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Results of the recent Critical Assessment of Techniques for Protein Structure Prediction, CASP8, present several valuable

sources of information. First, CASP targets comprise a realistic sample of currently solved protein structures and exemplify

the corresponding challenges for predictors. Second, the plethora of predictions by all possible methods provides an

unusually rich material for evolutionary analysis of target proteins. Third, CASP results show the current state of the

field and highlight specific problems in both predicting and assessing. Finally, these data can serve as grounds to develop

and analyze methods for assessing prediction quality. Here we present results of our analysis in these areas. Our objective is

not to duplicate CASP assessment, but to use our unique experience as former CASP5 assessors and CASP8 predictors to

(i) offer more insights into CASP targets and predictions based on expert analysis, including invaluable analysis prior to

target structure release; and (ii) develop an assessment methodology tailored towards current challenges in the field.

Specifically, we discuss preparing target structures for assessment, parsing protein domains, balancing evaluations based

on domains and on whole chains, dividing targets into categories and developing new evaluation scores. We also present

evolutionary analysis of the most interesting and challenging targets.

Database URL: Our results are available as a comprehensive database of targets and predictions at http://prodata.

swmed.edu/CASP8.
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Introduction

Biannual CASP (Critical Assessment of Techniques for

Protein Structure Prediction, http://predictioncenter.gc.

ucdavis.edu/) experiments are highly regarded by the

protein structure prediction community as milestones for

the state-of-the-art in the field (1,2). Automated server

predictions attract particular attention, since the genera-

tion of high quality models without human expert involve-

ment is essential for predictions to be accessible and widely

used by experimental biologists.

The main objective of CASP is to give the research com-

munity an unbiased picture of what is possible in structure

prediction. In the past self-evaluation of models by structure

predictors usually favored their own methods, despite

special care taken to not to bias evaluation. Apparently,

what CASP organizers call ‘postdictions’ still carry imprints

of the experimental structures on which the methods are

being trained. Such ‘postdiction’ structures available prior

to predictions can influence methods development. In

CASP, computer programs (servers) and human research

groups provide true predictions for spatial structures from

sequences (targets) prior to target experimental 3D struc-

tures being available. Blind CASP experiments have been

very successful in highlighting the problems behind current

prediction approaches while bringing promising methods to

light.

In addition to prediction assessment, CASP provides a

platform to develop and assess model evaluation methods.

When models generated by predictors are of poor quality
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and are not very similar to real 3D structures, deciding

which model is of a better quality becomes less clear. This

decision depends heavily on the chosen evaluation meth-

ods. Moreover, if a single evaluation method is consistently

applied and is set as the standard in the field, prediction

software can be tuned to achieve good results with that

particular method. Such overtraining may produce models

that score higher by the standard method yet are inferior

by other reasonable measures. Inventive and varying eva-

luation methods are needed to ensure progress in structure

prediction.

Last, but not least, CASP targets themselves offer an

interesting mix of proteins, most of which come from

structural genomics initiatives. A plethora of available

predictions by all possible methods provides an unusually

rich material for evolutionary analysis of proteins used as

targets. For instance, the ability of many sequence-based

methods to detect relationships to known structures is

suggestive of homology, even in the absence of relevant

PSI-BLAST hits (3).

Our group was fortunate to participate in CASP8

predictions as collaborators with the David Baker group.

While our predictions have been evaluated by CASP asses-

sors and will be discussed elsewhere, this study outlines

CASP8 targets and predictions from several perspectives:

protein evolutionary analysis, prediction quality and assess-

ment methodology. An ablility to look at all target

sequences prior to their structures being available and to

inspect server prediction models were invaluable for under-

standing the proteins, predictions and assessment methods.

In the CASP8 database presented here (http://prodata.

swmed.edu/CASP8), we achieved what is usually not possi-

ble in the official assessment process, as assessors are

not permitted to participate in predictions. Furthermore,

pressures to complete assessments before the CASP

meeting are too high to allow much experimentation

with evaluation methods. We combined our experiences

as CASP8 predictors and as former assessors of CASP5 to

assemble our thoughts and analyses in an online database,

with hopes that it would provide a wealth of knowledge

to the protein structure prediction community and other

researchers.

Database description

The database (http://prodata.swmed.edu/CASP8) consists

of three conceptual parts. The first represents our thoughts

on evaluation: including target structure processing,

domain parsing, target category defining and prediction

quality scoring. Second are sortable tables with assessment

scores for all targets and predictions (for example,

see Table 1). These tables are provided separately for the

Server-only predictions (on all targets) and for all

predictions (both Human groups and Servers) on the

Human/Server target subset. Third, each target is described

on a dedicated web page that summarizes its basic features

(domain structure, evolutionary classification and target

category) and lists prediction scores for all models. To

assist manual inspection and analysis, each structure predic-

tion can be visualized interactively, either as a separate

model or as a superposition with the target using PyMOL

(DeLano, http://www.pymol.org).

CASP8 offered 128 targets for server prediction: from

T0387 to T0514. On 20 December 2008, structures for 125

targets were available from the PDB and other public

sources, and were used for prediction evaluation. Among

the remaining three structures, T0403 and T0439 will not

be determined in the nearest future and T0500 was

structurally disordered. In web pages dedicated to each

target, we provide basic sequence and structure informa-

tion, list discrepancies between the PDB file and the target

Table 1. LGA GDT-TS (TS), LGA GDT-TS score minus a penalty
(TR) and contact score based on intramolecular distances (CS)
for the top 10 Servers of all 67 Human/Server target domains
for first models

No. GROUP SUM

TS TR CS

First Scores

1 DBAKER 3949.45 3469.48 4207.87

2 Zhang 3821.79 3283.70 4158.62

3 IBT_LT 3816.14 3284.67 3837.30

4 TASSER 3792.83 3353.72 4009.50

5 Zhang-Server 3767.29 3222.66 4013.80

6 Fams-ace2 3761.84 3266.07 4013.27

7 Zico 3721.23 3292.39 3983.38

8 ZicoFullSTP 3720.23 3294.54 3983.13

9 MULTICOM 3719.94 3287.04 3995.81

10 McGuffin 3702.70 3188.19 3957.90

Best Scores

1 DBAKER 4163.31 3737.47 4399.80

2 fams-ace2 3988.10 3520.72 4189.90

3 TASSER 3977.61 3533.27 4224.30

4 Zhang 3965.07 3495.21 4265.14

5 ZicoFullSTP 3938.55 3524.93 4189.58

6 Zico 3937.87 3512.31 4200.57

7 MULTICOM 3937.11 3498.63 4222.23

8 ZicoFullSTPFullData 3933.58 3507.54 4182.68

9 McGuffin 3930.70 3482.11 4153.25

10 Zhang-Server 3908.85 3429.92 4162.20

To access a full version and interactive evaluation tables, please

visit http://prodata.swmed.edu/CASP8/evaluation/Evaluation.htm.
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sequence, specify boundaries of evolutionary domains,

perform sequence and structural classification of these

domains, and attribute them to prediction difficulty cate-

gory. Finally, we provide a table with various evaluation

scores for server predictions, based on both whole chain

and individual domains. For targets that reveal unexpected

nuances about proteins or predictions, we include results

of human expert analysis: including a curated multiple

sequence alignment of the protein family, as well as

a discussion and illustration of interesting features. For

instance, the target T0467 provided two noteworthy

qualities: first, its fold was difficult to predict, and second,

server predictions revealed structurally meaningful, but

nonhomologous similarity to unrelated proteins.

Evolutionary classification of target proteins and their

domains represents the most significant part of individual

target web pages. Whenever possible, we tried to stay

within the framework of SCOP (4). For many domains

such classification was straightforward, as strong sequence

similarities existed between the targets and proteins in the

PDB. However, some targets exhibited nontrivial homolo-

gies to PDB representatives that were not easy to find. For

instance, we show that T0465 is a very distant version of the

FYSH domain (5), and T0460 is a singleton sequence repre-

senting a modified NADH-quinone oxidoreductase chain 5

(Nqo5) domain (6). A common question is whether a parti-

cular target or domain has a novel fold. This issue

is discussed on a dedicated web page.

As a group specializing in protein evolution, we are

very excited about the evolutionary classification of targets.

However, while such classification is very important for

interpretation and understanding of predictions, we

believe it to be of limited value for prediction evaluation.

In CASP, category classification based on target prediction

difficulty is usually more relevant. In this database, we

offer a rather detailed look at prediction accuracy, binning

targets into five categories suggested by the prediction

data. Our analysis indicates at least three required cate-

gories (hard, medium and easy). However to ensure a

good zoom into predictions, ‘hard’ and ‘medium’ were

further split, leading to five categories: FM (free modeling),

FR (fold recognition), CM_H (comparative modeling: hard),

CM_M (comparative modeling: medium) and CM_E (com-

parative modeling: easy).

In CASP8, 57 targets (�45%) were designated for

‘Human/Server’ prediction, allowing predictors to include

human expert analysis. The rest of the 71 targets were

assigned as ‘Server only’. Correspondingly, our results

for individual targets are separated by these groups.

In addition to ‘Human/Server’ and ‘Server only’ sets, we

separate targets with structures determined by a particular

method: X-ray (107 targets) and NMR (21 targets).

Preparation of target structures
for assessment

Unfortunately, target sequences do not often correspond

exactly to pdb sequences. To agree with server models,

we modified the structures to match the target sequences,

both in residue numbers and amino acid types. In the

database, we show a mapping between the two sequences

and list changes made to pdb files (http://prodata.

swmed.edu/CASP8/evaluation/seqmapping.html). For each

target we provide links to the original and modified pdbs,

PyMOL scripts to display modified pdbs and domain defini-

tions, and links to the individual target pages, followed

by an alignment between the target sequence and pdb

sequence.

Structures determined by NMR required special attention

with many targets revealing apparently random placement

of terminal segments. Such placement is likely to affect

structure prediction assessment. Thus, we processed NMR

models using two basic considerations. First, we aimed to

keep as much of the NMR structure for evaluation as pos-

sible, since almost every residue carries some experimental

information. Second, we aimed to eliminate residues in

NMR models that appear random, since such residues can

penalize predictions for possibly correct conformations.

Therefore, we removed certain regions from NMR struc-

tures with an attempt to be very permissive about inclusion

of residues in evaluation. An alternative and possibly better

approach would be to score predictions versus NMR

restraints rather than in a traditional Cartesian coordinate

comparison. Our strategy consisted of the following steps.

First, for each structure all NMR models (20 or 10) were

superimposed with Theseus, a program by Theobald and

Wuttke (7) that uses a maximum likelihood method for

multiple structure alignment. Resulting variable regions

do not disrupt alignment of the conserved core, and

regions that can be superimposed well are tightly aligned.

Some NMR structures were too floppy to produce reason-

able superpositions, even with Theseus (T0480 and T0484).

For these two examples, obviously random regions were

removed prior to superposition and were replaced

afterwards.

Second, for each Ca atom, its average position among

all NMR models was found, and the average of distances

squared from this position to equivalent Ca atoms in NMR

models was computed. We term the square root of this

quantity ‘standard deviation of atomic positions’ (SD) in

NMR models, AKA ‘root mean-square radial displacement’.

To reduce the effect of a single poor quality model, the Ca

atom with the largest distance from the average position

was removed, and both average and standard deviation

were recalculated without this Ca atom.

.............................................................................................................................................................................................................................................................................................
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Third, we took a simplistic and visual approach to choos-

ing the SD cutoff for residue removal. Histograms of SD

made at several bin-widths revealed ‘discrete’ data

around 3.5 Å. Fortunately, the most permissive cutoff sug-

gested by the data (3.5 Å) is rather generous. For example,

assuming a 3D uncorrelated Gaussian (8) for atomic

displacements:

Exp � x2 þ y2 þ z2
� �

= 2�2
� �� �

2� 2�ð Þ1=2�3ð Þ
,

SD2 in our definition corresponds to three times the

Gaussian variance s2. Therefore, SD = 3.5 Å gives �50%

probability that the atom will be found within 3.1 Å from

the mean location, �95% probability within 5.7 Å and

�99% probability within 6.8 Å, which is a large random

displacement for an atomic structure. For reference, a

B-factor (9) of 100 in X-ray structures corresponds to an

expected SD of 2 Å ½B ¼ ð8�2=3ÞSD2�, 60 for 1.5 Å and

25 for 1.0 Å. An SD of 3.5 Å corresponds to a B-factor of

�320, which is considered very large. Thus, with a naturally

implied SD cutoff of 3.5 Å, we are not removing regions

of NMR models that may be valuable for evaluation.

On the other hand, this permissive inclusion does not

add many poorly structured residues to the evaluation.

First, the total number of residues with SD between 1.8

and 3.5 Å is not very large (about 100, which is �5%

of the total). Second, visual inspection of these regions

reveals reasonable structure. For instance, residues in

the T0467 C-terminus (2k5q residues 83–105) have an SD

between 1.9 and 2.8 Å. They are clearly structured as

a somewhat mobile helix. Residues shown in white have

SD> 3.5 Å, vary in both conformation and location and

were removed from NMR models used in evaluation. The

resulting NMR models and PyMOL scripts for visualization

are available from the web site.

Alternatively, since NMR models remain quite variable

even after removal of poorly defined residues, all 20 NMR

models were used to compute scores with prediction

models, and the best score was selected to characterize

this prediction.

Domain parsing

Protein domains are usually defined as globular units

in protein structures. Domains are somewhat separate

spatially and can recombine in evolution to form various

proteins. Each domain frequently carries out its own

function, or the functional site may be formed at the

domain interface. Analysis of domains is essential for

understanding proteins (10). While everyone agrees on

the importance of evaluating domains, opinions differ

greatly about the criteria for their definition. These differ-

ent criteria, such as structural compactness, sequence

similarity and continuity, evolutionary origin, folding or

function, lead to different domain definitions. Existing

software tools also provide inconsistent domain parses.

Nevertheless, our experience with protein sequence-

structural analysis indicates a possibility of bringing these

criteria together for a biologically reasonable domain

parse. We applied our conceptual view on protein domains

to CASP8 targets, providing manual parses that correspond

to structurally compact evolutionary modules.

To define domains in a target, we considererd similarity

to other protein sequences and structures as well as self-

similarity (internal duplications), structural compactness

(globularity), presence of a hydrophobic core and sequence

continuity. To define precise boundaries between domains,

we inspected side-chain orientations and their interactions.

Domain parses by DOM (11), DOMAK (12), DomainParser

(13), PDP (14) and PUU (15) were also analyzed. We tried

to attribute all residues in a structure to a domain rather

than excluding extensions, loops and linkers because any

ordered residue should contribute to prediction assess-

ment. In some targets (e.g. T0435), certain regions pro-

truded away from the PDB chain. These regions were

frequently involved in a domain swap (16). In such cases,

we defined globular domains with a swap, and also

defined truncated domains with the swapped region

removed. In other cases, protruding regions did not parti-

cipate in swaps, but were interacting with other chains

in the crystals, e.g. in T0388. We removed such regions

in domain definitions to check whether the shorter

domain is predicted more accurately. A text file with

domain boundaries for all targets is also available.

In defining domains, we did not take into account

server predictions. Splitting domains based on sequence,

structure and evolutionary considerations may not be

necessary for evaluation of all targets. (See the discussion

of whole chain versus domain evaluation below.) Since

server predictions for whole chains are significantly

inferior to individual domain predictions, the following

targets require domain-based evaluation: T0397, T0405,

T0407, T0409, T0416, T0419, T0429, T0443, T0457, T0462,

T0472, T0478, T0487, T0496, T0501, T0504 and T0510.

Only these targets are evaluated as domains in our com-

bined domain evaluation tables (http://prodata.swmed.

edu/CASP8/evaluation/DomainsAll.First.html for Sever-

only evaluation and http://prodata.swmed.edu/CASP8/

evaluation_human/DomainsAll.First.html for Human/

Server evaluation). Predictions for other targets follow

a general trend of showing a similar quality for ‘domain’

and ‘whole-chain’ evaluation, and are evaluated as whole

chains in combined domain evaluation tables. Although

some of these targets represent multi-domain proteins

in an evolutionary sense, the domains do not move relative

to each other and are of the same prediction difficulty.

Nevertheless, we compute evaluation scores on all domains

.............................................................................................................................................................................................................................................................................................
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shown in the table on our web site (http://prodata.swmed.

edu/CASP8/evaluation/DomainDefinition.htm). These scores

are available from individual target pages, e.g. the T0497

page includes evaluation of whole chain (T0497), swapped

domain (T0497_1s) and truncated domain with a swapped

region removed (T0497_1).

Whole chain versus domain
evaluation

Traditionally, CASP targets are evaluated as domains, i.e.

each target structure is parsed into domains, and model

quality is computed for each domain separately. This strat-

egy makes sense for two reasons:

(1) Domains can be mobile, and their relative packing can

be influenced by ligand presence, crystal packing for

X-ray structures or semi-random positioning in NMR

structures. Thus, even a perfect prediction algorithm

will not be able to cope with this movement ade-

quately, for instance in the absence of knowledge

about ligand presence or crystal symmetry.

(2) Predictions may be better or worse for individual

domains than for their assembly. This contradiction

happens when domains are of a different predictabil-

ity, e.g. one has a close template, but the other one

does not. Even if domains of a target are of equal

prediction difficulty, the mutual domain arrangement

in the target structure may differ from the template.

While predictable in principle, such differences

are usually modeled incorrectly.

A comparison of whole-chain evaluation with domain-

based evaluation dissects the problem of ‘individual

domain’ versus ‘domain assembly’ modeling and should

help in development of prediction methods. For NMR

models, ‘whole chain’ refers to a structure with poorly

placed residues removed (see above for processing NMR

structures).

While a detailed look at the predictions for each domain

is beneficial, combining predictions over targets in a mean-

ingful way and ranking servers by the averaged ability

to predict protein structures are desirable. Combination

over whole chains fails to address problems with domain

predictions. Alternatively, combination over domains may

be dominated by well-predicted multi-domain targets.

Proper combination requires evaluating some targets, in

particular those without problems of domain assembly,

as ‘whole chain’; while evaluating other targets, notably

those with different domain predictability or difficulties

with domain assembly, as ‘domains’. Here, we attempted

to determine a natural cutoff for whether the target

should be evaluated as ‘domains’ or as a ‘whole chain’.

For each target composed of more than one domain (see

our domain parse), we obtained GDT-TS (global distance

test total score) scores (17, 18) on the whole chain and

individual domains for all server models. Then a weighted

sum of GDT-TS scores for the domain-based evaluation was

computed, i.e. GDT-TS for each domain was multiplied by

the domain length and summed. The sum was divided by

the sum of domain lengths. A typical correlation plot

between the two GDT–TSs (whole chain and weighted by

the number of residues sum of GDT-TS scores for domain-

based evaluation) is shown for target T0490 (Figure 1a).

The points lie above the diagonal. Apparently, the

weighted sum of domain predictions is higher than

the whole-chain GDT-TS for this example. This difference

results from a domain arrangement that is a bit different

between target and template. Thus, while individual

domains are modeled well, their assembly is predicted

worse. We measure the difference between the weighted

sum and the whole-chain GDT-TS by two parameters: root

mean square (RMS) and slope. The RMS difference between

the weighted sum of GDT-TS on domains and GDT-TS

on the whole chain (RMS of y� x) measures absolute

GDT-TS difference. A slope of best-fit line with intercept

set to 0 (slope) measures relative GDT-TS difference.

These parameters are computed on top 10 (according to

the weighted sum) predictions.

The target on the plot (T0490) is a four-domain protein.

The slope and the RMS of y� x are 1.1 and 7.8, respectively.

Do these parameters justify splitting the target into

four domains and using them individually in the combined

evaluation of predictions? To answer this question, we

examined correlation plots for all targets.

Here, we illustrate two extreme examples. First,

for T0504, which is a triplication (three domains) of an

SH3-like barrel, the plot revealed that while individ-

ual domains are predicted reasonably well (Figure 1b):

domain GDT-TS above 60 for some servers, their inter

domain packing was not: whole-chain GDT-TS about

20. The whole-chain score is three times less than the

weighted sum over three domains, indicating that the

domain arrangement was modeled randomly by servers

and did not closely match the target domain arrangement.

Obviously, domain evaluation is beneficial for this target.

Second, for T0447, which is also a three-domain target,

the plot revealed that the weighted sum and the whole-

chain GDT-TS are about the same, clustering near 90%

GDT-TS for all template-based servers (Figure 1c). Clearly,

domain-based evaluation for this target is not different

from whole-chain evaluation and does not reveal

any interesting prediction features.

Before we examine all targets to find a data-dictated

cutoff for domain-based evaluation, an additional issue

needs to be addressed. Some proteins, while being evolu-

tionarily single-domain proteins, experience domain

.............................................................................................................................................................................................................................................................................................
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swaps. Such swaps are defined as a structural ‘exchange’ of

protein regions between monomers in an oligomer. For

instance, T0459 is a dimeric winged Helix-Turn-Helix

(wHTH) domain with an N-terminal b-hairpin (blue). This

N-terminal b-hairpin (blue) packs against a different chain

(white), and a b-hairpin (white) from the other chain packs

against the first chain (rainbow), illustrating the swap

(Figure 2a). A rainbow-colored compact domain composed

of segments from both chains of the swap is illustrated in

Figure 2b.

Since predictions correspond to monomers, swapped

models do not appear globular (i.e. Figure 2a, blue).

However, some servers may somewhat correctly predict

the globular swapped monomer (i.e. Figure 2b, rainbow).

Alternatively, servers may not predict either of the two

positions for the swapped region, and evaluation over

the domain core with the swapped region removed can

be useful. Considering these alternatives, three evalua-

tions were performed on targets with domain swaps. For

instance, we used three structures in T0459 evaluation:

whole chain, swapped domain (Figure 2c) and domain

with swapped segment removed (Figure 2e). Correlation

plots for the two domain definitions (swapped and

swapped segment removed) of this single-domain target

reveal differences (Figure 2d and f).

For single-domain targets, the y-axis shows the GDT-TS

for domain evaluation, as the weighted sum is computed

over a single domain. The points falling below the diagonal

in Figure 2d (swapped domain) indicate that servers missed

the swap, placing the N-terminal hairpin closer to its posi-

tion in a whole (although less globular) chain. As expected,

the points fall above the diagonal in Figure 2f, as the diffi-

cult-to-predict region was removed from the target. From

these plots, however, the usefulness of either of these

domain-based evaluations compared with the whole-

chain evaluation remains unclear.

To find a cutoff for using ‘domain-based’ versus ‘whole-

chain’ evaluation, we analyzed the correlation of the RMS

of the difference between domain GDT-TS and whole chain

GDT-TS (RMS of y� x) and the slope of the 0 intercept best-

fit line (slope) for all targets (Figure 3).

Most targets cluster in the region for RMS of y� x below

15 and slope below 1.3, representing similar domain-based

evaluation and whole-chain evaluations (black and blue

points). Clearly, a few targets (red points, target numbers

shown for each point) exhibit large differences and should

be evaluated by domains separately. The targets with inter-

mediate properties (blue points, RMS of y� x above 7.5) fall

within the natural trend of the black points and do not

stand out in obvious ways.

In summary, comparison of domain-based predictions

with whole-chain predictions revealed a natural, data-

dictated cutoff (slope of the zero intercept best-fit line

is above 1.3) to select targets that require domain-based

evaluation. These targets are: T0397, T0407, T0409, T0416,

T0419, T0429, T0443, T0457, T0462, T0472, T0478, T0487,

T0496, T0501, T0504 and T0510. Predictions for other

targets follow the general trend of showing a more

similar quality for ‘domain’ and ‘whole chain’ indicating

that domain-based evaluation may not be necessary.

This cutoff corresponds particularly to CASP8 targets and

predictions, and may not translate other target/prediction

Figure 1. Correlation between domain-based evaluation (y, vertical axis) and whole-chain GDT-TS (x, horizontal axis). (a) A typical
correlation plot for target T0490. (b) A plot of target T0504 showing beneficial domain evaluation for this target. (c) A plot
of target T0447 showing unnecessary domain evaluation for this target. Each point represents first server models. Green, gray
and black points represent the top 10, the bottom 25% and the remaining prediction models, respectively. The blue line is the
best-fit slope (intersection 0) to the top 10 server models. The red line is the diagonal. The slope and RMS y� x distance for the
top 10 models (average difference between the weighted sum of domain GDT-TS scores and the whole-chain GDT-TS score)
are shown above the plot.
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sets. Accordingly, blindly applying a 1.3 slope cutoff

to other data sets without performing similar analysis

should be avoided.

To combine target scores, we limited individual domain

analysis to ‘red’ targets in evaluation tables. All other

targets were evaluated as whole chain in domain-based

evaluation tables: they are considered to be single-

domain targets for the purpose of CASP8 evaluation.

However, all domain-based evaluation results for all

targets are shown on individual target pages and are

Figure 2. Domain swap example (a) T0459 chain A (rainbow) with its symmetry mate (white). (b) T0459 chain A with a swapped
N-terminal b-hairpin from its symmetry mate chain (rainbow) and the swapped hairpin symmetry mate chain (white). (c) Domain-
swapped T0459 with chain B: 2–22 plus chain A: 23–106. (d) Correlation between GDT-TS scores for T0459 domain-based
evaluation with a swapped domain (y, vertical axis) and whole-chain GDT-TS (x, horizontal axis). (e) T0459 with domain-swapped
segment removed: chain A: 23–106. (f) Correlation between GDT-TS scores for T0459 domain-based evaluation with N-terminal
segment removed (just A: 23–106, y, vertical axis) and whole-chain GDT-TS (x, horizontal axis).
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available for analysis and model visualization. These

‘domains’ include single domain proteins with certain struc-

ture regions removed, and swapped domains.

Target categories

Some targets are easy to predict, having very close tem-

plates among known structures, while other targets

are quite challenging. Since the performance of different

algorithms depends on target difficulty, taking this charac-

terization into account becomes essential for evaluating

predictions. Grouping targets into categories of approxi-

mately the same prediction difficulty brings out the flavors

of how each method deals with different target types.

In the early days of CASP, targets were classified and

evaluated in three general categories: comparative model-

ing, fold recognition and ab initio prediction, to reflect the

method used to obtain models (1, 19). It became clear with

time that the best approach to fold prediction is to use a

combination of these various methods, as what matters is

the quality of the final prediction. Therefore, an alternate

grouping of targets into categories based on the prediction

quality is logical.

A general approach described here leads to well-defined

category boundaries determined naturally from the data.

The approach is rooted in a suggestion by the Baker group

to use prediction scores of the top 10 models (see ROBETTA

evaluation pages http://robetta.bakerlab.org/CASP8_eval/)

and is similar to what we used for target classification in

the CASP5 assessment (20). We resorted to a traditional

model quality metric that stood the test of time—LGA

(18) GDT-TS scores. Targets for which domain-based

evaluation is essential were split, while other targets

remained as whole chains (see above discussion). This

procedure resulted in 147 ‘domains’ gathered from 125

targets. For each of these domains, the top 10 GDT-TS

scores for the first server models were averaged and used

as a measure of each target’s difficulty.

We looked for naturally emerging clusters in these

average GDT-TS scores using a density-based algorithm.

The Gaussian kernel density estimator (8) is

� xð Þ ¼

P
i ¼ 1,nð ÞExp � x � �ið Þ

2= 2�2
� �� �

Sqrt 2�½ ��n

where n is the number of domains, mi is average GDT-TS

score for a domain i, and � is a standard deviation, called

bandwidth. Conceptually, each domain score generates

a Gaussian centered at that score with standard deviation

�. Averaging of these Gaussians gives a density function

�(x) that reveals score groups. The maxima of this function

correspond to group centers, and the minima mark the

boundaries between groups. When the bandwidth is very

narrow (= variance very small), each domain forms its

own group. When the bandwidth is broad (= variance

very large), all domains form one group. Some optimal

bandwidth setting should reveal meaningful groups in

the data.

We plotted estimated densities for varying bandwidths,

from 0.3 to 8.2 GDT-TS% units (Figure 4). Apparently, the

Figure 3. Correlation between RMS of the difference between GDT-TS on domains and GDT-TS on the whole chain (vertical axis)
and the slope of the best-fit line (horizontal axis), both computed on top 10 server predictions.
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lower end bandwidth (0.3%) is too small and results in too

many clusters (magenta curves on a plot below).

Alternatively, higher bandwidths around 8% (cyan curves)

reveal only two major groups: a large cluster centered at

about 73% GDT-TS and a smaller one around 41%. These

major clusters can be used for evaluation, as they demon-

strate the data set splitting naturally into ‘hard’ and ‘easy’.

A surprisingly nonsurprising cutoff (52% GDT-TS) defines

the boundary between these two groups. A bandwidth of

4% (black curve) yields three groups traditionally analyzed

by CASP: hard (AI), medium (FR) and easy (CM) (52 and

81% cutoffs, respectively). The ‘medium’ group splits the

former ‘easy’ group of the two-cluster breakdown. Finally,

a 2% bandwidth (yellow-framed brown curve) reveals five

groups, and this is about the right number for evaluation

of predictions. GDT-TS boundaries between these groups

are 30, 52, 68 and 81%. We term these categories: FM

(as predictors are free to do anything, yet they still fail

to predict these targets right), FR (to give a tribute to

a historic category) and CM_H, CM_M and CM_E. We

use these categories to evaluate server predictions. Whole

chain prediction analysis revealed identical trends, with the

same cutoffs of 30, 52, 68 and 81% used to determine the

target category from the top 10 averaged first model

GDT-TS scores.

Scores and evaluation

Having a good score to evaluate predictions is crucial for

method development. Many approaches are trained to

produce models scoring better according to some evalua-

tion method. Thus, flaws in the evaluation method will

result in better scoring models not representing real

protein structures in any better way. One such emerging

danger is compression of prediction model coordinates,

which decreases the gyration radius and may increase

some scores that are based on Cartesian superpositions.

Assessment of predictions by experts, as done in CASP,

is essential to detect such problems (21).

Nevertheless, a good automatic approach that mimics

expert judgment is desirable. For CASP5 predictions, we

found (20) that the average of Z-scores computed on

sever model samples for many different scoring systems

correlates best with expert, manual assessment. These

scoring systems should represent different concepts of

measuring similarity, such as Cartesian superpositions,

intramolecular distances and sequence alignments.

Among various suggested scores, GTD–TS computed

by the LGA program (18) represents the best as a

single score to reflect the model quality. This reflection

is probably because GTD–TS ombines four scores,

Figure 4. Gaussian kernel density estimation of domain GDT-TS scores for the first model GDT-TS averaged over top 10 servers
and plotted at various bandwidths (= standard deviations). These average GDT-TS scores for all domains are shown as a spectrum
along the horizontal axis: each bar represents a domain. The bars are colored according to the category suggested by this
analysis: black, FM; red, FR; green, CM_H; cyan, CM_M; blue, CM_E. The family of curves with varying bandwidth is shown.
Bandwidth varies from 0.3 to 8.2 GDT-TS% units with a step of 0.1, which corresponds to the color ramp from magenta through
blue to cyan. Thicker curves: red, yellow-framed brown and black correspond to bandwidths 1, 2 and 4, respectively.
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each computed on a different superposition (1, 2, 4, and

8 Å). However, GTD–TS scales with the gyration radius and

is influenced by compression. We analyzed server

predictions using three scoring systems: the classic LGA

GTD–TS, and two novel scores designed to address model

compression.

(1) As a cornerstone of this evaluation, we computed

GTD–TS scores for all server models using the LGA

program. This score represents a standard in the

field, it is always shown first, and score tables are

sorted by it by default. We call this score TS, i.e.

‘total score’, for short.

(2) The GTD–TS score measures the fraction of residues

in a model within a certain distance from the same

residues in the structure after a superposition. This

approach bases on a ‘reward’ concept. Each residue

placed in a model close to its ‘real’ position in the

structure is rewarded, and the reward depends on

the proximity of that modeled residue. As an analogy

with physical forces, such a score accounts for only the

‘attraction’ part of a potential and ignores any ‘repul-

sion’ component. The ‘reward’-only concept might

have been reasonable in the past, when predictions

were quite poor, and detecting any positive feature

of a mainly negative model was the key. Today, many

models accurately reflect experimental structures.

When the positives start to outweigh the negatives,

paying attention to the negatives becomes important

(22). Thus, we introduced a ‘repulsion’ component

into the GDT-TS score that penalizes a residue that

is too close to ‘incorrect’ residues (other than the resi-

due that is modeled). This idea was suggested by

David Baker as a part of our collaboration on CASP

and model improvement. We refer to this new score

as TR, i.e. ‘the repulsion’. The TR score rewards close

superposition of corresponding model and target resi-

dues while it penalizes close placement of other resi-

dues. This score is calculated as follows.

Superimpose the model with the target using LGA in the

sequence-dependent mode, maximizing the number of

aligned residue pairs within d = 1, 2, 4, and 8 Å.

For each aligned residue pair, calculate a GDT-TS-like

score: S0(R1, R2) = 1/4 [N(1) + N(2) + N(4) + N(8)], where N(r) is

the number of superimposed residue pairs with the CA–CA

distance< r Å.

Consider individual aligned residues in both structures.

For each residue R, choose residues in the other structure

that are spatially close to R, excluding the residue aligned

with R and its immediate neighbors in the chain. Count

numbers of such residues with CA–CA distance to R

within cutoffs of 1, 2, and 4 Å. (As opposed to GDT-TS, we

do not use the cutoff of 8 Å as too inclusive.)

The average of these counts defines the penalty assigned

to a given residue R: P(R) = 1/3 * [N(1) + N(2) + N(4)]

Finally, for each aligned residue pair (R1, R2), the average

of penalties for each residue P(R1, R2) = 1/2 * (P(R1) + P(R2))

is weighted and subtracted from the GDT-TS score for this

pair. The final score is prohibited from being negative:

SðR1,R2Þ ¼ max½S0ðR1,R2Þ �w � PðR1,R2Þ, 0�:

Among tested values of weight w, we found that w = 1.0

produced the scores that were most consistent with the

evaluation of model abnormalities by human experts.

(3) Scores comparing intramolecular distances between a

model and a structure (contact scores) have different

properties than intermolecular distance scores based

on optimal superposition. One advantage of such

scores is that superpositions, and thus arguments

about their optimality, are not involved. Contact

matrix scores are used by one of the best structure

similarity search program DALI (23). The problems

with developing a good a contact score are (i) contact

definition; (ii) mathematical expressions converting

distance differences to scores. In our procedure,

contact between residues is defined by a distance

� 8.44 Å between their Ca atoms. The difference

between such distances in a model and a structure

is computed and used as a fraction of the distance

in the structure. Fractional distances above 1 (distance

difference above the distance itself) are discarded and

the exponential is used to convert distances to scores

(0!1). The factor in the exponent is chosen to max-

imize the correlation between contact scores and

GDT-TS scores. These residue pair scores are averaged

over all pairs of contacting residues. We call this score

CS, i.e. ‘contact score’, for short. It should not be con-

fused with a general abbreviation for a ‘column score’

used in sequence alignments.

We studied the correlation between the GDT-TS and two

new scores: TR and CS. For each domain, the top 10 scores

for the first server models were averaged and used to

represent a score for a domain. These averages are plotted

for TS and TR scores (Figure 5a). TS and TR scores are well

correlated, with Pearson correlation coefficient equal to

0.991. Since TR is TS minus a penalty, TR is always lower

than TS. Moreover, the trend curve of the correlation

is concave, hence TR scores are more different from TS

scores around the mid-range, where models become less

similar to structures and modeled residues are frequently

placed too close to the nonequivalent residues resulting

in a higher penalty. For very low model quality (TS below

30%) rewards are relatively low, so penalties also drop.

TS and CS scores are also correlated (Pearson correlation

coefficient is 0.969), but to a less extent than TS and TR

.............................................................................................................................................................................................................................................................................................
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scores (Figure 5b). Nevertheless, this correlation is very

good considering the differences in scoring methods: TS

is based on superpostions, but CS is a superposition-

independent contact-based score.

In addition to using reasonable scores, tabulating evalua-

tions requires a model for random comparison. The model

we use takes a target structure into account. We modify the

target structure by circularly permuting it and shifting

(threading) a sequence along the chain with a step of five

residues. That is, for a target of n residues, amino acid 1

is placed at the site 6, 2 at the site 7, i [1� i� (n� 5)] at the

site i + 5, and n� j (0� j< 5) at the site 5� j. For a chain of n

residues, [integer part of (n/5)� 1] such modified structures

are made.

Each of these modified structures is compared with the

original structure to compute a score. Since the coordinates

of the structure are not modified in this process and

only the sequence is assigned to given coordinates differ-

ently, our procedure does not give a meaningful random

comparison for all types of scores, e.g. DALI Z would

be highly elevated for a random score if computed on

this model. However, the GDT-TS, TR and CS scores we

use in our evaluation behave as expected, and this ‘permu-

tation-shift’ random model works well for them.

Additionally, we increase the number and diversity

of these random comparisons by considering a ‘reverse

chain’ model, when the sequence is threaded onto the

structure from C- to N-terminus and sequence shifts

along the chain are made. More specifically, amino acid 1

is placed at the site n, 2 at the site n� 1, and i at the site

n� i + 1. This procedure forms one of the ‘random’ struc-

tures. Then shifts with permutations are made to it as

described above and we obtain [integer part of n/5] struc-

tures (Figure 6).

Random scores show strong reverse correlation with

length (Figure 6). Random GDT-TS scores can be well-

fitted with a function a Exp b Lengthc� �
� a Exp b 2cð Þ þ 100,

where the best-fit parameter values are a = 102.814,

b = 0.089 and c = 0.729. This function is designed to give a

random score of 100 for Length = 2, i.e. for a protein of two

residues any random superposition will lead to a perfect

match. For Length!1, the random score approaches

a value larger than 0. Using the following function one

can estimate the random GDT-TS score for a domain of

‘Length’ residues:

RandomGDTScore ¼ 102:8 Exp �0:089 Length0:729
� �

þ 11:3

In addition to giving a reference point for prediction of

difficult targets, these random scores are utilized when a

server does not provide a model for a particular target.

Difficulties arise in computing a sum of scores for all targets

for a given server in cases where some scores are negative

or missing. If a certain type of score can only be positive,

Figure 5. (a) Correlation between TR score (vertical axis) and GDT-TS (horizontal axis). (b) Correlation between contact score CS
(vertical axis) and GDT-TS (horizontal axis). Scores for top 10 first server models were averaged for each domain shown by its
number positioned at a point with the coordinates equal to these averaged scores. Domain numbers are colored according to
the difficulty category suggested by our analysis: black, FM (free modeling); red, FR (fold recognition); green, CM_H (comparative
modeling: hard); cyan, CM_M (comparative modeling: medium); blue, CM_E (comparative modeling: easy).
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missing predictions contribute a reasonable 0 to the total

score. However, for Z-scores, poor predictions get negative

scores. In this case a server not submitting predictions for

some targets (score 0) will do better than a server submit-

ting less than average predictions (negative Z-scores).

Omitting all negative scores from summation, as has been

done in former years of assessment, provides one solution

for this discrepancy. However, with improved quality of

models, negative Z-scores should probably penalize a

server. Thus, we include negative scores in summation

and replace missing models with random computed

Z-scores. So, not submitting a prediction is equivalent to

submitting a ‘random’ prediction in our assessment.

Interestingly, some servers submitted predictions of

inferior quality to that of random predictions. Although

this observation seems a bit counterintuitive, it makes

sense when the model is inspected. Such worse-than-

random predictions are much less compact than real

Figure 6. Dependence of GDT-TS (vertical axis) on domain length (horizontal axis). Each point represents a random score for a
domain. All NMR models for each domain are used, and random scores for them appear as vertical streaks giving an idea about
random errors of random scores. The red curve is the best-fit of the function mentioned in the text. On the upper right, one
example indicates the procedure generating random structures. Random structure 1: permuted and residue 1 is placed at
position 6 of the original structure; random structure 2: reverse chain and random structure 3: reverse chain, permuted and
residue 1 is placed at position 6 of the reverse chain structure.
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proteins. A random protein, with similar secondary struc-

ture composition and length to the target, will result in

better score than a nonprotein-like model.

Since the details of predictions are discussed in the offi-

cial CASP8 assessment and in the publications by predictors

(including Baker-Grishin group), they are not elaborated

upon in this work. Our database allows for each prediction

model to be interactively visualized in PyMOL. As a main

general observation, human groups provided better predic-

tions than automatic servers. The first server (Zhang-Server)

ranked fifth using GDT-TS scores combined over all targets;

the next best server (ROBETTA) ranked 22nd. This improved

performance by human groups reflects, at least in part,

the availability of all server models to ‘human’ predictors.

Human groups were allowed about 3 weeks to generate

a target, while servers were allowed only 3 days, with

their predictions openly accessible after submission. Some

human groups (i.e. Zhang group) operated as ‘meta-

predictors’ by automatically combining server predictions

to produce the best model. With this strategy, Zhang

ranked second by GDT-TS scores. Only a few human

groups actually utilized expert knowledge on protein struc-

tures and did not benefit from the availability of server

predictions. Among these, not mentioning the DBAKER

group, the most notable was Ceslovas Venclovas (IBT_LT

group).

Interesting targets

New folds

‘New folds’ was a prominent category in early CASPs. Now,

defining it as a ‘category’ is hardly possible. New folds are

rapidly approaching extinction. In fact, the majority of

structure types may already be known for water-soluble

proteins. We agree with the result from the Skolnick

group (24) that structure space knowledge is close to

complete as far as distinct types of secondary structure

packing are concerned. However, this statement is very

far from saying that we know how to map sequence

space on structure space. The deduction of many folds

from sequence is currently not possible, as confirmed by

CASP8 results. Many families with ‘old’ folds are not pre-

dictable from sequence. For instance, no server found the

correct template for T0460, and confident predictions were

not possible for T0465, T0466, etc. Thus, structural biolo-

gists still have a long road ahead as structural genomics

reveals and will continue to find many wonderful examples

of unusual occurrences of such sequence-unpredictable

‘old’ folds hiding among the semi-random families being

structurally characterized.

By new folds we mean distinct cores of secondary

structural elements with connections and spatial arrange-

ment not observed before. Although fold definition

is subject to debate, experts frequently agree on what

looks like a ‘new fold’. Several experts in our group

inspected CASP8 target structures and concluded that

only two domains represent new folds: T0397_1 and

T0496_1.

Nevertheless, some similarities exist between each of

these domains and existing PDB structures. The N-domain

of T0397 (T0397_1, Figure 7a) displays some topological

resemblance to a Ferredoxin-like fold (Figure 7b), with

a curved b-sheet and a-helices deteriorated into loops.

The ferredoxin-like core is elaborated with a loop and a

b-strand (green) inserted into its b-hairpin and a b-strand

(red) at its C-terminus. N-domain of T0496 (Figure 7c) shares

similarity with an RNAseH fold (Figure 7d), and may even

be viewed as a circular permutation of it.

Server predictions for both of these new folds were quite

poor. However, our analysis shows that two other targets,

clearly with known folds, i.e. T0407_2: an IG-like domain;

and T0465: a FYSH domain (5), were also predicted very

poorly. Apparently, as far as structure prediction is con-

cerned, little difference exists between new folds and

known folds for which templates are not detectable from

sequence. Due to this observation and the relatively

small number of new folds, CASP category definition

should be based on a different criterion, e.g. quality of a

few best server predictions.

Evolutionary analysis of unusual CASP8 proteins

T0467. In our opinion, this target represents the most

interesting CASP8 example, because it unexpectedly

revealed a segment of likely analogous (not homologous)

sequence similarity found by servers. While this segment

is good for modeling the structure locally, extension of

the alignment to cover the entire domain results in a

wrong fold prediction.

T0467 represents an OB-fold, which is a five-stranded

b-barrel, in this instance partly open between the 3rd and

the 5th b-strands (Figure 8a1). This fold similarity is not

detectable at statistically significant levels by known

sequence methods. The first COMPASS (25) hit to an

OB-fold protein is to the SCOP Nucleic acid-binding

domain superfamily, ranked #24 in the total list of hits

with an insignificant E-value around 25. Moreover, SH3

domain proteins, which form a five-stranded b-barrel,

were found by COMPASS prior to this hit. Nevertheless,

nine consensus match residues in the COMPASS alignment

map to structurally equivalent positions validating the

OB-fold hit and suggesting a possible evolutionary relation-

ship with Nucleic acid-binding domains.

This OB-fold was predicted de novo by ROSETTA (26),

which correctly indicated an open barrel. This prediction

was very suggestive of the correct structure, because

ROSETTA is biased towards local b-strand pairing, and the

OB-fold has a crossing loop to form H-bonds between
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b-strands 1 and 4, not to mention the barrel closure present

in most OB-folds with H-bonds between b-strands 3 and 5.

The metaserver bioinfo.pl (27) fails to find similarity to

other OB-fold proteins, and incorrectly provides SH3-

like predictions. Although some servers used OB-folds

as templates, the significance of those predictions is

unclear as the templates were closed barrels. Many servers

used SH3-fold templates or closed OB-fold templates.

The bias towards an SH3 fold is likely caused by the

C-terminal region, which shows strong local conforma-

tional similarity to Sso7d Chromo-domain DNA-binding

proteins (28).

This similarity covers about 30 residues (half of Sso7d

SH3-fold) and spans through a b-hairpin and two a-helices

(Figure 8 a2). The first helix is a single-turn helix character-

istic of the SH3 fold. Such a helix, frequently structured as a

310-helix, is present at this spatial location in the majority of

SH3-fold proteins. Mutual orientations of four secondary

structural elements between the two fragments (from OB

and SH3) are very similar, as reflected by sequence similarity

of alignments. Server detection of this similarity is not sur-

prising. However, upon closer inspection several positions

with charged residues (highlighted red in the above align-

ment) align to hydrophobic residues (yellow). These

Figure 7. (a) Cartoon diagram of N-terminal domain of T0397: 3d4r chain A residues 7–82. (b) Structure and topology diagrams
of ferredoxin fold–fold closest to T0397 N-terminal domain. (c) Ribbon diagram of N-terminal domain of T0496: 3d09 chain A,
residues 4–126. (d) Structure and topology diagrams of RNAseH fold–fold closest to T0496 N domain.
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positions display different exposure to solvent in the two

structures and hint that the local similarity may not trans-

late to the global fold similarity. Indeed, the two C-terminal

helices form essential core elements in the SH3 structure of

Sso7d, but are peripheral surface helices not in the OB-fold

of T0467. In addition, the surface of the hairpin buried in

the SH3-fold is exposed in T0467. These inconsistencies in

hydrophobic patterns are very suggestive of global struc-

tural differences (Figure 8 a3).

DALI-LITE (23) does not detect this local similarity, but

aligns the central three-stranded meander b-sheet in the

two proteins (shown in the back on the images Figure 8

a3: blue-cyan-green in T0467, and green-yellow in Sso7d),

albeit with a very low Z-score of 0.3 (33 residues, RMSD 2 Å).

This globally meaningful Dali alignment (only residues

in capital letters are aligned) superimposes hydrophobic

cores of both proteins.

As a summary, superposition of locally similar fragments

in SH3- and OB-folds does not result in global super-

positions of structural cores, and does not result in a rea-

sonable fold prediction. Vice versa, global superposition

of the cores leaves the two locally similar fragments as

nonequivalent parts of the two proteins, as they occupy

very different spatial locations and carry out different

structural roles.

Global similarity between OB- and SH3-folds has been

noticed previously (29), and explained in terms of very

distant evolutionary relationship (homology). The 20-folds

could share a common ancestor, being homologous over

the three-stranded curved meander sheet, although defini-

tive evidence for this presumption is lacking. The meaning

of the local fragment similarity between T0467 and Sso7d-

like chromo-domain OB-fold proteins is unclear. These

similar fragments could have originated independently

with their conformational resemblance due to chance,

thus representing a rare example of analogous sequence

similarity.

T0465. As opposed to T0467, extension over the entire

domain of a short, 30-residue alignment results in a

correct fold prediction for this target. As weak HHsearch

(30) and COMPASS (25) hits suggest, and 3D structure

confirms, this example is a mildly distorted FYSH domain

(5). HHsearch aligns T0465 with FYSH domain protein as the

first hit, but with rather low probability (�24%). COMPASS

also finds this alignment as the 17th hit with an E-value of

�20. An N-terminal b-hairpin (blue-cyan) is followed by

a-hairpin (cyan-green) and a short b-strand to complete

the sheet (lime-yellow). The next b-strand typical of a

FYSH domain is missing in T0465. Two C-terminal a-helices

of FYSH (orange-red) are replaced with three a-helices in

T0465 (Figure 8 b1). Thre bacteriophage HK97 tail assembly

chaperone 2ob9 would be the closest structure to T0465

(Figure 8 b2); however, no server found it as a template.

T0443. This is an unusual protein from a large family

(Figure 8 c1). The N-terminal domain represents a SAM-

domain (HhH motif) fold (31), with both HhH motifs dete-

riorated. The loops typically housing the motifs are still

possibly functional for DNA binding (Figure 8 c2 and c3).

Additionally, DALI (23) finds partial, but quite significant

(Z-score> 5) similarity to the cyclin fold, matching four

out of five cyclin helices. If detected by any server, this

template would produce a very accurate starting model

(Figure 8 c4). The C-terminal domain represents a circularly

permuted wHTH, i.e. the last strand of the ‘wing’ is the first

strand of the domain, like in methionine aminopeptidase

(Figure 8 c5 and c6).

Additionally, the winged HTH in the C-domain is deco-

rated with a three-stranded sheet inserted after the

‘wing’. b-hairpins and strands are known to be present

just before the N-helix of the three-helical HTH domains,

e.g. cullin 1st HTH (Figure 8 c7) and PhoB-like domains (32)

(Figure 8 c8). The HTH conformation looks a bit unusual,

probably due to strong crystal contacts that bend the

a-helices. The molecule is probably a dimer that binds a

small ligand with two conserved Arg residues (one is not

even modeled in the structure, it is just N-terminal to the

first modeled residue), each from each monomer. This pro-

tein family is very large, and a similar kind of HTH without

the N-domain exists as a separate protein: ‘Coenzyme PQQ

synthesis protein D’. Interestingly, The HHpred server (33)

finds HTH domains (e.g. 2dql) as templates for this

C-terminal domain. The first COMPASS hit in the SCOP

database is to the DNA/RNA-binding three-helical bundle

HTH-containing superfamily. Although the E-value esti-

mate is only marginally significant (�0.4), the alignment is

largely correct and can be used for template-based model-

ing of the C-domain.

T0510. This target has three domains, with a dramatic

structural change in the N-terminal domain belonging

to the MutM-like DNA repair proteins N-domain fold (34),

and a less striking, but nevertheless significant change in

the C-terminal domain, which is a deteriorated treble-clef

finger with a Glucocorticoid receptor-like (DNA-binding

domain) fold (35). The middle domain was the easiest to

predict as it kept the conserved S13-like H2TH fold.

The N- and C-terminal domains of T0510 experience

amazing structural transformations compared with the

homologous protein MutM (34) (Figure 8 d1). T0510 and

MutM are homologous throughout the chain in all three

domains, retaining similar relative positioning of these

domains. However, a closer look at the N-terminal domains

reveals large topological differences (Figure 8 d2).

Although the architecture appears similar between the

two proteins: two b-sheets flanked on the sides by two

a-helices, the topology is quite different. The b-sheet

facing the viewer is N-terminal (blue-cyan-green) in

.............................................................................................................................................................................................................................................................................................
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Figure 8. (a1) Cartoon diagram of T0467: 2k5q model 1, residues 7–97. (a2) Ribbon diagram of T0467 OB-fold C-terminal terminal

region and Sso7d SH3-fold C-terminal region. Left: T0467 OB-fold C-terminal fragment: 2k5q model 1, residues 64–97; Right:

Sso7d SH3-fold C-terminal fragment: 2bf4 chain A residues 30–64. On the bottom of this panel, a sequence alignment between

2k5q and 2bf4 indicates the sequence similarity between OB-fold and SH3-fold. (a3) Ribbon diagram of T0467 global OB-fold and

Sso7d global SH3-fold. Left: T0467 OB-fold: 2k5q model 1, residues 7–97; Right: Sso7d SH3-fold: 2bf4 chain A. (b1) Cartoon

.............................................................................................................................................................................................................................................................................................
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T0510, and is inserted in the middle of the molecule

(yellow-orange) in MutM. Common superimposable parts

of both molecules are shown in green below, with different

insertions colored red and blue (Figure 8 d3). T0510 has a

three-stranded insertion (red) after the N-terminal a-helix,

and MutM has a three-stranded insertion (blue) after the

4th common b-strand. Although both insertions form

three-stranded antiparallel b-sheets, they are different in

topology: a meander in T0510, and a bLbb in MutM.

Insertions are not surprising in remote homologs.

However, convergence to similar architecture through

independent insertions/deletions is not very common.

Despite this interesting peculiarity, there is no doubt

about the homology between N-domains of these proteins.

COMPASS being queried with just the N-terminal domain

sequence, without a more similar H2TH middle domain,

finds the first MutM protein as the 16th hit. The

COMPASS alignment is correct in the middle region. The

C-terminal domain in T0510 is a treble-clef finger that lost

its Zn-binding site, has deteriorated beyond recognition

and has gained the C-terminal b/a-unit (Figure 8 d4).
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