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Abstract: Environmental factors play an important role in the etiology of cardiovascular diseases.
Cardiovascular diseases exhibit marked sexual dimorphism; however, the sex-specific effects of envi-
ronmental exposures on cardiac health are incompletely understood. Perinatal and adult exposures
to the metal lead (Pb) are linked to several adverse cardiovascular outcomes, but the sex-specific
effects of this toxicant on the heart have received little attention. Perinatal environmental exposures
can lead to disease through disruption of the normal epigenetic programming that occurs during
early development. Using a mouse model of human-relevant perinatal environmental exposure, we
investigated the effects of exposure to Pb during gestation and lactation on DNA methylation in the
hearts of adult offspring mice (n = 6 per sex). Two weeks prior to mating, dams were assigned to
control or Pb acetate (32 ppm) water, and exposure continued until offspring were weaned at three
weeks of age. Enhanced reduced-representation bisulfite sequencing was used to measure DNA
methylation in the hearts of offspring at five months of age. Although Pb exposure stopped at three
weeks of age, we discovered hundreds of differentially methylated cytosines (DMCs) and regions
(DMRs) in males and females at five months of age. DMCs/DMRs and their associated genes were
sex-specific, with a small, but statistically significant subset overlapping between sexes. Pathway
analysis revealed altered methylation of genes important for cardiac and other tissue development
in males, and histone demethylation in females. Together, these data demonstrate that perinatal
exposure to Pb induces sex-specific changes in cardiac DNA methylation that are present long after
cessation of exposure, and highlight the importance of considering sex in environmental epigenetics
and mechanistic toxicology studies.

Keywords: toxicoepigenetics; DNA methylation; Developmental Origins of Health and Disease
(DOHaD); cardiovascular disease; sex differences; heavy metals

1. Introduction

Environmental exposures that occur very early in life can have long-lasting influences
on cardiovascular disease (CVD) risk [1], consistent with the Developmental Origins of
Health and Disease (DOHaD) hypothesis. In spite of this, the underlying mechanisms
by which they do so are incompletely understood. Developmental environments may
influence CVD risk by altering the structure of the heart, including the final number of
cells in the heart or density of blood vessels [2]. Exposures may also alter the expression
of genes and their protein products critical for normal cardiac function, such as those of
the mitochondrial electron transport chain [2]. There are considerable sex differences in
the incidence and pathogenesis of CVDs [3]. For example, although men and women are
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both prone to ischemic heart disease, the pathogenesis differs between sexes, with males
more frequently exhibiting obstructive coronary artery disease [3]. In contrast, ischemia
in women is more often due to non-obstructive coronary artery disease or microvascular
dysfunction. Likewise, women are more likely than men to experience lethal arrhythmias
as a result of pharmacologic interventions (antibiotics, antidepressants, antihistamines)
or genetic syndromes [3,4]. The molecular basis for these differences is unclear but likely
involves genetic, epigenetic, and hormonal factors [3]. How these important sex differences
interact with environmental exposures to influence cardiac health has not been investigated.
One potential mechanism by which toxicant exposures early in life can lead to CVD is by
interfering with the widespread epigenetic and transcriptional programming that drive
normal cardiac development [1]. DNA methylation, or the addition of a methyl group to
cytosine bases on DNA (5-methylcytosine), plays a critical role in normal development,
and disruptions in DNA methylation have been linked to environment-induced disease.
The development of the heart is characterized by dynamic changes in DNA methylation [5],
and alterations in this epigenetic mark have been identified in a variety of cardiovascular
disease states [1,5,6], as well as with toxicant exposures [6–8]. Notably, sex differences in
epigenetic modifications and transcriptional profiles are present in the embryonic stem cell
stage and persist throughout cardiac differentiation and into adulthood [9,10]. Thus, sex-
specific alterations in DNA methylation by environmental exposures may have important
implications for sexually dimorphic cardiovascular health.

Recent incidents of Pb contamination in municipal water systems underscore the
ongoing threat that Pb poses to human health in the US and worldwide. In addition to
drinking water, common sources of Pb exposure in the US include household dust from
Pb-based paint, imported consumer products, and industrial exposures [11]. Worldwide, e-
waste recycling, traditional medicines, industrial emissions, and glazed ceramics comprise
additional sources of exposure [11]. It is estimated that 815 million children worldwide have
blood lead concentrations of at least 5 µg/dL, a level at which adverse neurodevelopmental,
psychiatric and neurological outcomes are well-documented [11,12]. In addition to the
established effects on the nervous system, the contribution of Pb to CVD mortality in the
US is far greater than previously thought [13]. Pb exposure is linked to high blood pressure,
myocardial infarction, stroke, and cardiac arrhythmias in humans and animals [13–18]. In
a rodent model, neonatal Pb exposure leads to enhanced sensitivity to the arrhythmogenic
effects of norepinephrine in adulthood, suggesting that early development is a critical
window of susceptibility to the effects of Pb on cardiac health [19,20]. In spite of established
links between Pb and CVD, sex differences in these outcomes, and the underlying molecular
mechanisms, are unclear. Early life exposure to Pb plays a clear role in reprogramming
of DNA methylation in several non-cardiac tissues, and sex-specific effects of perinatal
Pb exposure on DNA methylation have been reported [21,22]. However, the sex-specific
effects of developmental Pb exposure on the epigenome of the heart, and the implications
this may have for disease, are unknown. In this work, we hypothesized that Pb exposure
during this critical window of development would also affect cardiac DNA methylation.
To test this hypothesis, we utilized a mouse model of perinatal environmental exposure to
investigate the effects of an environmentally relevant dose of Pb on DNA methylation in
the hearts of adult male and female mice.

2. Materials and Methods
2.1. Animal Exposure Paradigm

This work was conducted as part of a larger study under the National Institute of
Environmental Health Sciences (NIEHS) Toxicant Exposures and Responses by Genomic
and Epigenomic Regulators of Transcription (TaRGET II) Consortium [23,24]. Mice uti-
lized for this study have recently been described [8]. Procedures for Pb preparation and
exposure were conducted exactly as outlined previously [24]. Briefly, virgin a/a females
(6–8 weeks old) were mated with virgin a/a males (7–9 weeks old), and randomly assigned
to receive control or Pb through drinking water. Pb-acetate was mixed with water to result



Int. J. Environ. Res. Public Health 2021, 18, 577 3 of 20

in a Pb concentration of 32 ppm in drinking water, which results in a human-relevant
maternal exposure in the 16–60 µg/dL range [22,24]. Pb-supplemented water was made
by dissolving Pb (II) acetate trihydrate (Sigma-Aldrich) in a single batch of distilled water,
and Pb concentrations were verified using inductively coupled plasma mass spectrometry
with a limit of detection of 1.0 µg/L (ICPMS; NSF International, Ann Arbor, MI, USA).
Animals were maintained on a phytoestrogen-free modified AIN-93G diet (TD.95092, 7%
Corn Oil Diet, (Envigo, Indianapolis, IN USA). Dams were exposed to either control or
Pb-supplemented drinking water for two weeks prior to mating, and exposure continued
during gestation and lactation. After weaning on postnatal day 21, the resulting pups
were weighed and switched to Pb-free drinking water (Figure 1). Approximately 1–2 male
and 1–2 female offspring per litter were followed until 5 months of age (n = 6 animals
per sex/exposure- control female, control male, Pb female, Pb male). All animals had
access to food and drinking water ad libitum throughout the experiment, remained on a
12-h light/dark cycle, and were housed in polycarbonate-free cages. Health checks were
carried out daily by lab personnel and the University of Michigan Unit for Laboratory
Animal Medicine (ULAM, Ann Arbor, MI, USA). This study protocol was approved by the
University of Michigan Institutional Animal Care and Use Committee (IACUC), protocol
# PRO00009800.
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Figure 1. Schematic of experimental design and sample collection. Dams were exposed to Pb 2 weeks
prior to mating via drinking water. Maternal (and, in turn, offspring) exposure continued until
weaning, when offspring reached 3 weeks of age. 6 males and 6 females per exposure were sacrificed
at 5 months of age for tissue collection and ERRBS analysis.

2.2. Euthanasia and Tissue Collection

Each mouse was weighed on a weekly basis (Mettler Toledo, Columbus, OH, USA) and
given regular health checks. Health checks consisted of a general assessment of appearance
(fur coat intact and well-groomed, eyes clear, no signs of fight wounds) and behavior
(mobility, nest building, etc.). In addition to checks by lab personnel, a designated animal
handler from ULAM checked these cues on a daily basis, and a veterinarian assessed the
health status of the mice at least once a week. Animals were euthanized at 5 months of
age according to protocols established by the TaRGET II Consortium (Figure 1 and [23]).
Euthanasia and tissue collection procedures were recently described [8]. Heart samples
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were immediately snap-frozen in liquid nitrogen and stored at −80 ◦C until DNA and
RNA extraction.

2.3. DNA Extraction and Enhanced Reduced Representation Bisulfite Sequencing

DNA extraction (1–2 male and 1–2 female mice per litter) and sequencing were performed
as outlined previously [8]. Enhanced reduced representation bisulfite (ERRBS) was performed
at the University of Michigan Epigenomics and Advanced Genomics Cores as described
previously [24,25], and each sample met the quality control criteria for next generation
sequencing. Bisulfite conversion efficiencies for all samples exceeded 99.8% (Supplementary
Table S1). The average mapping efficiency was 58.9% (Supplementary Table S1). Single end,
50 nucleotide sequencing was performed on a HiSeq4000 platform (Illumina, San Diego, CA,
USA). Libraries were multiplexed and sequenced over 2 lanes. Library sizes (with adapters)
ranged from 200–400 bp, and the average sequencing depth was >118 million reads per
sample. On average, this method captured 4.8% of genomic CpGs.

2.4. Bioinformatics Pipeline, Quality Control, and Differential Methylation Analysis

DNA methylation analysis, including quality control, trimming, alignment, and
methylation calling were conducted exactly as outlined previously [8]. Briefly, we re-
moved CpGs with read coverage >1000 or <10. Opposite strand CpGs at the same position
were combined via destranding. Sex chromosomes were included in this analysis. We
performed differential methylation testing on individual CpG sites (DMCs), and differen-
tially methylated regions (DMRs) were identified in 1000 bp tiles using the same process.
In order to be included in the analysis, sufficient sequencing coverage for a minimum of
4 samples from the Pb group and 4 samples from the control group was required. Dif-
ferentially methylated CpGs and regions were identified exactly as recently outlined [8].
Run was included as a covariate in the model to adjust for batch effects. After obtaining
p-values, we adjusted for multiple testing using the FDR approach. Sites and regions with
FDR < 0.05 and an absolute difference in methylation of >10% were considered significant.
To determine the distribution of differentially methylated sites across the genome, we used
the annotatR R Bioconductor package (v1.5.9) to annotate the CpGs to the mouse mm10
genome ([26] and methods from reference [8]). To determine whether the proportion of
differentially methylated cytosines (DMCs) falling into each annotation was significantly
different from the total regions tested, we conducted a Chi Square test [8].

2.5. Pathway Analysis of Differentially Methylated Regions (DMRs)

Poly-enrich analysis was conducted using all DMRs with a p-value of at least 0.1,
with the following settings: genesets = GOBP, GOCC, and GOMF; locusdef = 1 kb,
min_geneset_size = 15, max_geneset_size = 2000. For GREAT [27] analysis, BED files
of DMRs for each sex were uploaded to the GREAT web interface [27] using the mouse
mm10 species assembly. Association rule setting “basal plus extension” was utilized with
the following parameters: Proximal: 5 kb upstream, 1 kb downstream, plus Distal: up to
1000 kb. STRING network analysis, genes associated with DMRs were analyzed using
default parameters: full STRING network and a required interaction score of 0.4.

2.6. Gene Expression Analysis

RNA-seq library preparation and sequencing were performed at the University of
Michigan Advanced Genomics Core (N = 6 animals per sex, per condition). Library
preparation was carried out using the KAPA mRNA Hyper Prep Kit (Roche, Wilmington,
MA, USA) with Dual Indexing Adapters following manufacturer instructions. Quantity
and quality of the prepared libraries were confirmed with the Agilent 2200 TapeStation
(Agilent, Santa Clara, CA, USA). Sequencing of paired-end 50 base pair reads was carried
out on the Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA) in the S2 flow cell.
Sequenced reads were trimmed via Trim Galore [28], and quality control was assessed with
FastQC [29]. STAR was used for the alignment step [30]. Trimming, QC and alignment
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were all carried out with default parameters. Normalized read counts for Pb-exposed
vs. control samples were obtained for each gene using the TMM method of edgeR [31],
stratifying by sex. Statistical analysis was conducted as noted in the next section.

2.7. Statistical Analysis

For heart weights and gene expression analysis (lead vs. control for each gene of inter-
est in a targeted analysis), animals were stratified by sex, and linear mixed-effects regression
was carried out using the lme4 and lmerTest packages in R version 3.6.1 [32]. Litter-specific
random effects were included to account for within-litter correlation. Statistical analysis of
overlapping genes or sites between groups was conducted using a hypergeometric test [33].
p-values and representation factors are reported, where representation factor = the number
of overlapping genes divided by the number of genes expected to overlap by chance.

3. Results
3.1. Litter Parameters and Phenotypic Effects

Exposure to Pb during gestation and lactation did not significantly alter litter size, pup
mortality, or the percentage of females in each litter, and animal weights at 5 months of age
were not significantly different between control and Pb exposed animals [24]. Pb exposure
had no significant effect on relative heart weights in either males or females at 5 months of
age (Figure 2). This finding may have been due to a relatively small sample size compared
to our previous studies in which we observed phenotypic effects of Pb exposure [22,34].
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Figure 2. Heart weights, expressed as a percentage of body weight, were assessed for males (A) and
females (B) at 5 months of age. Data were analyzed using linear mixed-effects regression with
litter-specific random effects to account for within-litter correlation. Black dots represent control
animals and red squares depict Pb-treated animals. There were no statistically significant differences
in hearts from Pb-exposed animals compared to controls.

3.2. Genome-Wide Changes in DNA Methylation with Developmental Pb Exposure

In order to investigate the effects of gestational and lactational Pb exposure on DNA
methylation, we utilized ERRBS to measure DNA methylation in isolated whole heart
tissue from male and female offspring at 5 months of age. Although lead exposure had
ceased months before, at 5 months of age we observed >1000 differentially methylated
cytosines (DMCs), and several hundred differentially methylated regions (DMRs) in both
males and females (Tables 1 and 2 and Supplementary Tables S2–S5). The total number of
cytosines and regions tested was similar between sexes (Tables 1 and 2). For DMCs, the
absolute magnitude of methylation change was as high as 57% in males and 68% in females
(Figure 3). For DMRs, we observed a maximum magnitude of 72% and 38% for males and
females, respectively (Supplementary Figure S1). We annotated these regions to the mouse
mm10 genome and found that, similar to our observations with DEHP and BPA exposed
animals [8,35], the majority of DMCs and DMRs fell within open sea and intronic regions,
and were depleted from CpG islands and promoters (Figure 4). The top 10 most hyper
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and hypomethylated DMCs and DMRs, and the genes associated with them, are shown in
Tables 3 and 4.
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Table 1. Differentially methylated cytosines (DMCs) in 5 month offspring mouse hearts.

Condition Total # Hypermethylated
(% Total)

# Hypomethylated
(% Total) Total Tested

Female Pb 1204 850 (71%) 354 (29%) 1,229,906
Male Pb 1441 894 (62%) 547 (38%) 1,242,400

# = number.

Table 2. Differentially methylated regions (DMRs) in 5 month offspring mouse hearts.

Condition Total # Hypermethylated
(% Total)

# Hypomethylated
(% Total) Total Tested

Female Pb 243 183 (75%) 60 (25%) 199,245
Male Pb 303 200 (66%) 103 (34%) 200,236

# = number.
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Table 3. Top 10 differentially hypo- and hyper-methylated cytosines (DMCs) in each sex, ranked by methylation change.

Males

Chromosome Chromosomal
Coordinate

Methylation
Change FDR Gene Genomic Annotation

7 123,192,720 57.24 0.004 Tnrc6a Exon, Intron
15 27,622,926 46.04 0.009 Otulin Intron
17 45,811,574 45.45 0.024 N/A Intergenic, Intron
5 113,144,949 45.00 9.49 × 10−4 2900026A02Rik Intron
Y 2,408,706 44.97 3.51 × 10−7 N/A Intergenic
5 75,512,841 43.82 0.009 N/A Intergenic

17 48,467,937 43.36 0.024 Unc5cl Exon, Intron, 3′UTR
17 45,131,087 42.98 1.96 × 10−11 N/A Intergenic
14 74,943,186 42.21 0.048 Lrch1 Intron
8 50,297,709 41.54 0.007 N/A Intergenic, Intron
4 127,676,072 −57.41 2.6 × 10−4 N/A Intergenic

11 101,777,136 −52.95 0.026 Etv4 1 to 5 kb, Exon
X 151,886,783 −51.63 0.002 Huwe1 Exon
18 58,711,965 −42.84 0.007 N/A Intergenic
19 46,075,205 −41.21 0.003 Nolc1 Promoter
5 15,589,011 −41.20 0.018 N/A Intergenic, Intron
5 60,922,979 −41.14 0.003 N/A Intergenic

10 126,913,858 −40.79 0.049 N/A Intergenic
14 82,306,636 −40.71 0.001 N/A Intergenic
12 112,184,867 −40.33 3.43 × 10−9 N/A Intergenic

Females

Chromosome Chromosomal
Coordinate

Methylation
Change FDR Gene Genomic Annotation

11 100,799,435 57.52 0.016 Stat5b Intron
X 93,674,708 47.42 2.16 × 10−4 Pcyt1b Promoter, Intron
10 44,097,412 47.17 0.001 Crybg1 Intron
11 107,243,282 45.18 0.023 Pitpnc1 Intron
10 127,239,429 45.16 0.048 Kif5a Intron
2 153,872,822 43.94 6.39 × 10−5 Bpifb2/Sun5 1 to 5 kb
5 122,761,313 42.20 0.005 Camkk2 Intron
X 138,915,140 40.62 0.001 Nrk Intron
10 49,704,554 40.36 0.008 Grik2 Intron
15 97,844,916 40.14 0.023 Hdac7 Promoter
19 37,685,435 −68.11 7.33 × 10−9 Cyp26c1 Promoter
5 119,687,886 −53.30 0.020 Tbx3os2 Intron

15 73,723,726 −45.97 2.47 × 10−8 Ptp4a3 1 to 5 kb, Intron
17 76,107,125 −45.74 0.018 N/A Intergenic
17 5,507,498 −45.04 0.030 Zdhhc14 Intron
12 104,471,048 −42.53 0.047 N/A 1 to 5 kb, CpG Shore
12 104,471,092 −42.19 1.01 × 10−4 N/A 1 to 5 kb, CpG Shore
1 70,455,889 −41.23 0.010 Spag16 Intron
5 124,782,320 −39.66 0.021 Dnah10 Exon
6 101,272,100 −39.34 0.050 Pdzrn3 Intron

FDR = False Discovery Rate.
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Table 4. Top 10 differentially hypo- and hyper-methylated regions (DMRs) in each sex, ranked by methylation change.

Males

Chromosome Start End Methylation
Change FDR Gene Genomic Annotation

13 119,637,001 119,638,000 50.97 0.026 Ccl28 Intron
16 30,745,001 30,746,000 42.59 6.93 × 10−4 N/A Intergenic
6 101,083,001 101,084,000 41.81 0.035 N/A Intron, Intergenic

5 36,531,001 36,532,000 37.56 0.018 Tbc1d14 Promoter, 1 to 5 kb,
Exon, Intron

8 34,051,001 34,052,000 34.43 0.029 N/A Intergenic
5 75,512,001 75,513,000 34.13 0.036 N/A Intergenic
8 14,324,001 14,325,000 32.02 0.001 Dlgap2 Intron
5 113,026,001 113,027,000 31.52 0.010 N/A Intergenic

17 86,302,001 86,303,000 31.15 0.013 Prkce Intron
12 86,540,001 86,541,000 30.63 8.24 × 10−7 N/A Intergenic
19 44,248,001 44,249,000 −71.90 3.34 × 10−5 N/A CpG Island, CpG Shore
1 42,629,001 42,630,000 −56.34 0.010 Pantr1 Intron
6 125,711,001 125,712,000 −51.24 0.008 Ano2 Promoter, Exon, Intron

11 85,458,001 85,459,000 −47.98 0.022 Bcas3 Intron
5 113,462,001 113,463,000 −47.45 6.37 × 10−7 N/A Intron
7 28,925,001 28,926,000 −43.61 0.032 Actn4 Intron
5 60,922,001 60,923,000 −41.91 6.44 × 10−4 N/A Intergenic
9 62,371,001 62,372,000 −41.69 0.013 Anp32a 1 to 5 kb, Exon, Intron
5 15,589,001 15,590,000 −41.20 0.014 N/A Intron

18 31,921,001 31,922,000 −40.27 0.007 Lims2 Promoter, 1 to 5 kb

Females

Chromosome Start End Methylation
Change FDR Gene Genomic Annotation

10 44,097,001 44,098,000 37.88 0.044 Crybg1 Intron
2 153,872,001 153,873,000 37.88 0.007 Sun5 Promoter, 1 to 5 kb
2 153,872,001 153,873,000 37.88 0.007 Bpifb2 1 to 5 kb

15 73,544,001 73,545,000 35.59 0.027 Dennd3 Exon, Intron
12 54,490,001 54,491,000 33.84 0.031 N/A Intergenic
19 25,422,001 25,423,000 32.99 0.041 Kank1 Promoter, Exon, Intron
15 80,000,001 80,001,000 31.60 0.024 Mir7213 Promoter, 1 to 5 kb
15 80,000,001 80,001,000 31.60 0.024 Pdgfb Exon, Intron
10 78,470,001 78,471,000 31.09 0.043 N/A Exon, Intergenic
5 36,308,001 36,309,000 31.04 3.63 × 10−4 Sorcs2 Intron
6 59,473,001 59,474,000 −37.63 0.002 N/A Intergenic
2 102,253,001 102,254,000 −37.55 0.022 N/A Intergenic
7 34,845,001 34,846,000 −33.15 0.037 N/A Intergenic

11 88,495,001 88,496,000 −30.70 0.035 Msi2 Intron
12 40,559,001 40,560,000 −28.42 0.022 Dock4 Intron
7 45,521,001 45,522,000 −27.21 0.044 Plekha4 1 to 5 kb
7 45,521,001 45,522,000 −27.21 0.044 Tulp2 Exon

19 10,904,001 10,905,000 −26.96 0.020 Prpf19 Intron
12 102,456,001 102,457,000 −26.28 0.044 N/A Intergenic, Intron
18 73,806,001 73,807,000 −24.51 0.036 Me2 Intron

3.3. Pathway Analysis

In order to determine the pathways enriched among the DMRs, we first performed
analysis using Poly-Enrich [36], which has been shown to have a more accurate false
positive rate than other pathway enrichment tests. We stratified our analysis by sex and
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direction of methylation change. In both males and females, we observed enrichment
for pathways relevant to cardiac function, including ion channel activity, but the results
were not statistically significant (Supplementary Tables S6–S9). As a parallel approach,
we utilized the Genomic Regions Enrichment of Annotations (GREAT) tool [27]. Among
males, DMRs were enriched for several pathways important for normal heart development
and function, including the Notch and hedgehog signaling pathways (smoothened is a
component of the hedgehog pathway) [37,38], as well as regulation of cardiac muscle
hypertrophy (Figure 5A). Among females, DMRs were enriched for pathways associated
with histone demethylation, arginine hydroxylation, and body morphogenesis (Figure 5B).
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In order to further understand whether DMRs interacted within common biological
networks, we utilized STRING network analysis. We stratified the data by sex and direction
of methylation and conducted separate analyses for each. In both males and females, there
were fewer than 100 differentially hypomethylated genes, so we included all of them in
the analysis (35 hypo DMRs in females and 67 hypo DMRs in males). For differentially
hypermethylated regions in both sexes, we included the top 100 genes with the largest
changes in methylation. In females, the interactions among DMR-associated genes were
not statistically significant for hyper or hypomethylated genes. In males, however, we
identified significantly more interactions than would be expected by chance for both hypo
and hypermethylated DMRs (enrichment p-values p = 0.003 and p = 0.009 respectively,
Figure 6). Many of the genes in these networks are important for normal heart development
and function, or are associated with disease. Among hypermethylated regions, they
included Afap1, Prkce, Atg5, and Tmod1. Among hypomethylated regions, they included
Bcas3, Cux1, and Hnrnpu. Consistent with GREAT analysis, Atg5 [39,40] and Cux1 [41,42]
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interact with the Notch and Hedgehog signaling pathways during normal development
and in cancer.
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3.4. Overlap between Sexes

We next investigated the sex specificity of DNA methylation after developmental Pb
exposure. To this end, we first determined whether any DMCs or DMRs overlapped di-
rectly between males and females. Consistent with sex-specific effects on DNA methylation,
only two regions were found in common between males and females among both DMCs
and DMRs (Supplementary Tables S10 and S11). The sex-specific overlap of DMCs was
not statistically significant (p = 0.43, representation factor = 1.4), and the overlap of DMRs
approached statistical significance (p = 0.05, representation factor = 5.4) as calculated by
hypergeometric test. We then compared the genes mapping to DMCs and DMRs between
males and females to further interrogate sex specificity. In males, DMCs and DMRs mapped
to 899 and 171 genes, respectively (Supplementary Tables S2 and S4). In females, we iden-
tified 753 and 147 genes associated with DMCs and DMRs, respectively (Supplementary
Tables S3 and S5). The vast majority of DMCs and DMRs were sex-specific, with a small
subset of genes overlapping between sexes (Figure 7A,B and Supplementary Tables S12
and S13). Although a minority of genes were found to be in common between sexes, the
overlaps for DMCs and DMRs were statistically significant (p = 3.4 × 10−30, representation
factor = 3.7 and 8.1 × 10−6, representation factor = 8.0, respectively, hypergeometric test).
We then determined whether the overlapping genes might represent sex-independent
biomarkers of Pb exposure, focusing on the 8 genes in common among DMRs. Of these
8 genes, we identified 3 that were associated with cardiovascular diseases, including Rbfox1,
Galnt2, and Pi16 [43–45]. Altered DNA methylation at each gene occurred in distinct loca-
tions based on sex (Table 5 and Supplementary Table S13). Changes in DNA methylation
at Galnt2, and Pi16 occurred in the same direction in both sexes (Table 5). Interrogation of
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the sex-specific DMRs also revealed cardiovascular disease-relevant genes. Among males,
these included Atg5, Tmod1, Smad6, Slc26a6, Prkce, Ank2, Cux1, and Lamp2 [46–53]. Among
females, they included Tgfb2, Rbfox2, Vdr, Tlr4, Timp3, Pde4b, Akap1, and Grk5 [54–61].
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Figure 7. Venn Diagrams showing overlap in differentially methylated cytosine (DMC) (A) and differentially methylated
regions (DMR) (B)-associated genes between males and females. Statistical significance of overlap was determined using a
hypergeometric test. In panel B, three DMR-associated genes (Rbfox1, Galnt2, Pi16) that overlap between males and females
are highlighted due to their association with cardiovascular disease. Panels (C–E) depict normalized RNA-seq read count
data for these three genes in males (top panel) and females (bottom panel) at 5 months of age. Black circles and red squares
represent control and Pb-treated animals, respectively. Statistical significance was determined using linear mixed-effects
regression, with litter-specific random effects to account for within-litter correlation.

3.5. Gene Expression Analysis

We then investigated whether the changes in DNA methylation at sex-independent
and sex-dependent DMRs were associated with altered gene expression. To this end, we
first interrogated RNA-seq read count data for each of the three sex-independent genes
from control and Pb-exposed males and females. RNA utilized in the RNA-seq analysis was
extracted from the same tissue samples utilized for ERRBS. Gene expression data for Rbfox1,
Galnt2, and Pi16 are depicted in Figure 7C–E. Rbfox1 exhibited trends toward increased
and decreased expression in males and females, respectively that did not reach statistical
significance (Figure 7C). For Galnt2, we observed a significant increase in expression in
females but not males (Figure 7D). No significant changes were observed in expression of
Pi16 (Figure 7E). Among cardiovascular disease-relevant, differentially methylated genes
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in males, Atg5, Ank2, Cux1 and Lamp2 exhibited significant increases in gene expression.
Expression of Tmod1, Smad6, Slc26a6 and Prkce were not significantly different between Pb
and control (Supplementary Figure S2A). In females, expression of Akap1 was significantly
increased and Grk5 was significantly decreased. The remaining genes showed no significant
changes in expression with Pb exposure (Supplementary Figure S2B).

Table 5. DNA methylation changes at DMRs in cardiovascular disease-associated genes that overlap between males
and females.

Males

Gene Chr Start End Lead Meth Ctrl Meth Change in
Meth Direc FDR Location

Galnt2 8
124,294,001 124,295,000 30.41 5.38 25.03 Hyper 9.7 × 10−5 Promoter, Intron,

1 to 5 kb

120,995,001 120,996,000 83.38 67.66 15.72 Hyper 0.003 Intron

Pi16 17 29,319,001 29,320,000 42.13 15.92 26.22 Hyper 7.8 × 10−9 Promoter, 5’UTR,
Exon, Intron

Rbfox1 16 7,097,001 7,098,000 74.79 95.40 −20.61 Hypo 0.015 Intron

Females

Gene Chr Start End Lead Meth Ctrl Meth Change in
Meth Direc FDR Location

Galnt2 8
121,760,001 121,761,000 75.11 61.03 14.09 Hyper 0.040 Intron

122,085,001 122,086,000 84.88 70.10 14.78 Hyper 0.003 Intron

Pi16 17 29,323,001 29,324,000 64.56 47.71 16.85 Hyper 0.024 Intron

Rbfox1 16 6,227,001 6,228,000 49.60 39.36 10.24 Hyper 0.014 Intron

4. Discussion

Although there are clear sex differences in cardiac physiology and pathophysiology [3],
the sex-specific effects of environmental exposures on cardiovascular health are poorly
understood. In this work, we demonstrate that Pb exposure during gestation and lactation
leads to changes in DNA methylation in the heart that are present in adulthood. The
levels of Pb used in this study result in maternal blood Pb levels comparable to those
currently observed in women of child-bearing age in poorer countries [62]. Although
blood Pb levels have fallen significantly in the US since the 1970s–1980s, levels within this
range were not uncommon during the mid-late 20th century [63]. Importantly, children
exposed to higher levels of Pb during pregnancy in the mid-late 20th century are now at an
age in which CVDs are of significant concern. Our findings are novel for several reasons.
To our knowledge, this is the first report demonstrating that Pb exposure during early
development leads to altered cardiac epigenetic programming that is present in adulthood.
Moreover, sex-specific effects of Pb exposure on the cardiac epigenome have not yet been
investigated. Indeed, although the effects of Pb on the nervous system are well-established,
this work contributes to a growing body of evidence highlighting potential adverse effects
of this metal on the cardiovascular system.

4.1. Genome-Wide Changes in DNA Methylation with Developmental Pb Exposure

In this work, we discovered that exposure to Pb during gestation and lactation resulted
in genome-wide changes in cardiac tissue DNA methylation. In both males and females,
DMCs and DMRs were enriched in introns and intergenic regions of the genome, consistent
with what we observed previously for DEHP [8] and BPA [35] exposures. Intergenic and
intronic regions of the genome harbor enhancers and other regulatory elements critical for
the regulation of tissue-specific gene expression [64]. Likewise, dynamic DNA methylation
at these elements is critically important for regulation of normal tissue differentiation, and
is de-regulated in the context of diseases such as cancer [65]. Consistent with this, GREAT
pathway analysis revealed enrichment of pathways associated with development and epi-
genetic regulation. In males, this included the regulation of the Notch pathway, as well as
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smoothened signaling, a component of the hedgehog pathway. Both pathways play critical
roles in normal cardiac development, as well as in adult cardiovascular diseases [37,38,66].
In females, these included pathways associated with lysine (H3K36) demethylation and
arginine hydroxylation, epigenetic processes that are important for regulation of chromatin
structure and function in the heart and other tissues [67,68]. As a complementary approach,
we conducted STRING network analysis and found that, in males, genes associated with
the DMRs interacted in networks associated with cardiovascular development and disease,
including Afap1, Prkce, Atg5, Tmod1, Bcas3, Cux1, and Hnrnpu [47,50,52,69–72]. The impli-
cations of altered DNA methylation at these development and disease-relevant loci for
long-term cardiac health require further investigation.

4.2. Implications of Pb Exposure for Cardiac Function

The effects of Pb-induced changes in DNA methylation on heart function are not
yet clear. Pb exists predominately as a divalent cation in the body, and thus interferes
with the function of other divalent cations, including calcium. Acute exposure to Pb
disrupts cardiac calcium signaling, which is critical for normal heart function, and leads
to arrhythmias and impaired cardiac contractility [73,74]. Pb may also exert toxic effects
in part through activation of the aryl hydrocarbon receptor [75], and can potentiate the
effects of other cardiac toxicants [76]. The effects of developmental Pb exposure on cardiac
function, however, are far less clear. In this study, potentially due to the small sample size,
we observed no significant changes in heart weights in either males or females, and we did
not assess the functional effects of early Pb exposure. Previous work in rats demonstrated
that exposure to Pb during the early postnatal period lead to an increased incidence
of cardiac arrhythmias in response to norepinephrine in adulthood, and the presence
of the toxicant during the early developmental period was necessary for the observed
effect [19,20]. These findings suggest that early Pb exposure may affect the sensitivity to
additional stressors later in life. Given the extensive epigenetic programming that occurs
during this critical window of development, and the observed functional effects during
adulthood, it is plausible that developmental Pb exposure may elicit these effects through
epigenetic mechanisms. Additional studies designed to investigate this important question
are currently underway.

4.3. Potential Mechanisms

The molecular mechanism(s) by which Pb exposure leads to altered cardiac DNA
methylation are currently unclear. DNA methylation is mediated by DNA methyltrans-
ferases (DNMTs), and active removal of this mark occurs via the activity of TET dioxyge-
nases (TETs). DNMTs require the cofactor S-adenosylmethionine (SAM), which provides
the methyl group for cytosine methylation. TETs utilize iron (II), ascorbic acid, and alpha
ketoglutarate to catalyze the conversion of 5-methylcytosine to the more oxidized prod-
ucts 5-hydroxymethylcytosine (5hmC), 5-fluorocytosine 5 (fC), and 5-carboxylcytosine
(5caC). Conversion of these oxidized species back to unmethylated cytosine occurs through
thymine DNA glycosylase (TDG)-mediated base excision repair. Thus, Pb may interfere
with DNA methylation by altering the expression of these enzymes and/or the levels
of their cofactors. Consistent with the first possibility, developmental Pb exposure leads
to reduced activity and expression of DNMTs in vitro and in vivo [77,78]. No effects of
Pb exposure on expression of TETs or TDG have been reported; however, Pb does cause
alterations in the levels of 5hmC [79]. In support of an effect on cofactors, exogenous SAM
mitigates the effects of Pb exposure on acute toxicity and adverse neurodevelopmental out-
comes, suggesting that Pb may perturb SAM homeostasis [80,81]. Moreover, Pb interferes
with the activity of the TCA cycle enzyme isocitrate dehydrogenase, which generates alpha
ketoglutarate [16,82]. Vitamin C has also been shown to attenuate the adverse effects of Pb,
although whether this is due to modulation of DNA methylation is unclear [83,84].

The molecular underpinnings of sex-specificity in differential DNA methylation are
currently unknown. Sex differences in epigenetic profiles are present during cardiac dif-
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ferentiation and in adulthood, highlighting differential epigenetic regulation of cardiac
development and function between males and females [9]. During early development,
DNA methylation undergoes two distinct waves of widespread erasure and re-methylation
in both males and females; however, the kinetics and underlying mechanisms driving this
programming differ between sexes. The first wave occurring post-fertilization results in
removal of gamete methylation patterns and establishment of the embryonic methylation
program [85]. The second wave occurs in the primordial germ cells of the developing
embryo, in which sex-specific methylation patterns are established. In pre-implantation
embryos, removal of DNA methylation in females occurs via a slower, passive loss of
methylation, while in males, demethylation occurs with faster kinetics via an active mecha-
nism mediated by TETs [85]. In the primordial germ cells, the process of re-methylation
is complete before birth in males, but in females, this re-methylation continues until pu-
berty [85]. These differences in the timing of methylation erasure and re-establishment
may contribute to the observed sex differences in DNA methylation in response to toxicant
exposures. Additional mechanistic studies are necessary to address this question.

4.4. Sex Differences in the Effects of Pb Exposure on the Heart

In this work, we discovered that the effects of gestational and lactational Pb exposure
on the heart are sex-specific. Specifically, we observed few DMCs/DMRs that overlapped
directly between males and females, and a minority of DMC/DMR-associated genes were
found to be in common between sexes. This is consistent with our previous findings for
DEHP exposed heart, as well as lead-exposed liver [8,24]. Genome-wide and site-specific
changes in cardiac DNA methylation have been reported for other environmental expo-
sures, but studies thus far have largely focused on males [7,86]. Notably, although the
epigenetic mechanisms underlying sex differences in CVD are unclear, sexually dimorphic
patterns of DNA methylation are associated with various CVDs [87]. Thus, sex-specific
perturbations in DNA methylation might differentially affect susceptibility to adverse
cardiovascular outcomes after perinatal exposure to Pb. Among the small number of
DMRs that overlapped between sexes, we identified several associated with cardiovascular
disease, leading us to hypothesize that these genes may be similarly de-regulated by Pb
exposure in both sexes. However, Galnt2 was the only sex-independent gene investigated
that exhibited significant changes in expression and DNA methylation, and altered expres-
sion occurred in females but not males. As the locations of the DMRs within each of the
genes differed between males and females, differential effects on gene expression are not
surprising. Several sex-specific DMR-associated genes also exhibited significant changes
in expression concomitant with differential methylation. Collectively, these data suggest
that sex had a profound effect on Pb-induced changes in DNA methylation. As only a
minority of studies in cardiovascular epigenetics stratify data by sex [88], in spite of clear
sex differences in CVD, our work highlights the necessity of considering sex as a biological
variable in cardiovascular environmental health studies.

4.5. Limitations of the Study

Although our findings have important implications for cardiovascular environmental
health, there are several limitations to this study. First, because we did not measure the
level of Pb in the heart at 5 months of age, we cannot rule out the possibility that there may
still be Pb present in the hearts at this time point. However, the majority of Pb is stored
in bone, with a relatively small quantity absorbed into soft tissues [89,90]. Moreover, the
turnover of Pb is far more rapid in soft tissues compared to bone [89,90]. Although Pb is
released from bone during pregnancy and age-related bone loss, the animals examined
in this study did not experience pregnancy or old age [91,92]. Thus, in the absence of
Pb exposure for over 4 months, we would expect minimal residual Pb in the hearts of
adult animals. Whether Pb remains in the body after early developmental exposure or
not, our data suggest that Pb exposure during early life causes epigenetic changes that
may have important implications for health across the life course. A second limitation
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to this study is the use of the ERRBS method, which is designed to enrich for CpG-rich
regions of the genome. Because of this bias, it is plausible that other regions of biological
significance in the genome were altered by Pb exposure but were not detected using this
method. In addition, this method uses a traditional bisulfite conversion protocol, which
does not permit us to discriminate between 5mC and 5hmC. Thus, some of the changes in
DNA methylation may reflect changes in 5hmC rather than 5mC. Importantly, 5hmC is also
present in the heart and is important for cardiac development and disease [93,94]. Studies
to investigate the effects of Pb exposure on other epigenetic modifications, including 5hmC,
are warranted.

5. Conclusions

In conclusion, we have demonstrated, for the first time, that Pb exposure during
early development leads to changes in DNA methylation in adulthood that are strongly
dependent on sex. This work adds to a growing body of evidence linking the early
developmental environment to epigenetic changes in the cardiovascular system. It will
be of great interest to determine whether the observed changes in DNA methylation are
associated with an increased risk of CVD across the life course.
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change in methylation and FDR <0.05). Significantly hypomethylated DMRs are shown in blue, and
significantly hypermethylated DMRs are shown in green, Table S1: ERRBS QC data, Table S2: ERRBS
QC data, Table S3: DMCs in 5 month female hearts, Table S4: DMRs in 5 month male hearts, Table S5:
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in males, Table S7: Poly-Enrich pathway analysis of hypomethylated DMRs in males, Table S8:
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