (322). Lanthanum, in combination with the active ingredients found in certain plants, showed a more potent cytotoxic effect than when administered alone (323). The combination of quercetin with lanthanum resulted in the formation of quercetin/lanthanum complex, which exhibited

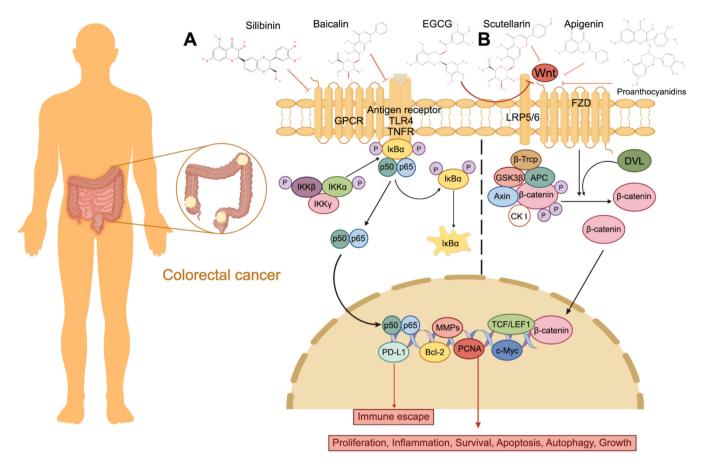


Figure 6. Role of flavonoids in colorectal cancer. (A) Baicalin and silibinin exert their anti-CRC effects by inhibiting the NF- κ B pathway. The NF- κ B pathway is activated by TLR, antigen receptor and TNFR binding to their corresponding ligands. The activation of IKK leads to the degradation of IkB α and the release of NF- κ B (p50 and p65) into the nucleus, which induces inflammation, cell proliferation and survival. NF- κ B can also directly promote PD-L1, transcription and trigger immune escape of tumor cells. (B) Proanthocyanidins, EGCG, Scutellari and apigenin exert their anti-CRC effects by inhibiting the Wnt/ β -catenin pathway. In the absence of ligands for the Wnt receptor, β -catenin is phosphorylated by the Axin/GSK 3 β /APC degradation complex and degraded by ubiquitination of β -Trcp. When Wnt receptors bind to their ligands, they inhibit β -catenin degradation by recruiting DVL proteins in the cytoplasm and destroying the degradation complex, resulting in a large accumulation of β -catenin in the cytoplasm and into the nucleus. It binds to transcription factor TCF/LEF1 and initiates the expression of downstream Wnt target genes to regulate cell growth and development and other characteristics. CRC, colorectal cancer; TLR, toll-like receptor; TNFR, tumor necrosis factor receptor; PD-L1, programmed cell death ligand-l; EGCG, (-)-epigallocatechin-3-gallate; APC, adenomatous polyposis coli; β -Trcp, F-box/WD repeat-containing protein 1A; DVL, drosophila dishevelled homolog; TCF, T-cell factor; LEF1, lymph enhancer factor 1.

cytotoxic effects on human cervical cancer cells and also induced dose-dependent pro-oxidation and DNA single-and double-strand breaks (324).

Studies on the biotransformation of flavonoids by intestinal bacteria in vitro and in vivo could optimize their metabolic pathways in vivo and thus improve their efficacy. Fecal incubation and digestive tract contents incubation are commonly used for in vitro experiments (325,326). In vivo, experiments are often used to assess the biotransformation of flavonoids by comparing oral or non-oral administration and comparing metabolites of common animals and germ-free or pseudo-germ-free animals (327). Rutin can be hydrolyzed by intestinal bacteria to quercetin, which is then converted to 3, 4-dihydroxyphenylacetic acid and finally absorbed into the blood circulation, and its antiplatelet activity is greater than that of rutin and quercetin (328). Therefore, in the preparation of rutin as the main active ingredient, in addition to the choice of dosage form, it is also necessary to consider appropriately increasing the residence time of rutin in the intestine to enhance the metabolism and biotransformation of intestinal flora, to enhance the efficacy of rutin.

7. Strategies to improve therapeutic efficacy and bioavailability of flavonoids

In daily life, individuals mainly consume flavonoid extract or flavonoid-rich foods to supplement the flavonoids needed by the body (329). The oral bioavailability of flavonoids is low due to their poor water solubility, low permeability and inferior stability (19). For example, the double bond between position 2 and 3 in flavones and flavonols makes it easy to form a planar structure, resulting in tight molecular arrangement and difficulty for solvent molecules to penetrate into its molecular structures (330,331). To solve these problems, a variety of new drug delivery strategies have been identified.

Absorption enhancers. Absorption enhancers are a group of components that can increase the intestinal absorption rate of active drug components, usually referring to reagents that promote absorption by enhancing membrane penetration rather than increasing solubility (332). Absorption enhancers are effective ways to improve drug bioavailability, increase

Table V. Role of flavonoids in colorectal cancer.

First author/s, year	Flavonoid	Chemical structure	Model	Target	Effect	(Refs.)
Song, 2022	Baicalin		In vitro, in vivo	TLR4, MMP2, MMP9, Bcl-2, NF-κB, IκBα, PD-L1, CD4, CD8, Caspase-3, Bax	Induces apoptosis by altering mitochondrial membrane potential and increasing ROS levels. Inhibition of the TLR4/NF-kB pathway inhibits cancer cell migration and invasion. Delays tumor growth in the xenograft mouse model. Downregulates the expression of PD-L1 and the proportion of myeloid-derived suppressor cells, upregulates the percentage of CD4+ and CD8+ T cells, improving the tumor immune microenvironment and enhancing tumor immunity.	(301)
Raina, 2013	Silibinin		In vitro, in vivo	TNF-α, NF-κB, p-ΙκΒα, Bcl-2, COX-2, iNOS, VEGF, MMPs	Inhibits TNF- α -induced NF- κ B activation and reduction of nuclear levels of p65 and p50 subunits in human colorectal cancer cells. Increases the level of $I\kappa$ B α and decreases the phosphorylation of $I\kappa$ B α . Inhibition of NF- κ B activation in xenograft mouse tumors. Decreases the protein expression levels of various NF- κ B regulatory factors, such as Bcl-2, COX-2, iNOS, VEGF and MMPs.	(302)
Chen, 2023	Proanthocyanidin		In vitro, in vivo	Wnt/β-catenin, DVL 1, DVL 2, DVL 3, OCT-4, CD44, CD133, NANOG, P-GSK 3β	Inhibits the proliferation of CRC cells and improves the sensitivity of colorectal cancer cells to oxaliplatin. Inhibits the tumor growth in nude mice. Downregulates the expression of tumor stem cell surface molecules and stem cell transcription factors. Inhibits tumor sphere and cell colony formation in CRC cells.	(309)
Chen, 2017	(-)-Epigallocatechin- 3-Gallate (EGCG)		In vitro	Wnt/β-catenin, CD133, CD44, ALDHA1, NANOG, OCT-4, P-GSK 3β, c-Myc, PCNA, Bax, Bcl-2, Caspase-3, Caspase-9, Caspase-8	Inhibits the spheroid formation capability of CRC cells and the expression of colorectal CSC markers. Inhibits CRC cell proliferation and induction of apoptosis. Inhibition of colorectal CSCs is exerted by downregulating the Wnt/β-catenin pathway.	(310)

Table V. Continued.

First author/s, year	Flavonoid	Chemical structure	Model	Target	Effect	(Refs.)
Zeng, 2021	Scutellarin		In vitro, in vivo	Wnt/β-catenin, TNF-α, IL-6, Bax, Bcl-2, Cyclin D1, TCF4, c-Myc, P-GSK 3β	Reduces serum levels of TNF-α and IL-6 in CAC mice. Inhibits the proliferation and migration of colon cancer cells. Upregulates the expression of Bax and downregulates the expression of Bcl-2 to induce the apoptosis of colon cancer cells. Improves CAC by attenuating the Wnt/β-catenin pathway.	(311)
Xu, 2016	Apigenin		In vitro	Wnt/β-catenin, c-Myc, Cyclin D1, Axin2, Ephb2, Ephb3	Inhibits the proliferation, migration and invasion of colon cancer cells in a dose-dependent manner. Inhibits activation of β -catenin/T-cell factor/lymphoid enhancer factor signaling.	(312)

TLR4, toll-like receptor 4; MMP2, matrix metalloproteinase 2; Bcl-2, B-cell lymphoma-2; NF- κ B, nuclear factor- κ B; I κ B α , inhibitors of NF- κ B α ; PD-L1, programmed cell death ligand-l; CD4, cluster of differentiation 4; Bax, BCL2-associated X; TNF- α , tumor necrosis factor- α ; p-I κ B α , phosphorylated I κ B α ; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; VEGF, vascular endothelial growth factor; Wnt, wingless/integrated; DVL1, drosophila dishevelled homolog 1; OCT-4, octamer binding transcription factor 4; NANOG, Nanog homeobox; GSK3 β , glycogen synthase 3 β ; ALDHA1, aldehyde dehydrogenase 1 family member A1; PCNA, proliferating cell nuclear antigen; IL-6, interleukin-6; TCF4, T-cell factor 4; Ephb2, Eph receptor B2.

the plasma concentration of the drug rapidly and reversibly and are easy to formulate with the active pharmaceutical ingredient (333).

Numerous types of absorption enhancers, such as fatty acids, surfactants and chitosan have been used in clinics to improve the oral availability of drugs (334,335). Cremophor EL is a non-ionic surfactant, which can inhibit the efflux transport of scutellarin by multidrug resistance-associated protein (MRP)2 and breast cancer resistance protein (336). Promoting scutellarin transport by MRP3 increases the drug from cells into blood circulation and can considerably improve the rate of scutellarin oral absorption in rats (337). It has been shown that phytic acid, as a safe and effective absorption enhancer, can improve the water solubility and permeability of isorhamnetin, kaempferol and quercetin in total flavones of TFH in rats and increase its oral bioavailability without obvious intestinal irritation and cytotoxicity (338). Chitosan is a biocompatible, biodegradable and non-toxic biopolymer (339). Quercetin-loaded nanoparticles (QCG-NPs) are prepared by ion gelation between chitosan and gum Arabic. QCG-NPs can increase the adhesion rate to tissues or cells through electrostatic interaction with the mucin layer. This results in an increase in the surface area and residence time of QCG-NPs at the absorption site. QCG-NPs were found to effectively improve the absorption of quercetin in enterocyte models and rats, resulting in a considerable increase in its antioxidant activity (340). N-trimethyl chitosan chloride (TMC) is used as an absorption enhancer in a variety of peptides and macromolecular substance delivery systems (341). It has been found that oral bioavailability of puerarin TMC-modified microemulsions in rats is 6.8-fold higher than that of control puerarin suspension (342).

However, while the absorption enhancers destroy the tight junctions of cells, they may also cause potentially toxic molecules to enter the blood circulation, which may lead to immune response and systemic inflammatory response syndrome (343). To reduce the adverse reactions of absorption enhancers and improve the bioavailability of flavonoids, non-toxic and effective absorption enhancers should be selected, and the concentration and exposure time of absorption enhancers in intestinal epithelial cells should be reduced.

Structural modification. Structural modification is another method that can change the physicochemical properties of a compound. Depending on the chemical groups attached to the flavonoid molecules, they can be divided into acylation, glycosylation, de-glycosylation, O-methylation, hydroxylation, halogenation and sulfation (Fig. 7).

Acylation refers to the attachment of one or more acyl groups to the hydroxyl group of flavonoids; acylation usually occurs at the 3, 4, 5, 3, and 7'hydroxyl groups on the ring of flavonoid compounds and at the 3' or 6' hydroxyl group on the glycosyl moiety of flavonoid glycosides (344,345). Acylated flavonoids can be prepared by chemical, enzymatic and microbial methods. The chemical method is simple and inexpensive, but its preparation requires highly toxic catalysts and may

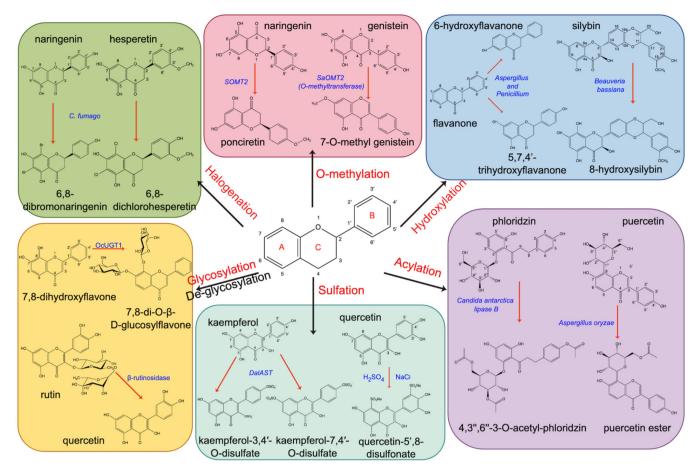


Figure 7. Different structural modifications of flavonoids. *Aspergillus oryzae* selectively acylated puerarin at the 6'-hydroxyl group to form puerarin ester and CALB selectively acylated phloridzin at the 4,3',6'-hydroxyl group to form 4,3',6'-3-O-acetyl-phloridzin. OcUGT1 selectively glycosylated the C-8 of 7,8-dihydroxyflavone on the 7,8-hydroxyl group, yielding two monoglycosides and one dihydroxyflavone, yielding two monoglycosides and one diglycoside. Rutin undergoes de-glycosylation in response to β-rutinosidase to generate quercetin. SaOMT2 can selectively methylate genistein at the 7-hydroxyl group to produce ponciretin. SOMT2 can selectively methylate naringenin at the 4'-hydroxyl group to produce 7-O-methyl genistein. *Aspergillus* and *Penicillium* selectively hydroxylate flavanone at positions 6, 5, 7 and 4' to form 6-hydroxyflavanone and 5,7,4'-trihydroxyflavanone, and *Beauveria bassiana* selectively produces 8-hydroxysilybin by hydroxylation at position 8 of silybin. Naringenin and hesperetin, catalyzed by a peroxidase from CPO, are replaced at positions 6 and 8 by Br and Cl halogen elements, and 6,8-dibromonaringenin and 6,8-dichlorohesperetin were generated. *Dal*AST sulfates kaempferol at positions 4', 3 and 7, yielding kaempferol-3,4'-O-disulfate and kaempferol-7,4'-O-disulfate. Quercetin undergoes sulfation at positions 5' and 8 under the catalysis of NaCl and H₂SO₄ to form quercetin-5',8-disulfonate. CALB, *Candida antarctica* lipase B; OcUGT1, *O. caundatum*-uridine diphosphate glucuronosyltransferase 1; SOMT2, soybean *O*-methyltransferase 2; SaOMT2, *S. avermitilis*-originated *O*-methyltransferase 2; CPO, *Caldariomyces fumago*; *Dal*AST, *Desulfofalx alkaliphile*-aryl sulfotransferase.

produce toxic reaction products, leading to safety and pollution problems (346). Compared with chemical methods, enzymatic methods have milder reaction conditions and less toxic catalysts and have become one of the most commonly used acylation methods (345). To date, proteases, acyltransferases and lipases have been used for acylation modification (344). Microbial methods refer to the specific enzymes that can release the acylation reaction by some microorganisms and the reactants are incubated with specific microorganisms to make the acylation of flavonoids. Aspergillus oryzae can selectively acylate puerarin on the 6-hydroxyl group, improving its lipid solubility and making it easier to absorb (347). Rhizopus oryzae lipase can acylate ferulic and quercetin to form synthesized quercetin ferulate and its antioxidant activity is considerably increased compared with that of either monomer, making it easier to absorb (348). The anti-tumor activity of acylated flavonoids was increased; for example, palmitoyl group (EGCG-C16) modified EGCG synthesized by lipase catalyzed transesterification method is more stable than EGCG and does not produce H_2O_2 , which can effectively inhibit the growth of CRC in mice (349). Acetylation of phloridzin was catalyzed by *Candida antarctica* lipase B. The generated 4,3',6'-3-O-acetyl-phloridzin shows increased antiproliferative activity against the human hepatoma cell line HepG2 when compared with phloridzin (345).

Glycosylation modification has an important role in the regulation of multiple pharmacokinetics of flavonoids (350). Glycosylation is usually the last step in the synthesis of flavonoids, through which the solubility and stability of flavonoids aglycones can be improved or enhanced (351). Glycosylation refers to the attachment of glycosyls to the hydroxyl groups or carbon atoms of flavonoids to form O-glycosides or C-glycosides of which O-glycosylation is more common in nature (352). O-glycosylation sites were commonly found at positions 3, 7, 4 and 5' (353). There are three methods for the chemical synthesis of flavonoid O-glucosides: Koening-Knorr, glycosyl trichloroacetimidate and phase transfer catalysis methods. The first two methods have been used infrequently due to their low

yield, but the phase transfer catalysis method is currently the preferred method for glycosylation of flavan-3-ols (354). A study by Yao et al (355) synthesized flavone-glycoside aciculatin by regio- and stereoselective glycosylation-Fries-type O-to-C rearrangement and Baker-Venkataraman rearrangement, but the yield was only 8.3%. By contrast, de-glycosylation is accomplished by a simple acid hydrolysis process (356). The enzymatic glycosylation process is mainly realized by glycosyltransferase (GT). OcUGT1 catalyzes the C-8 position of 7,8-dihydroxyflavone to generate two monoglycosides and one diglycoside (357). De-glycosylation is mainly accomplished by glycosidases hydrolysis of the glycosidic bonds. De-glycosylation is commonly used in the food industry, such as debittering citrus juice or aroma enhancement in wine (358). The microbial method mainly introduces recombinant gene plasmids into strains and then expresses the corresponding products (359). Studies have shown that the cloning of GT genes into strains can be used to produce enzymes for glycosylation reactions (360). The study by Lyu et al (361) introduced UDP-rhamnose synthase and 3-O-GTs plasmids into yeast strains, and the obtained GTs could catalyze the glycosylation reaction at the C-3 position of flavonoids. However, the conversion rate of the microbial method is decreased compared with that of the enzymatic method (362). The anticancer activity of glycosylated flavonoids tends to be reduced compared with that of their precursors. For example, the inhibitory effect of apigenin7-O-glucoside on tumor cells is weaker than that of apigenin (363). This may be associated with the increased hydrophilicity and steric hindrance of the flavonoid glycoside, preventing it from crossing the cell membrane to the cytoplasm (364). Certain studies revealed that the effect of O-glycosylation on antioxidant activity is the opposite to that of C-glycosylation. For instance, the free radical scavenging energy of kaempferol 3-O-glycosides was decreased compared with that of kaempferol (365). However, luteolin 6-O-glycoside revealed stronger scavenging of ROS than luteolin (366).

O-methylation refers to the substitution of a methyl group for specific hydrogen atoms on flavonoids, which usually occurs at sites 3, 5, 4 and 7' on the ring of flavonoids (364). In chemistry, phenolic compounds are usually treated with diazomethane, dimethyl sulfate, methyl iodide and other highly toxic reagents to carry out the reaction. Previously, dimethyl carbonate, as a safe and non-toxic alternative reagent, has been used to promote methylation reactions under mild and practical conditions (367). In the enzymatic method, S-adenosyl-l-methionone is a methyl donor, which is attached to hydroxyl groups of flavonoids by O-methyltransferases (OMTs). A variety of OMTs have been identified and isolated from different bacteria, fungi and plants that can transfer methyl groups to specific hydroxyl groups of flavonoids (368). For example, a new OMT isolated from 3-methoxylation of pinosylvin, can be used for the methylation of pinosylvin (369). However, the experimental requirements and cost of isolating OMTs are not suitable for large-scale commercial use. In the microbial method, OMTs can be obtained by introducing the OMT gene into Escherichia coli (E. coli) by fermentation. An OMT gene isolated from methylated catechins was introduced into E. coli for expression to obtain OMT, which can methylate flavonoids at specific sites (370). At present, the synthesis of flavonoids by the microbial method still faces the problem of having a low conversion rate preventing its use in large-scale production. Studies have revealed that methylation can increase the anticancer activity of flavonoids. For example, by comparing the anticancer activities of six flavonoids from *Pulicaria jaubertii*, it was found that among them, the methylated flavonoids had increased anticancer activities with compared with unmethylated flavonoids, and their ability to inhibit the proliferation and promote apoptosis of colon cancer cells was improved compared with unmethylated flavonoids (371). The anticancer activity is also affected by structural differences in flavonoids. For example, by methylating genistein and daidzein, the anti-proliferative ability of 7-O-methyl genistein and 7-O-methyl daidzein was also changed, reducing the anti-proliferative activity of 7-O-methyl genistein, but increasing the anti-proliferative activity of 7-O-methyl daidzein (372).

Hydroxylation refers to one or more hydroxyl groups substituted with hydrogen atoms on flavonoids, and the common hydroxylation sites for flavonoids occur at position 8 on flavonols and position 5, 6, and 4' on flavanone (373). The microbial method is the main method for the synthesis of hydroxyl flavonoids. The phase I metabolite produced by Beauveria bassiana can hydroxylate silybin to 8-hydroxysilybin, resulting in increased antioxidant activity (374). Flavanone was catalyzed by Aspergillus and Penicillium to produce 6-hydroxyflavanone and 5,7,4'-trihydroxyflavanone with increased antioxidant activity (375). Alternatively, some enzymes can be used to hydroxylated flavonoids. For example, the cytochrome P450 family and monooxygenases utilize either dioxygen or H₂O₂ as oxygen donors to introduce oxygen atoms into aromatic molecules (376). A study by Zhang et al (377) successfully established and optimized a multienzyme synthesis system to achieve a high conversion rate of naringenin to kaempferol through the key enzymes Atf3h and Atfls1. If large-scale commercial applications are to be realized, the fermentation conditions of microorganisms need to be continuously optimized. A study suggests that the anticancer activity of flavonoids increases after the introduction of Catechol moiety (378). The sites and numbers of hydroxylation of flavonoids have a considerable influence on their biological activity. Compared with the 5, 6 and 7 hydroxyl groups in the A ring, the hydroxyl groups in the B ring, especially the 3',4'-dihydroxyphenol structure, are most important for scavenging ROS (379,380).

Halogenation refers to the introduction of one or more halogen atoms into flavonoid molecules, usually at the 3, 6, 8, 4 and 3' sites (381). Halogenated flavonoids are mainly produced by chemical methods. For example, a variety of halogen chalcones have been prepared by simple condensation reaction of 4-bromoacetophenone with different substituted halogen benzaldehydes under the catalysis of sodium hydroxide (382). Naringenin and hesperetin can be catalyzed by a peroxidase from *Caldariomyces fumago* (CPO) and replaced at positions 6 and 8 by halogenated elements such as Br or Cl to generate different halogenated flavonoids (383). A large number of studies have proved that halogenation can change the anticancer and antibacterial activities of flavonoids. The chlorination reaction of genistein can considerably enhance its antioxidant and anticancer activities. Antitumor activities

of 3',8-dichlorogenistein and 8-chlorogenistein are 2.6 and 7.7 times higher compared with genistein, respectively (384). Brominated chalcone derivatives can induce apoptosis of GC cells *in vitro* and inhibit tumor growth in a nude mouse xenograft model without toxic effects (385). It has been shown that the antiproliferative activity of flavonoid halogenated derivatives increases with substituents from F to Cl and Br, and the 3-position halogen can enhance the anticancer activity of chalcone, while 4-position halogen can enhance the activity of flavonoil derivatives (386).

Sulfation refers to the introduction of sulfate groups into flavonoids. The common sulfation sites are 3, 7, 4 and 3'. A study by Zhang et al (387) synthesized sulfated flavonoids by chemical methods, and quercetin reacted with concentrated sulfuric acid to obtain quercetin-5',8-disulfonate. A study showed that quercetin-5',8-disulfonate had an improved inhibitory effect on colon and breast cancer cells than quercetin. Sulfotransferase (ST) is an enzyme that catalyzes the transfer of sulfo groups from donors to recipients, ST-catalyzed donors are generally 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and the sulfation of a variety of flavonoid compounds can be achieved by ST (388). P-nitrophenylsulfate has been used as a donor to synthesize a series of sulfated flavonoid derivatives catalyzed by arylsulfotransferase (389). However, the enzymatic reaction is complicated and its commercial use is limited. For this purpose, the microbial method was developed to sulfate flavonoids. Flavonoids can be enzymatically synthesized by PAPS-independent bacterial aryl sulfotransferases in vitro. AST from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus showed very high efficiency in the sulfation of flavonoids, kaempferol and luteolin were the best switching receptors, and DalAST could be sulfated at positions 4, 3 and 7' of kaempferol (390). After the sulfation of flavonoids, the increase of water solubility and negative charge can effectively improve their bioavailability and have considerable improvements in anticancer, anticoagulation, and antioxidant activities. A study showed that quercetin-5',8-disulfonate has potent antitumor activity against human colon and breast cancer cells (387). The anticoagulant properties of a variety of flavonoid compounds such as hesperetin and rutin have been demonstrated, and polysulfated flavonosides can be used as safe and effective anticoagulant therapy drugs (391).

Pharmaceutical technologies. Development of pharmaceutical technologies also provides new ideas for drug delivery. Carrier complexation is a new technology that complexes drug molecules with different carriers to improve the absorption rate and bioavailability of drugs (392). At present, the most used carriers are cyclodextrins (CDs) and phospholipids, which can improve drug solubility and protect active molecules from the influence of temperature, pH and other conditions (393). Studies revealed that the complexation of several types of flavonoids with carriers can greatly improve their oral bioavailability and reduce side effects. For instance, the solubility and in vitro release of quercetin, fisetin and chrysin prepared by CDs were increased and even their original biological activity was enhanced (394-396). Oral administration of silybinphosphatidylcholine complex considerably increased systemic absorption in 130 subjects (397).

Nanotechnology is a modification of chemical compounds at the nanoscale and has been used in the treatment of cancer. Due to the low specificity of drugs to tissues, the conventional drug administration regimens lead to non-target tissue, which often causes serious toxic side effects and drug resistance (398). New nanodevices can deliver anti-tumor drugs to specific tumor sites and target cells, reducing side effects and improving therapeutic efficacy. Moreover, the release rate of drugs can be changed by changing the size and surface tunable properties of nanoparticles to provide continuous blood circulation (399,400). Nanotechnology-based drug delivery systems are applied to improve the bioavailability of poor water-soluble flavonoids. At present, nanotechnology-based drug delivery systems are mainly developed with the following three considerations: i) Reducing the particle size of drugs, such as nanocrystals, ii) nanometer-scale emulsion droplet encapsulated systems, such as nanoemulsions and nanosuspensions and iii) carrier-based nanoparticle delivery systems, such as lipid nanoparticles and nanogels (330). Apigenin nanocrystals were prepared by the supercritical antisolvent process to study their absorption efficiency in rats. The results show that the plasma concentration of apigenin following oral administration of apigenin nanocrystals was considerably increased when compared with that of apigenin powder and the dissolution degree in vitro showed that apigenin nanocrystals were faster and more complete (401). This may be because the decreased particle size and increased surface area can increase the adhesion of apigenin to the mucosa and prolong the residence time in the gastrointestinal tract, resulting in increased bioavailability (402). It has been found that MYR-ME formed by combining myricetin with nanoemulsions can considerably improve the solubility and oral availability of myricetin in rats. Compared with myricetin suspension, it increased by 14.43 times (313). Due to the poor stability of EGCG at physiological pH, encapsulation of EGCG in solid lipid nanoparticles (SLN) can enhance its stability and anticancer activity. The cytotoxicity of EGCG-SLN to prostate and breast cancer cells is considerably increased and it shows high stability in serum and phosphate buffer saline (403). The poor water solubility and low bioavailability of flavonoids can be effectively improved by nanotechnology. However, the side effects, toxicity to normal tissues and organs, and the absorption of surfactants and emulsifying agents have limited their clinical application. To solve these problems, the study by Yao et al (350) developed myricetin-loaded nanogel/gel, which exhibited high oral availability and low cytotoxicity.

8. Limitations and potential consequences

Although flavonoids have revealed a range of anticancer effects on a variety of GI cancer types and have fewer side effects than conventional anticancer drugs, flavonoids still have some limitations in the treatment of different types of GI cancer and may cause potential consequences.

Bioavailability of flavonoids. Although flavonoids have shown anticancer potential *in vitro*, their bioavailability in humans is low (19). Absorption of flavonoids in the gastrointestinal tract is limited and they are often rapidly metabolized in the gut to

other forms, so their anticancer effects may be less pronounced than expected compared with *in vitro* studies (404). The low bioavailability of flavonoids may limit their practical use as a treatment for different types of GI cancer. Although bioavailability may be increased through nanotechnology, drug loading systems and other ways to improve dosage forms, these technologies are still in the research and development stage and are expensive.

Effect of flavonoids on different types of GI cancer is variable. Therapeutic effects of flavonoids on different types of GI cancer are not similar for different types of cancer. Different types of cancer cells may differ considerably in their molecular mechanisms, signaling pathways and sensitivity to drugs. Flavonoids may be effective in some types of cancer and less effective in others. Therefore, the application of flavonoids may require individualized adjustment for specific cancer types, which increases the complexity of the treatment regimen.

Complexity and diversity of signaling pathways. Anticancer effects of flavonoids is often achieved by regulating a variety of signaling pathways, such as the PI3K/Akt pathway, NF-κB pathway and MAPK pathway as aforementioned. However, the occurrence and development of different types of GI cancer are the result of the interaction of complex gene mutations, epigenetic changes and microenvironment (405). A single action of flavonoids may not effectively regulate all key pathways. If flavonoids are relied on alone to regulate certain signaling pathways, cancer cell proliferation and metastasis may not be comprehensively inhibited, and it is easy to produce drug resistance during treatment (406). Therefore, it may be necessary to combine other therapeutic strategies such as chemotherapy, immunotherapy and targeted therapy, amongst others to enhance its therapeutic effect.

Side effects and toxicity of flavonoids. Although flavonoids are generally considered natural substances and have low toxicity, some side effects such as indigestion, allergic reactions and liver or kidney burden may still occur at high doses or with long-term use (407,408). In addition, the interaction of flavonoids with other drugs may also influence the therapeutic effect. If the side effects of flavonoids are not adequately evaluated or managed, the therapeutic effect in patients may be affected. Therefore, in-depth studies on long-term safety and potential toxicity are needed before clinical use.

Individualized treatment of flavonoids. Therapeutic effects of flavonoids may vary between individuals. Factors such as genetic differences, immune system status and differences in gut microbiota can affect the metabolic processes and anticancer effects of flavonoids (409). If individual differences are not fully considered, the generalized use of flavonoids may not produce the desired effect, and may even lead to adverse consequences due to different individual reactions. Future studies should focus on how to tailor the use of flavonoids to the specific conditions of patients.

Challenges of combination therapy. As an adjuvant therapy, flavonoids may need to be used in combination with other

treatment methods, such as chemotherapy, targeted therapy and immunotherapy, amongst others (410,411). However, the interaction of flavonoids with other drugs is not fully understood, which may lead to drug interference or side effects. If combination therapy is not adequate, it may affect treatment effectiveness or aggravate the side effects. Therefore, the combination of flavonoids needs to be carefully designed and validated in clinical practice.

In conclusion, the potential of flavonoids in the treatment of different types of GI cancer is considerable, especially exhibiting beneficial effects in anti-inflammation, antioxidation and inhibition of cancer cell proliferation. However, its practical application faces challenges, including issues such as low bioavailability, variable therapeutic efficacy according to cancer type and individual differences, insufficient clinical research, side effects and toxicity. More basic research, clinical trials and optimization and improvement of treatment strategies are still needed to fully realize the therapeutic potential of flavonoids.

9. Conclusion and prospects

In the present review, the mechanisms of flavonoids in the treatment of different types of GI cancer by influencing signaling pathways and the research progress of flavonoids in preclinical experiments and clinical trials have been summarized. Several commonly used drug delivery systems to improve the bioavailability of flavonoids have been introduced and the advantages and possible limitations of each method have been discussed. Flavonoid drugs have potential and prospects for drug delivery research in anti-tumor treatment efforts. However, there are still several challenges in the current drug delivery strategy: Instability of the carrier and low drug loading (the amount of drug carried per unit weight or per unit volume of a carrier) may be caused by the complexity of the preparation process and a large number of adjuvants. Possible side effects of structural modifications, as well as incomplete degradation of the carrier. Therefore, future research should address the following aspects: i) Investigate new delivery materials and improve existing delivery systems, using natural materials or carriers that are inexpensive, easy to prepare and safe. In addition, the evaluation of the safety of other delivery materials such as absorption enhancers, carrier complexation and nanoparticles should be investigated in detail to determine whether they can be completely degraded in the human body, whether the degradation products produce side effects or toxicity to the human body and whether the degradation products can be completely excreted. ii) Control the release efficiency of the drug in the human body and prolong the time of the active components of the drug in the blood circulation. This can not only achieve adequate therapeutic effects, but also reduce a series of side effects caused by excessive drug intake, and greatly improve the convenience and compliance of patients taking drugs. iii) Most of the current clinical trials are case-control studies, which evaluate the efficacy of flavonoids by investigating consumption of foods rich in flavonoids by patients, but there is no regulation of the content of flavonoids in foods making it difficult to determine the optimal dose for the development of new flavonoid drugs.

Therefore, attention should be paid to the effect of flavonoid dosage on the disease in subsequent clinical studies. iv) At present, there are relatively few clinical studies on flavonoids in the treatment of different types of GI cancer and the vast majority of studies focus on animal experiments and in vitro experiments. Although these findings have certain reference values, the clinical effects of flavonoids have not been fully verified due to the differences in metabolism and immune response between humans and experimental animals. Clinical studies are needed to evaluate the safety and efficacy of flavonoid delivery systems. For example, as a very popular drug delivery material, nanoparticles are commonly used in the development of drugs for the targeted therapy against tumors. However, most drug preparations that are effective in mice are not completely effective in humans, and seemingly effective nanoparticle delivery systems have not achieved the expected therapeutic effect on xenograft tumors (412). Therefore, in future research, it is necessary to focus on improving the loading efficiency of the carriers, using safe and cheap carriers, simplifying the production steps, comprehensively analyzing the differences between the effects of drugs in animals and humans, systematically studying the therapeutic effect of drugs on humans, and further solving the issue of animal-to-human transition. By overcoming these difficulties and with continued research, flavonoids have potential in the treatment of different types of GI cancer.

Acknowledgements

Not applicable.

Funding

The present review was supported by the Medical Science and Technology Research Program of Henan Province (grant no. 201702121).

Availability of data and materials

Not applicable.

Authors' contributions

YD wrote and revised this manuscript. YY participated in the revision of the manuscript. YD and YY conceived and organized the present study. Both authors read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

- Guo M, Jin J, Zhao D, Rong Z, Cao LQ, Li AH, Sun XY, Jia LY, Wang YD, Huang L, et al: Research advances on Anti-cancer natural products. Front Oncol 12: 866154, 2022.
- Nandi SK, Chatterjee N, Roychowdhury T, Pradhan A, Moiz S, Manna K, Sarkar DK, Dhar P, Dutta A, Mukhopadhyay S and Bhattacharya R: Kaempferol with Verapamil impeded panoramic chemoevasion pathways in breast cancer through ROS overproduction and disruption of lysosomal biogenesis. Phytomedicine 113: 154689, 2023.
- 3. Deng Y, Li S, Wang M, Chen X, Tian L, Wang L, Yang W, Chen L, He F and Yin W: Flavonoid-rich extracts from okra flowers exert antitumor activity in colorectal cancer through induction of mitochondrial dysfunction-associated apoptosis, senescence and autophagy. Food Funct 11: 10448-10466, 2020.
- 4. Siqueira EDS, Concato VM, Tomiotto-Pellissier F, Silva TF, Bortoleti BTDS, Gonçalves MD, Costa IN, Junior WAV, Pavanelli WR, Panis C, *et al*: Trans-chalcone induces death by autophagy mediated by p53 up-regulation and beta-catenin down-regulation on human hepatocellular carcinoma HuH7.5 cell line. Phytomedicine 80: 153373, 2021.
- Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, Haddad MA and Al-Hiary M: Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102: 1397-1400, 2019.
- Khoddami A, Wilkes MA and Roberts TH: Techniques for analysis of plant phenolic compounds. Molecules 18: 2328-2375, 2013.
- 7. Chen S, Wang X, Cheng Y, Gao H and Chen X: A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules 28: 4982, 2023.
- Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, Oslan SN and Sabri S: Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol Biol Rep 46: 6647-6659, 2019.
- Shen N, Wang T, Gan Q, Liu S, Wang L and Jin B: Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383: 132531, 2022.
- Stalikas CD: Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30: 3268-3295, 2007.
- Romagnolo DF and Selmin OI: Flavonoids and cancer prevention: A review of the evidence. J Nutr Gerontol Geriatr 31: 206-238, 2012.
- 12. Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F and Eid AH: Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 146: 112442, 2022.
- Jardim SR, de Souza LMP and de Souza HSP: The rise of gastrointestinal cancers as a global phenomenon: Unhealthy behavior or progress? Int J Environ Res Public Health 20: 3640, 2023.
- 14. Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R and Srivastava V: Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. Int Rev Cell Mol Biol 385: 41-99, 2024.
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71: 209-249, 2021.
- 16. Griffin-Sobel JP: Gastrointestinal cancers: Screening and early detection. Semin Oncol Nurs 33: 165-171, 2017.
- Veitch AM, Uedo N, Yao K and East JE: Optimizing early upper gastrointestinal cancer detection at endoscopy. Nat Rev Gastroenterol Hepatol 12: 660-667, 2015.
- 18. Al-Ishaq RK, Overy AJ and Busselberg D: Phytochemicals and gastrointestinal cancer: Cellular mechanisms and effects to change cancer progression. Biomolecules 10: 105, 2020.
- Ross JA and Kasum CM: Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu Rev Nutr 22: 19-34, 2002.
- Malvicini M, Aquino JB and Mazzolini G: Combined therapy for gastrointestinal carcinomas: Exploiting synergies between gene therapy and classical chemo-radiotherapy. Curr Gene Ther 15: 151-160, 2015.
- 21. Middleton G and Cunningham D: Current options in the management of gastrointestinal cancer. Ann Oncol 6: 17-26, 1995.
- Uzunoglu FG, Reeh M, Kutup A and Izbicki JR: Surgery of esophageal cancer. Langenbecks Arch Surg 398: 189-193, 2013.
- 23. Joshi SS and Badgwell BD: Current treatment and recent progress in gastric cancer. CA Cancer J Clin 71: 264-279, 2021.

- 24. Clancy TE: Surgery for pancreatic cancer. Hematol Oncol Clin North Am 29: 701-716, 2015.
- 25. Orcutt ST and Anaya DA: Liver resection and surgical strategies for management of primary liver cancer. Cancer Control 25: 1073274817744621, 2018.
- Shinji S, Yamada T, Matsuda A, Sonoda H, Ohta R, Iwai T, Takeda K, Yonaga K, Masuda Y and Yoshida H: Recent advances in the treatment of colorectal cancer: A review. J Nippon Med Sch 89: 246-254, 2022.
- Choi HS and Hwang JH: Endoscopic resection of early luminal cancer. Gastrointest Endosc Clin N Am 34: 51-78, 2024.
- Wang AY and Yachimski PS: Endoscopic management of pancreatobiliary neoplasms. Gastroenterology 154: 1947-1963, 2018.
- 29. Sun V and Fong Y: Minimally invasive cancer surgery: Indications and outcomes. Semin Oncol Nurs 33: 23-36, 2017.
- Guzman EA, Pigazzi A, Lee B, Soriano PA, Nelson RA, Benjamin Paz I, Trisal V, Kim J and Ellenhorn JD: Totally laparoscopic gastric resection with extended lymphadenectomy for gastric adenocarcinoma. Ann Surg Oncol 16: 2218-2223, 2009.
- 31. Huscher CG, Mingoli A, Sgarzini G, Binda B, Di Paola M and Ponzano C: Totally laparoscopic total and subtotal gastrectomy with extended lymph node dissection for early and advanced gastric cancer: Early and long-term results of a 100-patient series. Am J Surg 194: 839-844, 2007.
- 32. Fleshman J, Sargent DJ, Green E, Anvari M, Stryker SJ, Beart RW Jr, Hellinger M, Flanagan R Jr, Peters W and Nelson H; Clinical Outcomes of Surgical Therapy Study Group: Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg 246: 655-664, 2007.
- 33. Galan C, Hernandez MP, Martinez MC, Sanchez A, Bollo J and Targarona EM: Surgical treatment of retrorectal tumors: A plea for a laparoscopic approach. Surg Endosc 37: 9080-9088, 2023.
- for a laparoscopic approach. Surg Endosc 37: 9080-9088, 2023.

 34. Henckens SPG, Schuring N, Elliott JA, Johar A, Markar SR, Gantxegi A, Lagergren P, Hanna GB, Pera M, Reynolds JV, et al: Recurrence and survival after minimally invasive and open esophagectomy for esophageal cancer: A post hoc analysis of the ensure study. Ann Surg 280: 267-273, 2024.
- ensure study. Ann Surg 280: 267-273, 2024.

 35. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hospers GA, Bonenkamp JJ, et al: Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366: 2074-2084, 2012.
- Ilson DH and Al-Batran SE: Preoperative chemoradiotherapy or perioperative chemotherapy for patients with gastro-oesophageal junction adenocarcinoma. Lancet Oncol 24: 593-595, 2023.
- 37. Al-Batran SE, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, Kopp HG, Mayer F, Haag GM, Luley K, et al: Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 393: 1948-1957, 2019.
- 38. Rahman S, Thomas B, Maynard N, Park MH, Wahedally M, Trudgill N, Crosby T, Cromwell DA and Underwood TJ: Impact of postoperative chemotherapy on survival for oesophagogastric adenocarcinoma after preoperative chemotherapy and surgery. Br J Surg 109: 227-236, 2022.
- 39. Bahadoer RR, Dijkstra EA, van Etten B, Marijnen CAM, Putter H, Kranenbarg EM, Roodvoets AGH, Nagtegaal ID, Beets-Tan RGH, Blomqvist LK, et al: Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol 22: 29-42, 2021.
- 40. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, *et al*: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355: 11-20, 2006.
- Nagahama H, Okada S, Okusaka T, Ishii H, Ikeda M, Nakasuka H and Yoshimori M: Predictive factors for tumor response to systemic chemotherapy in patients with hepatocellular carcinoma. Jpn J Clin Oncol 27: 321-324, 1997.
 Zhou L, Wang H and Li Y: Stimuli-responsive nanomedicines
- 42. Zhou L, Wang H and Li Y: Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics 8: 1059-1074, 2018.

- 43. Weiss J, Moghanaki D, Plastaras JP and Haller DG: Improved patient and regimen selection in locally advanced rectal cancer: Who, how, and what next? Clin Colorectal Cancer 8: 194-199, 2009
- 44. Braendengen M, Tveit KM, Berglund A, Birkemeyer E, Frykholm G, Påhlman L, Wiig JN, Byström P, Bujko K and Glimelius B: Randomized phase III study comparing preoperative radiotherapy with chemoradiotherapy in nonresectable rectal cancer. J Clin Oncol 26: 3687-3694, 2008.
- 45. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, et al: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351: 1731-1740, 2004.
- 46. Ritter AR and Miller ED: Intraoperative radiation therapy for gastrointestinal malignancies. Surg Oncol Clin N Am 32: 537-552, 2023.
- Schaue D and McBride WH: Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 12: 527-540, 2015.
- 48. Grau C, Durante M, Georg D, Langendijk JA and Weber DC: Particle therapy in Europe. Mol Oncol 14: 1492-1499, 2020.
- 49. Qi WX, Fu S, Zhang Q and Guo XM: Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: A systematic review and meta-analysis. Radiother Oncol 114: 289-295, 2015.
- Larghi A, Rimbas M, Rizzatti G, Carbone C, Gasbarrini A, Costamagna G, Alfieri S and Tortora G: Endoscopic ultrasound-guided therapies for pancreatic solid tumors: An overview. Semin Oncol 48: 95-105, 2021.
- Wang KX, Jin ZD, Du YQ, Zhan XB, Zou DW, Liu Y, Wang D, Chen J, Xu C and Li ZS: EUS-guided celiac ganglion irradiation with iodine-125 seeds for pain control in pancreatic carcinoma: A prospective pilot study. Gastrointest Endosc 76: 945-952, 2012.
- Cha JH, Chan LC, Song MS and Hung MC: New approaches on cancer immunotherapy. Cold Spring Harb Perspect Med 10: a036863, 2020.
- Xie N, Shen G, Gao W, Huang Z, Huang C and Fu L: Neoantigens: Promising targets for cancer therapy. Signal Transduct Target Ther 8: 9, 2023.
- 54. Sun J, Zheng Y, Mamun M, Li X, Chen X and Gao Y: Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors. Biomed Pharmacother 129: 110504, 2020.
- 55. Luo H, Lu J, Bai Y, Mao T, Wang J, Fan Q, Zhang Y, Zhao K, Chen Z, Gao S, et al: Effect of camrelizumab vs placebo added to chemotherapy on survival and progression-Free survival in patients with advanced or metastatic esophageal squamous cell carcinoma: The ESCORT-1st randomized clinical trial. JAMA 326: 916-925, 2021.
- Galluzzi L, Humeau J, Buque A, Zitvogel L and Kroemer G: Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 17: 725-741, 2020.
- 57. Kelly RJ, Zaidi AH, Smith MA, Omstead AN, Kosovec JE, Matsui D, Martin SA, DiCarlo C, Werts ED, Silverman JF, et al: The dynamic and transient immune microenvironment in locally advanced esophageal adenocarcinoma post chemoradiation. Ann Surg 268: 992-999, 2018.
- 58. Mamdani H, Schneider B, Perkins SM, Burney HN, Kasi PM, Abushahin LI, Birdas T, Kesler K, Watkins TM, Badve SS, et al: A Phase II trial of adjuvant durvalumab following trimodality therapy for locally advanced esophageal and gastroesophageal junction adenocarcinoma: A big ten cancer research consortium study. Front Oncol 11: 736620, 2021.
- 59. Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, et al: Radiation and immune checkpoint inhibitors: Combination therapy for treatment of hepatocellular carcinoma. Int J Mol Sci 24: 16773, 2023.
- 60. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 376: 687-697, 2010.
- 61. Cunningham D, Stenning SP, Smyth EC, Okines AF, Allum WH, Rowley S, Stevenson L, Grabsch HI, Alderson D, Crosby T, et al: Peri-operative chemotherapy with or without bevacizumab in operable oesophagogastric adenocarcinoma (UK Medical Research Council ST03): Primary analysis results of a multicentre, open-label, randomised phase 2-3 trial. Lancet Oncol 18: 357-370, 2017.

- 62. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, et al: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol 15: 1224-1235, 2014.
- 63. Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, Assenat E, Brandi G, Pracht M, Lim HY, et al: Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased alpha-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20: 282-296, 2019.
- 64. Shen L: Current status and challenges of gastrointestinal cancer treatment in China. Int J Cancer 153: 1875-1876, 2023.
- Serafini M, Peluso I and Raguzzini A: Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69: 273-278, 2010.
- 66. Kopustinskiene DM, Jakstas V, Savickas A and Bernatoniene J: Flavonoids as Anticancer Agents. Nutrients 12: 457, 2020.
- Vissenaekens H, Criel H, Grootaert C, Raes K, Smagghe G and Van Camp J: Flavonoids and cellular stress: A complex interplay affecting human health. Crit Rev Food Sci Nutr 62: 8535-8566, 2022.
- 68. Rossi M, Garavello W, Talamini R, La Vecchia C, Franceschi S, Lagiou P, Zambon P, Dal Maso L, Bosetti C and Negri E: Flavonoids and risk of squamous cell esophageal cancer. Int J Cancer 120: 1560-1564, 2007.
- 69. Cai J, Tan X, Hu Q, Pan H, Zhao M, Guo C, Zeng J, Ma X and Zhao Y: Flavonoids and gastric cancer therapy: From signaling pathway to therapeutic significance. Drug Des Devel Ther 18: 3233-3253, 2024.
- 70. Niu C, Zhang J and Okolo PI III: Harnessing plant flavonoids to fight pancreatic cancer. Curr Nutr Rep 13: 566-581, 2024.
- Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM and Kouretas D: Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol 50: 2155-2170, 2012.
- Ansari B, Aschner M, Hussain Y, Efferth T and Khan H: Suppression of colorectal carcinogenesis by naringin. Phytomedicine 96: 153897, 2022.
- 73. Shao L, Zhu L, Su R, Yang C, Gao X, Xu Y, Wang H, Guo C and Li H: Baicalin enhances the chemotherapy sensitivity of oxaliplatin-resistant gastric cancer cells by activating p53-mediated ferroptosis. Sci Rep 14: 10745, 2024.
- Hu Y, Li R, Jin J, Wang Y and Ma R: Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem 46: e14453, 2022.
- 75. Tiwari P and Mishra KP: Flavonoids sensitize tumor cells to radiation: Molecular mechanisms and relevance to cancer radiotherapy. Int J Radiat Biol 96: 360-369, 2020.76. Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B,
- Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, Amini P, Fallah H and Najafi M: Radiation protection and mitigation by natural antioxidants and flavonoids: Implications to radiotherapy and radiation disasters. Curr Mol Pharmacol 11: 285-304, 2018.
- 77. Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T and Wang Z: The classification, molecular structure and biological biosynthesis of flavonoids, and their roles in biotic and abiotic stresses. Molecules 28: 3599, 2023.
- Kisiriko M, Anastasiadi M, Terry LA, Yasri A, Beale MH and Ward JL: Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules 26: 6343, 2021.
- 79. Hussein RA and El-Anssary A: Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In: Herbal Medicine, 2019.
- Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R and Verri WA Jr: Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, Pre-clinical and clinical data, and pharmaceutical development. Molecules 25: 762, 2020.
- 81. Aherne SA and O'Brien NM: Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 18: 75-81, 2002.
- 82. Scalbert A, Johnson IT and Saltmarsh M: Polyphenols: Antioxidants and beyond. Am J Clin Nutr 81: 215-217, 2005.
- Pearson DA, Holt RR, Rein D, Paglieroni T, Schmitz HH and Keen CL: Flavanols and platelet reactivity. Clin Dev Immunol 12: 1-9, 2005.
- 84. Karim M, McCormick K and Kappagoda CT: Effects of cocoa extracts on endothelium-dependent relaxation. J Nutr 130 (Suppl 8): 2105S-2108S, 2000.

- 85. Aviram M and Fuhrman B: Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann N Y Acad Sci 957: 146-161, 2002.
- 86. Chang X, Zhang T, Meng Q, ShiyuanWang, Yan P, Wang X, Luo D, Zhou X and Ji R: Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress. Oxid Med Cell Longev 2021: 5529913, 2021.
- 87. Chang X, Zhang T, Wang J, Liu Y, Yan P, Meng Q, Yin Y and Wang S: SIRT5-Related desuccinylation modification contributes to Quercetin-induced protection against heart failure and High-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance. Oxid Med Cell Longev 2021: 5876841, 2021.
- 88. Zhang Q, Zhao X and Qiu H: Flavones and flavonols: Phytochemistry and biochemistry. In: Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Ramawat KG and Mérillon JM (eds) Springer Berlin Heidelberg, Berlin, pp1821-1847, 2013.
- Hostetler GL, Ralston RA and Schwartz SJ: Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 8: 423-435, 2017.
- 90. Martens S and Mithofer A: Flavones and flavone synthases. Phytochemistry 66: 2399-2407, 2005.
- 91. Salehi B, Venditti A, Sharifi-Rad M, Kregiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, *et al*: The therapeutic potential of apigenin. Int J Mol Sci 20: 1305, 2019.
- 92.Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M and Sharifi-Rad J: Apigenin as an anticancer agent. Phytother Res 34: 1812-1828, 2020.
- 93. Nabavi SF, Khan H, D'Onofrio G, Šamec D, Shirooie S, Dehpour AR, Argüelles S, Habtemariam S and Sobarzo-Sanchez E: Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 128: 359-365, 2018.
- 94. Rahmani AH, Alsahli MA, Almatroudi A, Almogbel MA, Khan AA, Anwar S and Almatroodi SA: The potential role of apigenin in cancer prevention and treatment. Molecules 27: 6051, 2022.
- 95. Gaur K and Siddique YH: Effect of apigenin on neurodegenerative diseases. CNS Neurol Disord Drug Targets 23: 468-475, 2024.
- 96. Ku YS, Ng MS, Cheng SS, Lo AW, Xiao Z, Shin TS, Chung G and Lam HM: Understanding the composition, biosynthesis, accumulation and transport of flavonoids in crops for the promotion of crops as healthy sources of flavonoids for human consumption. Nutrients 12: 1717, 2020.
- 97. Krizova L, Dadakova K, Kasparovska J and Kasparovsky T: Isoflavones. Molecules 24: 1076, 2019.
- 98. Ahmad MZ, Li P, Wang J, Rehman NU and Zhao J: Isoflavone malonyltransferases GmIMaT1 and GmIMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Front Plant Sci 8: 735, 2017.
- 99. Lethaby A, Brown J, Marjoribanks J, Kronenberg F, Roberts H and Eden J: Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database Syst Rev: CD001395, 2007 doi: 10.1002/14651858.CD001395.pub3.
- 100. Ziegler RG: Phytoestrogens and breast cancer. Am J Clin Nutr 79: 183-184, 2004.
- Horn-Ross PL, John EM, Canchola AJ, Stewart SL and Lee MM: Phytoestrogen intake and endometrial cancer risk. J Natl Cancer Inst 95: 1158-1164, 2003.
- 102. Pan F, Liu Y, Liu J and Wang E: Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC Adv 9: 10842-10853, 2019.
- cancer HeLa cells. RSC Adv 9: 10842-10853, 2019.

 103. Zamora-Ros R, Knaze V, Lujan-Barroso L, Slimani N, Romieu I, Touillaud M, Kaaks R, Teucher B, Mattiello A, Grioni S, et al: Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 106: 1090-1099, 2011.
- 104. Smeriglio A, Monteleone D and Trombetta D: Health effects of Vaccinium myrtillus L.: Evaluation of efficacy and technological strategies for preservation of active ingredients. Mini Rev Med Chem 14: 567-584, 2014.
- 105. Wallace TC and Giusti MM: Anthocyanins. Adv Nutr 6: 620-622, 2015.
- 106. Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, Tremblay F and Zamora-Ros R: Recent research on the health benefits of blueberries and their anthocyanins. Adv Nutr 11: 224-236, 2020.

- 107. Li D, Wang P, Luo Y, Zhao M and Chen F: Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit Rev Food Sci Nutr 57: 1729-1741, 2017.
- 108. Matsumoto H, Nakamura Y, Iida H, Ito K and Ohguro H: Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp Eye Res 83: 348-356, 2006.
- 109. Pojer E, Mattivi F, Johnson D and Stockley CS: The case for anthocyanin consumption to promote human health: A review. Compr Rev Food Sci Food Saf 12: 483-508, 2013.
- 110. Ohguro H, Ohguro I, Katai M and Tanaka S: Two-year randomized, placebo-controlled study of black currant anthocyanins on visual field in glaucoma. Ophthalmologica 228: 26-35, 2012.
- 111. de Arruda Nascimento E, de Lima Coutinho L, da Silva CJ, de Lima V and Dos Santos Aguiar J: In vitro anticancer properties of anthocyanins: A systematic review. Biochim Biophys Acta Rev Cancer 1877: 188748, 2022.
- 112. Bars-Cortina D, Sakhawat A, Pinol-Felis C and Motilva MJ: Chemopreventive effects of anthocyanins on colorectal and breast cancer: A review. Semin Cancer Biol 81: 241-258, 2022.
- 113. Çetinkaya S, Taban Akça K and Süntar I: Chapter 3-Flavonoids and anticancer activity: Structure-activity relationship. In: Studies in Natural Products Chemistry. Attaur R (ed). Elsevier, pp81-115, 2022.
- 114. Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S and Nabavi SM: Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 43: 495-506, 2017.
- 115. Chanet A, Milenkovic D, Manach C, Mazur A and Morand C: Citrus flavanones: What is their role in cardiovascular protection? J Agric Food Chem 60: 8809-8822, 2012.
- 116. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, Ishikawa S, Nakamura Y and Kayaba K; Jichi Medical School Cohort Study Group: Frequency of citrus fruit intake is associated with the incidence of cardio-vascular disease: The Jichi Medical School cohort study. J Epidemiol 21: 169-175, 2011.
- 117. Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, Kim HK, Jeong TS and Choi MS: Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr 22: 561-568, 2003.
- 118. Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, *et al*: Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 305: 120752, 2022.
- 119. Ferreira de Oliveira JMP, Santos C and Fernandes E: Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. Phytomedicine 73: 152887, 2020.
- 120. Chandrika BB, Steephan M, Kumar TRS, Sabu A and Haridas M: Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci 160: 47-56, 2016.
- 121. Pico J, Xu K, Guo M, Mohamedshah Z, Ferruzzi MG and Martinez MM: Manufacturing the ultimate green banana flour: Impact of drying and extrusion on phenolic profile and starch bioaccessibility. Food Chem 297: 124990, 2019.
- 122. Zhang T, Wei X, Miao Z, Hassan H, Song Y and Fan M: Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem Cent J 10: 47, 2016.
- 123. Gardener SL, Rainey-Smith SR, Weinborn M, Bondonno CP and Martins RN: Intake of products containing anthocyanins, flavanols, and flavanones, and cognitive function: A narrative review. Front Aging Neurosci 13: 640381, 2021.
- 124. Sorond FA, Lipsitz LA, Hollenberg NK and Fisher ND: Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat 4: 433-440, 2008.
- humans. Neuropsychiatr Dis Treat 4: 433-440, 2008.

 125. Lamport DJ, Pal D, Moutsiana C, Field DT, Williams CM, Spencer JP and Butler LT: The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: A placebo controlled, crossover, acute trial. Psychopharmacology (Berl) 232: 3227-3234, 2015.
- Psychopharmacology (Berl) 232: 3227-3234, 2015.

 126. Desideri G, Kwik-Uribe C, Grassi D, Necozione S, Ghiadoni L, Mastroiacovo D, Raffaele A, Ferri L, Bocale R, Lechiara MC, et al: Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: The Cocoa, Cognition, and Aging (CoCoA) study. Hypertension 60: 794-801, 2012.

- 127. Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, Righetti R, Bocale R, Lechiara MC, Marini C, *et al*: Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: The Cocoa, Cognition, and Aging (CoCoA) Study-a randomized controlled trial. Am J Clin Nutr 101: 538-548, 2015.
- 128. Scholey A and Owen L: Effects of chocolate on cognitive function and mood: A systematic review. Nutr Rev 71: 665-681, 2013.
- 129. Sasaki T, Unno K, Tahara S, Shimada A, Chiba Y, Hoshino M and Kaneko T: Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell 7: 459-469, 2008.
- 130. Halliwell B: Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 18: 685-716, 2001.
- 131. Bernatoniene J and Kopustinskiene DM: The role of catechins in cellular responses to oxidative stress. Molecules 23: 965, 2018.
- 132. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C and Miao Z: Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 117: 7762-7810, 2017.
- 133. Kuete V and Sandjo LP: Isobavachalcone: An overview. Chin J Integr Med 18: 543-547.
- 134. Sahu NK, Balbhadra SS, Choudhary J and Kohli DV: Exploring pharmacological significance of chalcone scaffold: A review. Curr Med Chem 19: 209-225, 2012.
- 135. Batovska DI and Todorova IT: Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 5: 1-29, 2021.
- 136. Colgate EC, Miranda CL, Stevens JF, Bray TM and Ho E: Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett 246: 201-209, 2007.
- 137. Foresti R, Hoque M, Monti D, Green CJ and Motterlini R: Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells. J Pharmacol Exp Ther 312: 686-693, 2005.
- 138. Williamson G, Kay CD and Crozier A: The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr Rev Food Sci Food Saf 17: 1054-1112, 2018.
- 139. Yang CS, Lee MJ and Chen L: Human salivary tea catechin levels and catechin esterase activities: Implication in human cancer prevention studies. Cancer Epidemiol Biomarkers Prev 8: 83-89, 1999.
- 140. Spencer JPE, Schroeter H, Rechner AR and Rice-Evans C: Bioavailability of flavan-3-ols and procyanidins: Gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal 3: 1023-1039, 2001.
- 141. Spencer JP, Chaudry F, Pannala AS, Srai SK, Debnam E and Rice-Evans C: Decomposition of cocoa procyanidins in the gastric milieu. Biochem Biophys Res Commun 272: 236-241, 2000.
- 142. Pforte H, Naser T, Jacobasch G and Buhr HJ: Absorption and modification of rutin in the human stomach. Special Publication Royal Society Chemistry 255: 84-87, 2000.
- 143. Hollman PCH: Absorption, bioavailability, and metabolism of flavonoids. Pharmaceutical Biol 42: 74-83, 2009.
- 144. Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, Esaulova E, Artyomov MN, Morales DJ, Holtzman MJ, et al: The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357: 498-502, 2017.
- 145. Chen L, Cao H, Huang Q, Xiao J and Teng H: Absorption, metabolism and bioavailability of flavonoids: A review. Crit Rev Food Sci Nutr 62: 7730-7742, 2022.
- 146. Cassidy A and Minihane AM: The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105: 10-22, 2017.
- 147. Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP and Rice-Evans CA: The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33: 220-235, 2002.
- 148. Olthof MR, Hollman PCH, Buijsman MNCP, Amelsvoort JM and Katan MB: Chlorogenic acid, quercetin-3-rutinoside, and black tea phenols are extensively metabolized in humans. J Nutr 133: 1806-1814, 2003.
- 149. Setchell KD, Faughnan MS, Avades T, Zimmer-Nechemias L, Brown NM, Wolfe BE, Brashear WT, Desai P, Oldfield MF, Botting NP and Cassidy A: Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr 77: 411-419, 2003.
- 150. Yang H, Wang F, Hallemeier CL, Lerut T and Fu J: Oesophageal cancer. Lancet 404: 1991-2005, 2024.

- 151. Guo X, Tang Y and Zhu W: Distinct esophageal adenocarcinoma molecular subtype has subtype-specific gene expression and mutation patterns. BMC Genomics 19: 769, 2018.
- 152. Brown LM, Hoover RN, Greenberg RS, Schoenberg JB, Schwartz AG, Swanson GM, Liff JM, Silverman DT, Hayes RB and Pottern LM: Are racial differences in squamous cell esophageal cancer explained by alcohol and tobacco use? J Natl Cancer Inst 86: 1340-1345, 1994.
- 153. Napier KJ, Scheerer M and Misra S: Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 6: 112-120, 2014.
- 154. Parkin DM, Bray F, Ferlay J and Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 55: 74-108, 2005.
- 155. Shapiro J, van Lanschot JJB, Hulshof MCCM, van Hagen P, van Berge Henegouwen MI, Wijnhoven BPL, van Laarhoven HWM, Nieuwenhuijzen GAP, Hospers GAP, Bonenkamp JJ, et al: Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol 16: 1090-1098, 2015.
- 156. Liu Y, Li CL, Xu QQ, Cheng D, Liu KD and Sun ZQ: Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol Res Pract 222: 153455, 2021.
- 157. Zhang Z, Yang L, Hou J, Tian S and Liu Y: Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol 267: 113635, 2021.
- 158. Liu J, Deng L, Wang L, Qian D, He C, Ren Q, Zhang Q and Chen Y: Licochalcone A induces G2/M phase arrest and apoptosis via regulating p53 pathways in esophageal cancer: In-vitro and in-vivo study. Eur J Pharmacol 958: 176080, 2023.
- 159. Jia XB, Zhang Q, Xu L, Yao WJ and Wei L: Effect of *Malus asiatica* nakai leaf flavonoids on the prevention of esophageal cancer in C57BL/6J mice by regulating the IL-17 signaling pathway. Onco Targets Ther 13: 6987-6996, 2020.
- 160. Cui L, Liu X, Tian Y, Xie C, Li Q, Cui H and Sun C: Flavonoids, flavonoid subclasses, and esophageal cancer risk: A Meta-analysis of epidemiologic studies. Nutrients 8: 350, 2016.
- 161. Bobe G, Peterson JJ, Gridley G, Hyer M, Dwyer JT and Brown LM: Flavonoid consumption and esophageal cancer among black and white men in the United States. Int J Cancer 125: 1147-1154, 2009.
- 162. Franklin J and Jankowski J: Recent advances in understanding and preventing oesophageal cancer. F1000Res 9: F1000 Faculty Rev-276, 2020.
- 163. Chang PY, Mirsalis J, Riccio ES, Bakke JP, Lee PS, Shimon J, Phillips S, Fairchild D, Hara Y and Crowell JA: Genotoxicity and toxicity of the potential cancer-preventive agent polyphenon E. Environ Mol Mutagen 41: 43-54, 2003.
- 164. Joe AK, Schnoll-Sussman F, Bresalier RS, Abrams JA, Hibshoosh H, Cheung K, Friedman RA, Yang CS, Milne GL, Liu DD, et al: Phase Ib randomized, Double-blinded, placebo-controlled, dose escalation study of polyphenon E in Patients with Barrett's Esophagus. Cancer Prev Res (Phila) 8: 1131-1137, 2015.
- 165. Petrick JL, Steck SE, Bradshaw PT, Chow WH, Engel LS, He K, Risch HA, Vaughan TL and Gammon MD: Dietary flavonoid intake and Barrett's esophagus in western Washington State. Ann Epidemiol 25: 730-735.e2, 2015.
- 166. Tang L, Lee AH, Xu F, Zhang T, Lei J and Binns CW: Soya and isoflavone intakes associated with reduced risk of oesophageal cancer in north-west China. Public Health Nutr 18: 130-134, 2015
- 167. Kwak AW, Lee MJ, Lee MH, Yoon G, Cho SS, Chae JI and Shim JH: The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells. Phytomedicine 86: 153564, 2021.
- 168. Yang Z, Liu H, Song Y, Gao N, Gao P, Hui Y, Li Y and Fan T: Luteolin enhances drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in paclitaxel-resistant esophageal squamous cell carcinoma. Int J Mol Med 54: 77, 2024.
- 169. Connor CA, Adriaens M, Pierini R, Johnson IT and Belshaw NJ: Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun. Nutr Cancer 66: 335-341, 2014.
- 170. Kumar A, Singh UK, Kini SG, Garg V, Agrawal S, Tomar PK, Pathak P, Chaudhary A, Gupta P and Malik A: JNK pathway signaling: A novel and smarter therapeutic target for various biological diseases. Future Med Chem 7: 2065-2086, 2015.

- 171. Sabapathy K: Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106: 145-169, 2012.
- 172. Wu Q, Wu W, Fu B, Shi L, Wang X and Kuca K: JNK signaling in cancer cell survival. Med Res Rev 39: 2082-2104, 2019.
- 173. Gancz D, Donin N and Fishelson Z: Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol 47: 310-317, 2009.
- 174. Hess P, Pihan G, Sawyers CL, Flavell RA and Davis RJ: Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet 32: 201-205, 2002.
- 175. Weston CR and Davis RJ: The JNK signal transduction pathway. Curr Opin Cell Biol 19: 142-149, 2007.
- 176. Rasul A, Zhao BJ, Liu J, Liu B, Sun JX, Li J and Li XM: Molecular mechanisms of casticin action: An update on its antitumor functions. Asian Pac J Cancer Prev 15: 9049-9058, 2014.
- 177. Qiao Z, Cheng Y, Liu S, Ma Z, Li S and Zhang W: Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 392: 177-187, 2019.
- 178. Maik-Rachline G, Hacohen-Lev-Ran A and Seger R: Nuclear ERK: Mechanism of translocation, substrates, and role in cancer. Int J Mol Sci 20: 1194, 2019.
- 179. Moon H and Ro SW: MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers (Basel) 13: 3026, 2021.
- 180. Wang X, Zhu Y, Zhu L, Chen X, Xu Y, Zhao Y, Shao Y, Li F, Jiang Y, Lu J, *et al*: Eupatilin inhibits the proliferation of human esophageal cancer TE1 cells by targeting the Akt-GSK3β and MAPK/ERK signaling cascades. Oncol Rep 39: 2942-2950, 2018.
- 181. Yu L, Wei J and Liu P: Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 85: 69-94, 2022.
- 182. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al: PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 22: 138, 2023.
- 183. Zhou X, Bao W, Zhu X, Wang D, Zeng P, Xia G, Xing M, Zhan Y, Yan J, Yuan M and Zhao Q: Molecular characteristics and multivariate survival analysis of 43 patients with locally advanced or metastatic esophageal squamous cell carcinoma. J Thorac Dis 16: 1843-1853, 2024.
- 184. Noorolyai S, Shajari N, Baghbani E, Sadreddini S and Baradaran B: The relation between PI3K/AKT signalling pathway and cancer. Gene 698: 120-128, 2019.
- 185. Zhao J, Li L, Wang Z, Li L, He M, Han S, Dong Y, Liu X, Zhao W, Ke Y and Wang C: Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacol Res 174: 105939, 2021.
- 186. Wang Y, Chen X, Li J and Xia C: Quercetin antagonizes esophagus cancer by modulating miR-1-3p/TAGLN2 pathway-dependent growth and metastasis. Nutr Cancer 74: 1872-1881, 2022.
- 187. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68: 394-424, 2018.
- 188. Palli D, Bianchi S, Cipriani F, Duca P, Amorosi A, Avellini C, Russo A, Saragoni A, Todde P, Valdes E, et al: Reproducibility of histologic classification of gastric cancer. Br J Cancer 63: 765-768, 1991.
- 189. Cheung TK, Xia HH and Wong BC: *Helicobacter pylori* eradication for gastric cancer prevention. J Gastroenterol 42 (Suppl 17): S10-S15, 2007.
- 190. Correa P: Gastric cancer: Overview. Gastroenterol Clin North Am 42: 211-217, 2013.
- 191. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F: Gastric cancer. Lancet 396: 635-648, 2020.
- 192. Ren LQ, Li Q and Zhang Y: Luteolin suppresses the proliferation of gastric cancer cells and acts in synergy with oxaliplatin. Biomed Res Int 2020: 9396512, 2020.
- 193. Zarebczan B, Pinchot SN, Kunnimalaiyaan M and Chen H: Hesperetin, a potential therapy for carcinoid cancer. Am J Surg 201: 329-333, 2011.
- 194. Wang SW, Sheng H, Zheng F and Zhang F: Hesperetin promotes DOT1L degradation and reduces histone H3K79 methylation to inhibit gastric cancer metastasis. Phytomedicine 84: 153499, 2021.

- 195. Wang Q, Lu W, Yin T and Lu L: Calycosin suppresses TGF-β-induced epithelial-to-mesenchymal transition and migration by upregulating BATF2 to target PAI-1 via the Wnt and PI3K/Akt signaling pathways in colorectal cancer cells. J Exp Clin Cancer Res 38: 240, 2019.
- 196. Guo T, Liu ZL, Zhao Q, Zhao ZM and Liu CH: A combination of astragaloside I, levistilide A and calycosin exerts anti-liver fibrosis effects in vitro and in vivo. Acta Pharmacol Sin 39: 1483-1492, 2018.
- 197. Li D, Zhao L, Li Y, Kang X and Zhang S: Gastro-protective effects of calycosin against precancerous lesions of gastric carcinoma in rats. Drug Des Devel Ther 14: 2207-2219, 2020.
- 198. Woo HD, Lee J, Choi JJ, Kim CG, Lee JY, Kwon O and Kim J: Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients 6: 4961-4973, 2014.
- 199. Petrick JL, Steck SE, Bradshaw PT, Trivers KF, Abrahamson PE, Engel LS, He K, Chow WH, Mayne ST, Risch HA, *et al*: Dietary intake of flavonoids and oesophageal and gastric cancer: Incidence and survival in the United States of America (USA). Br J Cancer 112: 1291-1300, 2015.
- 200. Zamora-Ros R, Agudo A, Lujan-Barroso L, Romieu I, Ferrari P, Knaze V, Bueno-de-Mesquita HB, Leenders M, Travis RC, Navarro C, et al: Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 96: 1398-1408, 2012.
- 201. Natale A, Fiori F, Parpinel M, Pelucchi C, Negri E, La Vecchia C and Rossi M: Dietary isoflavones intake and gastric cancer. Nutrients 16: 2771, 2024.
- 202. Ivyna de Araujo Rego R, Guedes Silvestre GF, Ferreira de Melo D, Albino SL, Pimentel MM, Silva Costa Cruz SB, Silva Wurzba SD, Rodrigues WF, Goulart de Lima Damasceno BP and Cançado Castellano LR: Flavonoids-rich plant extracts against Helicobacter pylori infection as prevention to gastric cancer. Front Pharmacol 13: 951125, 2022.
- Front Pharmacol 13: 951125, 2022.
 203. Ustun O, Ozcelik B, Akyon Y, Abbasoglu U and Yesilada E: Flavonoids with anti-*Helicobacter pylori* activity from Cistus laurifolius leaves. J Ethnopharmacol 108: 457-461, 2006.
- 204. Gonzalez A, Casado J and Lanas A: Fighting the antibiotic crisis: Flavonoids as promising antibacterial drugs against Helicobacter pylori infection. Front Cell Infect Microbiol 11: 709749, 2021.
- 205. Porta C, Paglino C and Mosca A: Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4: 64, 2014.
- 206. Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 262: 118513, 2020.
- 207. Morgos ĎT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, et al: Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci 25: 1848, 2024.
- 208. Li Y, Lu X, Tian P, Wang K and Shi J: Procyanidin B2 induces apoptosis and autophagy in gastric cancer cells by inhibiting Akt/mTOR signaling pathway. BMC Complement Med Ther 21: 76, 2021.
- 209. Zhang G, Li Z, Dong J, Zhou W, Zhang Z, Que Z, Zhu X, Xu Y, Cao N and Zhao A: Acacetin inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells through the PI3K/Akt/Snail pathway. BMC Complement Med Ther 22: 10, 2022.
- 210. Zhang XR, Wang SY, Sun W and Wei C: Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol Med Rep 18: 3429-3436, 2018.
- Mol Med Rep 18: 3429-3436, 2018.

 211. Sabharwal SS and Schumacker PT: Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 14: 709-721, 2014
- Cancer 14: 709-721, 2014.
 212. Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell Mol Neurobiol 35: 615-621, 2015.
- 213. Filomeni G, De Zio D and Cecconi F: Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ 22: 377-388, 2015.
- 214. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, Zhang B, Yang B, Li B, Yang H and Wu Y: Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget 6: 39839-39854, 2015.
- 215. Liu J, Li SM, Tang YJ, Cao JL, Hou WS, Wang AQ, Wang C and Jin CH: Jaceosidin induces apoptosis and inhibits migration in AGS gastric cancer cells by regulating ROS-mediated signaling pathways. Redox Rep 29: 2313366, 2024.

- 216. McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG and McCain RS: Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 24: 4846-4861, 2018.
- 217. Stoffel EM, Brand RE and Goggins M: Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention. Gastroenterology 164: 752-765, 2023.
- 218. Goral V: Pancreatic cancer: Pathogenesis and diagnosis. Asian Pac J Cancer Prev 16: 5619-5624, 2015.
- 219. Cameron JL, Riall TS, Coleman J and Belcher KA: One thousand consecutive pancreaticoduodenectomies. Ann Surg 244: 10-15, 2006.
- 220. Vincent A, Herman J, Schulick R, Hruban RH and Goggins M: Pancreatic cancer. Lancet 378: 607-620, 2011.
- 221. Ge Y, Zhang Y, Chen Y, Li Q, Chen J, Dong Y and Shi W: Silibinin causes apoptosis and cell cycle arrest in some human pancreatic cancer cells. Int J Mol Sci 12: 4861-4871, 2011.
- 222. Shukla SK, Dasgupta A, Mehla K, Gunda V, Vernucci E, Souchek J, Goode G, King R, Mishra A, Rai I, *et al*: Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget 6: 41146-41161, 2015.
- 223. Nambiar D, Prajapati V, Agarwal R and Singh RP: In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells. Cancer Lett 334: 109-117, 2013.
- 224. Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM and Saluja AK: Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 308: 181-188, 2011.
- 225. Zhang L, Angst E, Park JL, Moro A, Dawson DW, Reber HA, Eibl G, Hines OJ, Go VL and Lu QY: Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts. J Agric Food Chem 58: 7252-7257, 2010.
- 226. Rossi M, Lugo A, Lagiou P, Zucchetto A, Polesel J, Serraino D, Negri E, Trichopoulos D and La Vecchia C: Proanthocyanidins and other flavonoids in relation to pancreatic cancer: A case-control study in Italy. Ann Oncol 23: 1488-1493, 2012.
- 227. Vuong QV, Hirun S, Phillips PA, Chuen TL, Bowyer MC, Goldsmith CD and Scarlett CJ: Fruit-derived phenolic compounds and pancreatic cancer: Perspectives from Australian native fruits. J Ethnopharmacol 152: 227-242, 2014.
 228. Nothlings U, Murphy SP, Wilkens LR, Henderson BE and
- 228. Nothlings U, Murphy SP, Wilkens LR, Henderson BE and Kolonel LN: Flavonols and pancreatic cancer risk: The multi-
- ethnic cohort study. Am J Epidemiol 166: 924-931, 2007.
 229. Bobe G, Weinstein SJ, Albanes D, Hirvonen T, Ashby J, Taylor PR, Virtamo J and Stolzenberg-Solomon RZ: Flavonoid intake and risk of pancreatic cancer in male smokers (Finland). Cancer Epidemiol Biomarkers Prev 17: 553-562, 2008.
- 230. Shih TY, Papageorge AG, Stokes PE, Weeks MO and Scolnick EM: Guanine nucleotide-binding and autophosphorylating activities associated with the p21srcprotein of Harvey murine sarcoma virus. Nature 287: 686-691, 1980.
- 231. Ellis CA and Clark G: The importance of being K-Ras. Cell Signal 12: 425-434, 2000.
- 232. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, et al: Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491: 399-405, 2012.
- 233. Siddique HR, Liao DJ, Mishra SK, Schuster T, Wang L, Matter B, Campbell PM, Villalta P, Nanda S, Deng Y and Saleem M: Epicatechin-rich cocoa polyphenol inhibits Kras-activated pancreatic ductal carcinoma cell growth in vitro and in a mouse model. Int J Cance 131: 1720-1731, 2012.
- 234. Simeone DM: Pancreatic cancer stem cells: Implications for the treatment of pancreatic cancer. Clin Cancer Res 14: 5646-5648, 2008.
- 235. Appari M, Babu KR, Kaczorowski A, Gross W and Herr I: Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 45: 1391-1400, 2014.
- induction and K-ras inhibition. Int J Oncol 45: 1391-1400, 2014.
 236. Stanciu S, Ionita-Radu F, Stefani C, Miricescu D, Stanescu-Spinu II, Greabu M, Ripszky Totan A and Jinga M: Targeting PI3K/AKT/mTOR signaling pathway in pancreatic cancer: From molecular to clinical aspects. Int J Mol Sci 23: 10132, 2022.
- 237. Prasad R, Vaid M and Katiyar SK: Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS One 7: e43064, 2012.

- 238. Enomoto A, Ping J and Takahashi M: Girdin, a novel actin-binding protein, and its family of proteins possess versatile functions in the Akt and Wnt signaling pathways. Ann N Y Acad Sci 1086: 169-184, 2006.
- 239. Hayashi Y, Matsuo Y, Denda Y, Nonoyama K, Murase H, Ueda G, Aoyama Y, Kato T, Omi K, Imafuji H, *et al*: Girdin regulates both migration and angiogenesis in pancreatic cancer cell lines. Oncol Rep 50: 169, 2023.
- 240. Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Kulig A and Malecka-Panas E: Clinical significance of interleukin-6 (IL-6) gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Dig Dis Sci 54: 683-689, 2009.
- 241. Okada S, Okusaka T, Ishi H, Kyogoku A, Yoshimori M, Kajimura N, Yamaguchi K and Kakizoe T: Elevated serum Interleukin-6 levels in patients with pancreatic cancer. Jpn J Clin Oncol 28: 12-15, 1998.
- 242. Huang B, Lang X and Li X: The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 12: 1023177, 2022.
- 243. Bi YL, Min M, Shen W and Liu Y: Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1 cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 39: 10-16, 2018.
- 244. McGlynn KA, Petrick JL and Groopman JD: Liver Cancer: Progress and Priorities. Cancer Epidemiol Biomarkers Prev 33: 1261-1272, 2024.
- 245. Calderaro J, Ziol M, Paradis V and Zucman-Rossi J: Molecular and histological correlations in liver cancer. J Hepatol 71: 616-630, 2019.
- 246. Llovet JM, Schwartz M and Mazzaferro V: Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis 25: 181-200, 2005.
- 247. Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W and Wang C: Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 20: 203-222, 2023.
- 248. Mo'men YS, Hussein RM and Kandeil MA: Involvement of PI3K/Akt pathway in the protective effect of hesperidin against a chemically induced liver cancer in rats. J Biochem Mol Toxicol 33: e22305, 2019.
- 249. Vasquez-Garzon VR, Macias-Perez JR, Jimenez-Garcia MN, Villegas V, Fattel-Fazenta S and Villa-Trevino S: The chemopreventive capacity of quercetin to induce programmed cell death in hepatocarcinogenesis. Toxicol Pathol 41: 857-865, 2013
- in hepatocarcinogenesis. Toxicol Pathol 41: 857-865, 2013. 250. Carrasco-Torres G, Monroy-Ramirez HC, Martinez-Guerra AA, Baltiérrez-Hoyos R, Romero-Tlalolini MLÁ, Villa-Treviño S, Sánchez-Chino X and Vásquez-Garzón VR: Quercetin reverses rat liver preneoplastic lesions induced by chemical carcinogenesis. Oxid Med Cell Longev 2017: 4674918, 2017.
- 251. Chen CH, Huang TS, Wong CH, Hong CL, Tsai YH, Liang CC, Lu FJ and Chang WH: Synergistic anti-cancer effect of baicalein and silymarin on human hepatoma HepG2 Cells. Food Chem Toxicol 47: 638-644, 2009.
- 252. Lagiou P, Rossi M, Lagiou A, Tzonou A, La Vecchia C and Trichopoulos D: Flavonoid intake and liver cancer: A case-control study in Greece. Cancer Causes Control 19: 813-818, 2008.
- 253. Zhang W, Wang J, Gao J, Li HL, Han LH, Lan Q, Rothman N, Zheng W, Shu XO and Xiang YB: Prediagnostic level of dietary and urinary isoflavonoids in relation to risk of liver cancer in shanghai, China. Cancer Epidemiol Biomarkers Prev 28: 1712-1719, 2019.
- 254. Pilger A, Germadnik D, R1edel K, Meger-Kossien R, Scherer G and Rodiger HW: Longitudinal study of urinary 8-hydroxy-2'-deoxyguanosine excretion in healthy adults. Free Radic Res 35: 273-280, 2001.
- 255. Luo H, Tang L, Tang M, Billam M, Huang T, Yu J, Wei Z, Liang Y, Wang K, Zhang ZQ, et al: Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: Modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis 27: 262-268. 2006.
- 256. Zamora-Ros R, Fedirko V, Trichopoulou A, González CA, Bamia C, Trepo E, Nöthlings U, Duarte-Salles T, Serafini M, Bredsdorff L, *et al*: Dietary flavonoid, lignan and antioxidant capacity and risk of hepatocellular carcinoma in the European prospective investigation into cancer and nutrition study. Int J Cancer 133: 2429-2443, 2013.
- 257. Mao Y and Jiang P: The crisscross between p53 and metabolism in cancer. Acta Biochim Biophys Sin (Shanghai) 55: 914-922,

- 258. Haupt Y, Maya R, Kazaz A and Oren M: Mdm2 promotes the rapid degradation of p53. Nature 387: 296-299, 1997.
- 259. Honda R, Tanaka H and Yasuda H: Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25-27, 1997.
- 260. Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven van Oordt W, Hateboer G, van der Eb AJ and Jochemsen AG: MDMX: Anovelp53-bindingproteinwithsome functional properties of MDM2. EMBO J 15: 5349-5357, 1996.
- 261. Zhang B, Yin X and Sui S: Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol Rep 40: 2758-2765, 2018.
- B pathway. Oncol Rep 40: 2758-2765, 2018.

 262. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P and Moll UM: p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577-590, 2003.
- 263. Mass P, Hoffmann K, Gambichler T, Altmeyer P and Mannherz HG: Premature keratinocyte death and expression of marker proteins of apoptosis in human skin after UVB exposure. Arch Dermatol Res 295: 71-79, 2003.
- 264. Liebermann DA, Hoffman B and Steinman RA: Molecular controls of growth arrest and apoptosis: P53-dependent and independent pathways. Oncogene 11: 199-210, 1995.
- independent pathways. Oncogene 11: 199-210, 1995.
 265. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B and Reed JC: Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799-1805, 1994.
- 266. Sadot E, Geiger B, Oren M and Ben-Ze'ev A: Down-regulation of beta-catenin by activated p53. Mol Cell Biol 21: 6768-6781, 2001.
- 267. Ramakrishnan G, Lo Muzio L, Elinos-Baez CM, Jagan S, Augustine TA, Kamaraj S, Anandakumar P and Devaki T: Silymarin inhibited proliferation and induced apoptosis in hepatic cancer cells. Cell Prolif 42: 229-240, 2009.
- 268. Vilaseca J, Guardia J, Bacardi R and Monné J: Doxorubicin for liver cancer. Lancet 1: 1367, 1978.
- 269. King PD and Perry MC: Hepatotoxicity of chemotherapy. Oncologist 6: 162-176, 2001.
- 270. Silber JH and Barber G: Doxorubicin-induced cardiotoxicity. N Engl J Med 333: 1359-1360, 1995.
- 271. Liang G, Tang A, Lin X, Li L, Zhang S, Huang Z, Tang H and Li QQ: Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 37: 111-123, 2010.
- 272. Huang HY, Niu JL, Zhao LM and Lu YH: Reversal effect of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. Phytomedicine 18: 1086-1092, 2011.
- 273. Wang G, Zhang J, Liu L, Sharma S and Dong Q: Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One 7: e51764, 2012.
- 274. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global patterns and trends in colorectal cancer incidence and mortality. Gut 66: 683-691, 2017.
- 275. Ciardiello F, Ciardiello Ď, Martini G, Napolitano S, Tabernero J and Cervantes A: Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 72: 372-401, 2022.
- 276. Pretzsch E, Bosch F, Neumann J, Ganschow P, Bazhin A, Guba M, Werner J and Angele M: Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread. J Oncol 2019: 7407190, 2019.
- 277. Ma B, Gao P, Wang H, Xu Q, Song Y, Huang X, Sun J, Zhao J, Luo J, Sun Y and Wang Z: What has preoperative radio(chemo) therapy brought to localized rectal cancer patients in terms of perioperative and long-term outcomes over the past decades? A systematic review and meta-analysis based on 41,121 patients. Int J Cancer 141: 1052-1065, 2017.
- 278. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet 394: 1467-1480, 2019.
- 279. Sequetto PL, Oliveira TT, Maldonado IR, Augusto LE, Mello VJ, Pizziolo VR, Almeida MR, Silva ME and Novaes RD: Naringin accelerates the regression of pre-neoplastic lesions and the colorectal structural reorganization in a murine model of chemical carcinogenesis. Food Chem Toxicol 64: 200-209, 2014.
- 280. Daneshvar S, Zamanian MY, Ivraghi MS, Golmohammadi M, Modanloo M, Kamiab Z, Pourhosseini SME, Heidari M and Bazmandegan G: A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms. Food Sci Nutr 11: 6789-6801, 2023.

- 281. Zhong Y, Krisanapun C, Lee SH, Nualsanit T, Sams C, Peungvicha P and Baek SJ: Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG-1 and p53. Eur J Cancer 46: 3365-3374, 2010.
- 282. Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, Qian X and Zhong G: Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 7: 85318-85331, 2016.
- 283. Rossi M, Negri E, Talamini R, Bosetti C, Parpinel M, Gnagnarella P, Franceschi S, Dal Maso L, Montella M, Giacosa A and La Vecchia C: Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev 15: 1555-1558, 2006.
- 284. Shin A, Lee J, Lee J, Park MS, Park JW, Park SC, Oh JH and Kim J: Isoflavone and soyfood intake and colorectal cancer risk: A Case-control study in Korea. PLoS One 10: e0143228, 2015.
- 285. James MI, Iwuji Ć, Irving G, Karmokar A, Higgins JA, Griffin-Teal N, Thomas A, Greaves P, Cai H, Patel SR, et al: Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett 364: 135-141, 2015.
- 286. Panahi Y, Saberi-Karimian M, Valizadeh O, Behnam B, Saadat A, Jamialahmadi T, Majeed M and Sahebkar A: Effects of curcuminoids on systemic inflammation and quality of life in patients with colorectal cancer undergoing chemotherapy: A randomized controlled trial. Adv Exp Med Biol 1328: 1-9, 2021.
- 287. Hoensch H, Groh B, Edler L and Kirch W: Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol 14: 2187-2193, 2008.
- 288. Bobe G, Sansbury LB, Albert PS, Cross AJ, Kahle L, Ashby J, Slattery ML, Caan B, Paskett E, Iber F, *et al*: Dietary flavonoids and colorectal adenoma recurrence in the Polyp Prevention Trial. Cancer Epidemiol Biomarkers Prev 17: 1344-1353, 2008.
- 289. Shi S, Wang K, Zhong R, Cassidy A, Rimm EB, Nimptsch K, Wu K, Chan AT, Giovannucci EL, Ogino S, et al: Flavonoid intake and survival after diagnosis of colorectal cancer: A prospective study in 2 US cohorts. Am J Clin Nutr 117: 1121-1129, 2023.
- 290. Zwollo P, Rao S, Wallin JJ, Gackstetter ER and Koshland ME: The transcription factor NF-kappaB/p50 interacts with the blk gene during B cell activation. J Biol Chem 273: 18647-18655, 1998.
- 291. Zhang Q, Lenardo MJ and Baltimore D: 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell 168: 37-57, 2017.
- 292. Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol 18: 309-324, 2018.
- 293. Phelps CB, Sengchanthalangsy LL, Huxford T and Ghosh G: Mechanism of I kappa B alpha binding to NF-kappa B dimers. J Biol Chem 275: 29840-29846, 2000.
- 294. Danese S and Mantovani A: Inflammatory bowel disease and intestinal cancer: A paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene 29: 3313-3323, 2010.
- 295. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK and Sethi G: Inflammation and cancer: How hot is the link? Biochem Pharmacol 72: 1605-1621, 2006.
- 296. Schmitt M and Greten FR: The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol 21: 653-667, 2021.
- 297. Farraye FA, Odze RD, Eaden J, Itzkowitz SH, McCabe RP, Dassopoulos T, Lewis JD, Ullman TA, James T III, McLeod R, *et al*: AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology 138: 738-745, 2010.
- 298. Jess T, Rungoe C and Peyrin-Biroulet L: Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 10: 639-645, 2012.
- 299. Karin M: NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1: a000141, 2009.
- 300. Eckmann L, Nebelsiek T, Fingerle AA, Dann SM, Mages J, Lang R, Robine S, Kagnoff MF, Schmid RM, Karin M, *et al*: Opposing functions of IKKbeta during acute and chronic intestinal inflammation. Proc Natl Acad Sci USA 105: 15058-15063, 2008.
- 301. Song L, Zhu S, Liu C, Zhang Q and Liang X: Baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-kappaB signaling pathway. J Food Biochem 46: e13703, 2022.

- 302. Raina K, Agarwal C and Agarwal R: Effect of silibinin in human colorectal cancer cells: Targeting the activation of NF-κB signaling. Mol Carcinog 52: 195-206, 2013.
- 303. Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 361: 2449-2460, 2009.
- 304. MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell 17: 9-26, 2009
- 305. Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781-810, 2004.
- 306. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer 21: 144, 2022.
- 307. Zhang X, Yao J, Shi H, Gao B, Zhou H, Zhang Y, Zhao D, Gao S, Wang C and Zhang L: Hsa_circ_0026628 promotes the development of colorectal cancer by targeting SP1 to activate the Wnt/β-catenin pathway. Cell Death Dis 12: 802, 2021.
- the Wnt/β-catenin pathway. Cell Death Dis 12: 802, 2021.
 308. Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Sanese P, De Marco K, Susca FC, Mangiapane LR, *et al*: Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis 12: 316, 2021.
- 309. Chen Y, Yang Z, He X, Zhu W, Wang Y, Li J, Han Z, Wen J, Liu W, Yang Y and Zhang K: Proanthocyanidins inhibited colorectal cancer stem cell characteristics through Wnt/β-catenin signaling. Environ Toxicol 38: 2894-2903, 2023.
- 310. Chen Y, Wang XQ, Zhang Q, Zhu JY, Li Y, Xie CF, Li XT, Wu JS, Geng SS, Zhong CY and Han HY: (-)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-Catenin pathway. Nutrients 9: 572, 2017.
- 311. Zeng S, Chen L, Sun Q, Zhao H, Yang H, Ren S, Liu M, Meng X and Xu H: Scutellarin ameliorates colitis-associated colorectal cancer by suppressing Wnt/β-catenin signaling cascade. Eur J Pharmacol 906: 174253, 2021.
- 312. Xu M, Wang S, Song YU, Yao J, Huang K and Zhu X: Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 11: 3075-3080, 2016.
- 313. Guo RX, Fu X, Chen J, Zhou L and Chen G: Preparation and characterization of microemulsions of myricetin for improving its antiproliferative and antioxidative activities and oral bioavailability. J Agric Food Chem 64: 6286-6294, 2016.
- 314. Hu Y, Liu F, Pang J, McClements DJ, Zhou Z, Li B and Li Y: Biopolymer additives enhance tangeretin bioavailability in Emulsion-based delivery systems: An in vitro and in vivo study. J Agric Food Chem 69: 730-740, 2021.
- 315. Li N, Wu X, Yin Q, Dong Z, Zheng L, Qian Y, Sun Y, Chen Z and Zhai K: Extraction, identification, and antioxidant activity of flavonoids from hylotelephium spectabile (Boreau) H. Ohba. Foods 13: 2652, 2024.
- 316. Yusoff IM, Mat Taher Z, Rahmat Z and Chua LS: A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 157: 111268, 2022.
- 317. Wang J, Xie B and Sun Z: Quality parameters and bioactive compound bioaccessibility changes in probiotics fermented mango juice using ultraviolet-assisted ultrasonic pre-treatment during cold storage. Lwt 137: 110438, 2021.
- 318. Lin X, Wu L, Wang X, Yao L and Wang L: Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India *Moringa oleifera* L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. J App Res Med Aromatic Plants 20: 100284, 2021.
- 319. Li R, Xia Z, Li B, Tian Y, Zhang G, Li M and Dong J: Advances in supercritical carbon dioxide extraction of bioactive substances from different parts of Ginkgo biloba L. Molecules 26: 4011, 2021.
- 320. He JZ, Shao P, Liu JH and Ru QM: Supercritical carbon dioxide extraction of flavonoids from pomelo (*Citrus grandis* (L.) Osbeck) peel and their antioxidant activity. Int J Mol Sci 13: 13065-13078, 2012.
- 321. Wang H, Cui Y, Fu Q, Deng B, Li G, Yang J, Wu T and Xie Y: A phospholipid complex to improve the oral bioavailability of flavonoids. Drug Dev Ind Pharm 41: 1693-1703, 2015.
- 322. Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S and Krishnan UM: Flavonoid-metal ion complexes: A novel class of therapeutic agents. Med Res Rev 34: 677-702, 2014.
- 323. Kovacic P, Popp WJ, Ames JR and Ryan MD: Anti-cancer action of metal complexes: Electron transfer and oxidative stress? Anticancer Drug Des 3: 205-216, 1988.

- 324. Durgo K, Halec I, Sola I and Franckic J: Cytotoxic and genotoxic effects of the quercetin/lanthanum complex on human cervical carcinoma cells in vitro. Arh Hig Rada Toksikol 62: 221-227, 2011.
- 325. Valentova K, Havlik J, Kosina P, Papoušková B, Jaimes JD, Káňová K, Petrásková L, Ulrichová J and Křen V: Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites 10: 29, 2020.
- 326. Dominguez-Fernandez M, Ludwig IA, De Pena MP and Cid C: Bioaccessibility of Tudela artichoke (Cynara scolymus cv. Blanca de Tudela) (poly)phenols: The effects of heat treatment, simulated gastrointestinal digestion and human colonic microbiota. Food Funct 12: 1996-2011, 2021.
- 327. Jin MJ, Kim U, Kim IS, Kim Y, Kim DH, Han SB, Kim DH, Kwon OS and Yoo HH: Effects of gut microflora on pharmacokinetics of hesperidin: A study on non-antibiotic and pseudo-germ-free rats. J Toxicol Environ Health A 73: 1441-1450, 2010.
- 328. Kim DH, Jung EA, Sohng IS, Han JA, Kim TH and Han MJ: Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res 21: 17-23, 1998.
- 329. Solnier J, Chang C and Pizzorno J: Consideration for Flavonoid-containing dietary supplements to tackle deficiency and optimize health. Int J Mol Sci 24: 8663, 2023.
- 330. Zhao J, Yang J and Xie Y: Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 570: 118642, 2019.
- 331. Chuang SY, Lin YK, Lin CF, Wang PW, Chen EL and Fang JY: Elucidating the skin delivery of aglycone and glycoside flavonoids: How the structures affect cutaneous absorption. Nutrients 9: 1304, 2017.
- 332. Aungst BJ: Absorption enhancers: Applications and advances. AAPS J 14: 10-18, 2012.
- 333. Alama T, Katayama H, Hirai S, Ono S, Kajiyama A, Kusamori K, Katsumi H, Sakane T and Yamamoto A: Enhanced oral delivery of alendronate by sucrose fatty acids esters in rats and their absorption-enhancing mechanisms. Int J Pharm 515: 476-489, 2016.
- 334. Ghadiri M, Canney F, Pacciana C, Colombo G, Young PM and Traini D: The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int J Pharm 541: 93-100, 2018.
- 335. Morales JO, Peters JI and Williams RO: Surfactants: Their critical role in enhancing drug delivery to the lungs. Ther Deliv 2: 623-641, 2011.
- 336. Li L, Yi T and Lam CW: Inhibition of human efflux transporter ABCC2 (MRP2) by self-emulsifying drug delivery system: Influences of concentration and combination of excipients. J Pharm Pharm Sci 17: 447-460, 2014.
- 337. Xiao L, Yi T, Chen M, Lam CW and Zhou H: A new mechanism for increasing the oral bioavailability of scutellarin with Cremophor EL: Activation of MRP3 with concurrent inhibition of MRP2 and BCRP. Eur J Pharm Sci 93: 456-467, 2016.
- 338. Xie Y, Luo H, Duan J, Hong C, Ma P, Li G, Zhang T, Wu T and Ji G: Phytic acid enhances the oral absorption of isor-hamnetin, quercetin, and kaempferol in total flavones of *Hippophae rhamnoides* L. Fitoterapia 93: 216-225, 2014.
- 339. Tenorio-Barajas AY, Olvera ML, Romero-Paredes G, Altuzar V, Garrido-Guerrero E and Mendoza-Barrera C: Chitosan, Chitosan/IgG-Loaded, and N-trimethyl chitosan chloride nanoparticles as potential adjuvant and carrier-delivery systems. Molecules 28: 4107, 2023.
- 340.Kim ES, Kim DY, Lee JS and Lee HG: Mucoadhesive Chitosan-gum arabic nanoparticles enhance the absorption and antioxidant activity of quercetin in the intestinal cellular environment. J Agric Food Chem 67: 8609-8616, 2019.
- 341. Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON and Schoenbach KH: Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385: 181-186, 2009.
- 342. Liao D, Liu X, Dai W, Tang T, Ou G, Zhang K, Han M, Kang R, Yang S and Xiang D: N-trimethyl chitosan (TMC)-modified microemulsions for improved oral bioavailability of puerarin: Preparation and evaluation. Drug Deliv 22: 516-521, 2015.
- 343. Zhang XP, Zhang J, Song QL and Chen HQ: Mechanism of acute pancreatitis complicated with injury of intestinal mucosa barrier. J Zhejiang Univ Sci B 8: 888-895, 2007.
- 344. Chebil L, Humeau C, Falcimaigne A, Engasser JM and Ghoul M: Enzymatic acylation of flavonoids. Process Biochemistry 41: 2237-2251, 2006.

- 345. Chen Y, Liu J, Geng S, Liu Y, Ma H, Zheng J, Liu B and Liang G: Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food Chem 277: 186-194, 2019.
- 346. Crauste C, Rosell M, Durand T and Vercauteren J: Omega-3 polyunsaturated lipophenols, how and why? Biochimie 120: 62-74, 2016.
- 347. Li XF, Yuan T, Xu H, Xin X, Zhao G, Wu H and Xiao X: Whole-cell catalytic synthesis of puerarin monoesters and analysis of their antioxidant activities. J Agric Food Chem 67: 299-307, 2019.
- 348. Kumar V, Jahan F, Mahajan RV and Saxena RK: Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant. Bioresour Technol 218: 1246-1248, 2016.
- 349. Matsumura K, Kaihatsu K, Mori S, Cho HH, Kato N and Hyon SH: Enhanced antitumor activities of (-)-epigallocate-chin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo. Biochem Biophys Res Commun 377: 1118-1122, 2008.
- 350. Yao Y, Xia M, Wang H, Li G, Shen H, Ji G, Meng Q and Xie Y: Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci 91: 144-153, 2016.
- 351. Xiao J, Muzashvili TS and Georgiev MI: Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv 32: 1145-1156, 2014.
- 352. Roriz CL, Barros L, Carvalho AM, Santos-Buelga C and Ferreira ICFR: Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res Int 62: 684-693, 2014.
- 353. Xiao J: Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 57: 1874-1905, 2017.
- 354. Zou L, Zhang Z, Chen X, Chen H, Zhang Y, Li J and Liu Y: Total synthesis of viscumneoside III of Viscum coloratum. Tetrahedron 74: 2376-2382, 2018.
- 355. Yao CH, Tsai CH and Lee JC: Total synthesis of the naturally occurring glycosylflavone aciculatin. J Nat Prod 79: 1719-1723, 2016.
- 356. Yang J, Lee J and Kim Y: Effect of deglycosylated rutin by acid hydrolysis on obesity and hyperlipidemia in High-Fat Diet-induced obese mice. Nutrients 12: 1539, 2020.
- 357. Yuan S, Yang Y and Kong JQ: Biosynthesis of 7,8-dihydroxy-flavone glycosides via OcUGT1-catalyzed glycosylation and transglycosylation. J Asian Nat Prod Res 20: 662-674, 2018.
- 358. Slamova K, Kapesova J and Valentova K: 'Sweet Flavonoids': Glycosidase-Catalyzed Modifications. Int J Mol Sci 19: 2126, 2018.
- 359. Mrudulakumari Vasudevan U and Lee EY: Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 41: 107550, 2020.
- 360. Sordon S, Poplonski J, Tronina T and Huszcza E: Regioselective O-glycosylation of flavonoids by fungi *Beauveria bassiana*, Absidia coerulea and Absidia glauca. Bioorg Chem 93: 102750, 2019.
- 361. Lyu Y, Liu S, Gao S and Zhou J: Identification and characterization of three flavonoid 3-O-glycosyltransferases from Epimedium koreanum Nakai. Biochem Engineering J 163: 107759, 2020.
- 362. Xia T and Eiteman MA: Quercetin glucoside production by engineered escherichia coli. Appl Biochem Biotechnol 182: 1358-1370, 2017.
- 363. Mamadalieva NZ, Herrmann F, El-Readi MZ, Tahrani A, Hamoud R, Egamberdieva DR, Azimova SS and Wink M: Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J Pharm Pharmacol 63: 1346-1357, 2011.
- 364. Wen L, Jiang Y, Yang J, Zhao Y, Tian M and Yang B: Structure, bioactivity, and synthesis of methylated flavonoids. Ann N Y Acad Sci 1398: 120-129, 2017.
- 365. Shafek RE, Shafik NH and Michael HN: antibacterial and antioxidant activities of two new kaempferol glycosides isolated from solenostemma argel stem extract. Asian J Plant Sci 11: 143-147, 2012.
- 366. Choi JS, Islam MN, Ali MY, Kim YM, Park HJ, Sohn HS and Jung HA: The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities. Arch Pharm Res 37: 1354-1363, 2014.
- 367. Bernini R, Crisante F and Ginnasi MC: A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules 16: 1418-1425, 2011.
- 368. Kim BG, Shin KH, Lee Y, Hur HG, Lim Y and Ahn JH: Multiple regiospecific methylations of a flavonoid by plant O-methyltransferases expressed in *E. coli*. Biotechnol Lett 27: 1861-1864, 2005.

- 369. Paasela T, Lim KJ, Pietiainen M and Teeri TH: The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine. New Phytol 214: 1537-1550, 2017.
- 370. Kirita M, Honma D, Tanaka Y, Usui S, Shoji T, Sami M, Yokota T, Tagashira M, Muranaka A, Uchiyama M, et al: Cloning of a novel O-methyltransferase from Camellia sinensis and synthesis of o-methylated EGCG and evaluation of their bioactivity. J Agric Food Chem 58: 7196-7201, 2010.
- 371. Mohammed HA, Almahmoud SA, El-Ghaly EM, Khan FA, Emwas AH, Jaremko M, Almulhim F, Khan RA and Ragab EA: Comparative anticancer potentials of taxifolin and quercetin methylated derivatives against HCT-116 cell lines: Effects of O-methylation on taxifolin and quercetin as preliminary natural leads. ACS Omega 7: 46629-46639, 2022.
- 372. Koirala N, Pandey RP, Thuan NH, Ghimire GP, Jung HJ, Oh TJ and Sohng JK: Metabolic engineering of Escherichia coli for the production of isoflavonoid-4'-O-methoxides and their biological activities. Biotechnol Appl Biochem 66: 484-493, 2019.
- 373. Cao H, Chen X, Jassbi ÅR and Xiao J: Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 33: 214-223, 2015.
- 374. Abourashed EA, Mikell JR and Khan IA: Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg Med Chem 20: 2784-2788, 2012.
- 375. Kostrzewa-Susłow E, Dmochowska-Gładysz J and Janeczko T: Microbial transformation of selected flavanones as a method of increasing the antioxidant properties. Z Naturforsch C J Biosci 65: 55-60, 2010.
- 376. Ullrich R and Hofrichter M: Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64: 271-293, 2007.
- 377. Zhang Z, He Y, Huang Y, Ding L, Chen L, Liu Y, Nie Y and Zhang X: Development and optimization of an in vitro multienzyme synthetic system for production of kaempferol from naringenin. J Agric Food Chem 66: 8272-8279, 2018.
- 378. Krych J and Gebicka L: Catalase is inhibited by flavonoids. Int J Biol Macromol 58: 148-153, 2013.
- 379. Wang TY, Li Q and Bi KS: Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 13: 12-23, 2018.
- 380. Ribeiro D, Freitas M, Tome SM, Silva AM, Porto G, Cabrita EJ, Marques MM and Fernandes E: Inhibition of LOX by flavonoids: A structure-activity relationship study. Eur J Med Chem 72: 137-145, 2014.
- 381. Bernini R, Pasqualetti M, Provenzano G and Tempesta S: Ecofriendly synthesis of halogenated flavonoids and evaluation of their antifungal activity. N J Chemistry 39: 2980-2987, 2015.
- 382. Zaini MF, Arshad S, Thanigaimani K, Khalib NC, Zainuri DA, Abdullah M and Razak IA: New halogenated chalcones: Synthesis, crystal structure, spectroscopic and theoretical analyses for third-order nonlinear optical properties. J Mol Structure 1195: 606-619, 2019.
- 383. Yaipakdeea P and Robertsonb LW: Enzymatic halogenation of flavanones and flavones. Phytochemistry 57: 341-347, 2001. 384. Xiang WS, Zhang J, Wang JD, Jiang L, Jiang B, Xiang ZD and
- 384. Xiang WS, Zhang J, Wang JD, Jiang L, Jiang B, Xiang ZD and Wang XJ: Isolation and identification of chlorinated genistein from Actinoplanes sp. HBDN08 with antioxidant and antitumor activities. J Agric Food Chem 58: 1933-1938, 2010.
- 385. Zhang S, Li T, Zhang Y, Xu H, Li Y, Zi X, Yu H, Li J, Jin CY and Liu HM: A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicol Appl Pharmacol 309: 77-86, 2016.
- 386. Dias TA, Duarte CL, Lima CF, Proenca MF and Pereira-Wilson C: Superior anticancer activity of halogenated chalcones and flavonols over the natural flavonol quercetin. Eur J Med Chem 65: 500-510, 2013.
- 387. Zhang H, Zhang M, Yu L, Zhao Y, He N and Yang X: Antitumor activities of quercetin and quercetin-5',8-disulfonate in human colon and breast cancer cell lines. Food Chem Toxicol 50: 1589-1599, 2012.
- 388. Paul P, Suwan J, Liu J, Dordick JS and Linhardt RJ: Recent advances in sulfotransferase enzyme activity assays. Anal Bioanal Chem 403: 1491-1500, 2012.
- 389. van der Horst MA, Hartog AF, El Morabet R, Marais A, Kircz M and Wever R: Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur J Organic Chemistry 2015: 534-541, 2014.
- 390. Brodsky K, Petrankova B, Petraskova L, Pelantová H, Křen V, Valentová K and Bojarová P: New bacterial aryl sulfotransferases: Effective tools for sulfation of polyphenols. J Agric Food Chem 72: 22208-22216, 2024.
- 391. Correia-da-Silva M, Sousa E, Duarte B, Marques F, Carvalho F, Cunha-Ribeiro LM and Pinto MM: Flavonoids with an oligopolysulfated moiety: A new class of anticoagulant agents. J Med Chem 54: 95-106, 2011.

- 392. Khan J, Alexander A, Ajazuddin, Saraf S and Saraf S: Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168: 50-60, 2013.
- 393. Pinho E, Grootveld M, Soares G and Henriques M: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101: 121-135, 2014.
- Carbohydr Polym 101: 121-135, 2014.

 394. Teodoro GR, Gontijo AVL, Borges AC, Tanaka MH, Lima GMG, Salvador MJ and Koga-Ito CY: Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms. PLoS One 12: e0181199, 2017.
- 395. Kadari A, Gudem S, Kulhari H, Bhandi MM, Borkar RM, Kolapalli VR and Sistla R: Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles. Drug Deliv 24: 224-232, 2017.
- 396. Song S, Gao K, Niu R, Wang J, Zhang J, Gao C, Yang B and Liao X: Inclusion complexes between chrysin and amino-appended β-cyclodextrins (ACDs): Binding behavior, water solubility, in vitro antioxidant activity and cytotoxicity. Mater Sci Eng C Mater Biol Appl 106: 110161, 2020.
- 397. Kidd P and Head K: A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos). Altern Med Rev 10: 193-203, 2005.
- 398. Samir A, Elgamal BM, Gabr H and Sabaawy HE: Nanotechnology applications in hematological malignancies (Review). Oncol Rep 34: 1097-1105, 2015.
- 399. Senthilkumar M, Mishra P and Jain NK: Long circulating PEGylated poly(D,L-lactide-co-glycolide) nanoparticulate delivery of Docetaxel to solid tumors. J Drug Target 16: 424-435, 2008.
- 400. Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, Henry J and Dai H: PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131: 4783-4787, 2009.
- 401. Zhang J, Huang Y, Liu D, Gao Y and Qian S: Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci 48: 740-747, 2013.
- 402. Rabinow BE: Nanosuspensions in drug delivery. Nat Rev Drug Discov 3: 785-796, 2004.
- 403. Radhakrishnan R, Kulhari H, Pooja D, Gudem S, Bhargava S, Shukla R and Sistla R: Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chem Phys Lipids 198: 51-60, 2016.
- 404. Vazhappilly CG, Amararathna M, Cyril AC, Linger R, Matar R, Merheb M, Ramadan WS, Radhakrishnan R and Rupasinghe HPV: Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem 94: 108623, 2021.
- 405. Lipkin M: Gastrointestinal cancer: Pathogenesis, risk factors and the development of intermediate biomarkers for chemoprevention studies. J Cell Biochem Suppl 16G: 1-13, 1992.
- 406. Hussain Y, Luqman S and Meena A: Research progress in flavonoids as potential anticancer drug including synergy with other approaches. Curr Top Med Chem 20: 1791-1809, 2020.
- 407. Jaeger A, Wlti M and Neftel K: Side effects of flavonoids in medical practice. Prog Clin Biol Res 280: 379, 1988.
- 408. Al-Shuhaib MBS and Al-Shuhaib JMB: Assessing therapeutic value and side effects of key botanical compounds for optimized medical treatments. Chem Biodivers 22: e202401754, 2025.
- 409. Liu R, Yu X, Chen X, Zhong H, Liang C, Xu X, Xu W, Cheng Y, Wang W, Yu L, *et al*: Individual factors define the overall effects of dietary genistein exposure on breast cancer patients. Nutr Res 67: 1-16, 2019.
- 410. Orsolic N and Jazvinscak Jembrek M: Potential strategies for overcoming drug resistance pathways using propolis and its polyphenolic/Flavonoid compounds in combination with chemotherapy and radiotherapy. Nutrients 16: 3741, 2024.
- 411. Liu Y, Hao Y, Chen J, Chen M, Tian J, Lv X, Zhang Y, Ma X, Zhou Y and Feng L: An injectable puerarin depot can potentiate chimeric antigen receptor natural killer cell immunotherapy against targeted solid tumors by reversing tumor immunosuppression. Small 20: e2307521, 2024.
- 412. Park K: Translation from mouse to human: Time to think in new boxes. J Control Release 189: 187, 2014.

Copyright © 2025 Ding and Yu. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.