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Abstract: Integration of multiple sources and data levels provides a great insight into the complex
associations between human and malaria systems. In this study, a meta-analysis framework was
developed based on a heterogeneous network model for integrating human-malaria protein similarities,
a human protein interaction network, and a Plasmodium vivax protein interaction network. An iterative
network propagation was performed on the heterogeneous network until we obtained stabilized
weights. The association scores were calculated for qualifying a novel potential human-malaria protein
association. This method provided a better performance compared to random experiments. After that,
the stabilized network was clustered into association modules. The potential association candidates
were then thoroughly analyzed by statistical enrichment analysis with protein complexes and known
drug targets. The most promising target proteins were the succinate dehydrogenase protein complex
in the human citrate (TCA) cycle pathway and the nicotinic acetylcholine receptor in the human
central nervous system. Promising associations and potential drug targets were also provided for
further studies and designs in therapeutic approaches for malaria at a systematic level. In conclusion,
this method is efficient to identify new human-malaria protein associations and can be generalized to
infer other types of association studies to further advance biomedical science.

Keywords: Plasmodium vivax; iterative network propagation; heterogeneous networks; malaria;
host-malaria interactions; network analysis

1. Introduction

Plasmodium vivax (P. vivax) is one of the five species of Plasmodium that affect humans. It is highly
prevalent in most areas in Latin America and Southeast Asia [1] and people of all ages are at risk for
this parasite [2]. P. vivax has a dormant stage in human liver, where it forms hypnozoites during its
life cycle allowing the sporozoite to survive inside the liver cells [3]. This causes no symptoms and is
undetectable in blood tests, which can cause relapse ranging from weeks to years after the infection.
P. vivax is a cause of morbidity and mortality in young infants who are infected with the malarial
parasite, and is also associated with a high risk of severe anemia in the young infants [4]. Moreover,
infection with P. vivax during pregnancy increases the risk for miscarriage and reduced birth weight [5].

The method of treating vivax malaria is to cure at the blood infection stage by eradicating
hypnozoites from the liver to prevent relapses. Artemisinin-based combination therapy (ACT) is
found to be highly effective against P. vivax malaria [6,7]. Therefore, ACTs have been used to treat
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the blood stage of all malaria. Specifically to vivax malaria, chloroquine is an effective treatment
in many areas but the resistance of P. vivax to chloroquine frequently arises with the highest risk
in Indonesia [8]. With signs of artemisinin resistance emerging, strong gains were made through
combinations such as artemisinin-combination therapies (ACTs), a process of combining artemisinin
with a partner to combat resistance.

For treating the liver stage of infection, primaquine is used for preventing relapse. However,
primaquine can destroy red blood cells in people with a hereditary deficiency of the glucose-6-phosphate-
dehydrogenase enzyme (G6PD). Therefore, primaquine was avoided in areas where the population
commonly have this deficiency [9]. This safety concern resulted in impeded widespread use of primaquine.
In addition, the optimum duration of treatment and best partner drug are uncertain [10]. It was found
that the periodical relapse of tropical stains of P. vivax requires a higher primaquine dose for radical cure
than for the strains found in other places [11].

Recently, a new radical drug cure, tafenoquine, has become available as a single dose. Single-dose
tafenoquine resulted in a significantly low risk of P. vivax recurrence as compared with a placebo in
patients with normal G6PD activity [12]. However, tafenoquine can cause hemolysis in patients with
G6PD deficiency. Therefore, G6PD diagnostic testing is still recommended to determine eligibility for
tafenoquine use [12–14].

Enhancing the radical drug cure with the potential to significantly reduce relapse infection and
drug resistance is a challenging task. To accomplish this task, we need to better understand malaria’s
ability to evade the human immune system and recruit host responses to regulate its life cycle. These
processes lead to malaria to acclimatize to the host environment. Therefore, the understanding of
vivax malaria and human protein interactions within the human host during infections is important
to develop strategies to cure this infectious disease. Several studies have increasingly lead to the
perception that interactions between P. vivax proteins and host factors are essential to establish the
infection and virulence at every stages of the malaria life cycle [15]. However, maintaining a P. vivax
continuous culture in vitro is extremely difficult, resulting in major delays in developing an effective
functional malaria vaccine [16,17]. Identifying each parasite protein’s function in the complex process
of P. vivax invasion and evaluating new therapeutic agents are still the challenging tasks. Therefore,
computational methods could be employed to identify novel drug targets to develop new alternative
drugs to treat malaria.

The analysis of protein interactions has been performed for many species; especially, in humans and
bacteria [18–22]. This type of analysis is rarely found in malaria studies and almost all the analysis has
been performed on Plasmodium falciparum. The research began in 2005 with the work of LaCount et al.
in identifying P. falciparum protein-protein interactions using a high-throughput technique of the yeast
two-hybrid approach [23]. In 2012, an inhibition analysis of protein-protein interactions was performed to
find a new drug target [24]. In 2014, Liu et al. proposed a new way to predict protein interactions related to
the invasion of erythrocytes by malarial parasites [25]. Recently, the analysis of the parasite-human protein
interaction was performed on a protein target or agent having an association with a human host [26,27].
At present, Hillier et al. developed a landscape of the Plasmodium interactome to find out conserved and
species-specific functionality among various Plasmodium species [28]. Not only has some analysis of the
malaria data at the protein interaction level has been performed, but also at metabolic network level has
been performed for identifying drug targets in Plasmodium [29,30]. Note that all analyses mentioned here
were performed on Plasmodium falciparum. There is a lack of studies that analyze Plasmodium vivax with
more sophisticated computational approaches like network analysis and modeling.

In this study, we propose a novel meta-analysis framework with the use of a heterogeneous network
model by integrating protein interaction networks between humans and Plasmodium vivax parasite into
one association network, as shown in Figure 1. The full network consists of two different types of nodes:
human proteins and malaria proteins. Protein-protein relationships of humans as well as those of malaria
are constructed based on protein interaction information from the STRING database [31], Copenhagen,
Denmark; Heidelberg, Germany; Lausanne, Switzerland. Human–malaria relationships are initiated
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based on protein sequence similarities. The filtering of novel human-malaria protein association is thus
formulated as a prioritization problem of human-malaria protein pairs on this heterogeneous network.
An iterative updating algorithm that propagates information across the network is then applied to score
the existing edges and to fill the missing edges until a stabilized network is obtained. All proteins on
this stabilized network are then clustered into association modules. Each module is then examined for
enrichment in protein complexes and drug target information from the existing databases CORUM [32]
(München, Germany) and DrugBank [33] (Edmonton, Alberta, Canada), respectively. Our meta-analysis
framework with the use of the heterogeneous network automatically incorporates protein interactions and
sequence similarities into human-malaria protein association prioritization. After that, cluster analysis
filtering is applied, and the pathway enrichment is performed. Thus, some promising associations are
found and reported with protein complexes and drug target associations.
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Figure 1. The meta-analysis framework with the use of a heterogeneous network model for inferring
human-malaria protein associations.

2. Results

2.1. Initial and Stabilized Heterogeneous Networks

We obtained 1787 Plasmodium vivax malaria proteins and 12,038 human proteins which have at
least an edge connecting between the same type of proteins. Among malaria proteins, there were
11,477 connections with high confidence scores of reliable protein interactions; while for human proteins,
there were 313,359 protein interactions with the same criteria. With the number of obtained malaria
and human proteins in their own interaction networks, there were 21,511,906 possible connections
between these two types of protein nodes. Since the true connections across these two species are
quite rare and yet to be determined, the initial connections among these two types of nodes were
determined by protein homologs with the protein sequence similarities. All P. vivax protein sequences
were searched against all human protein sequences. Consequently, we assumed 9525 links between
malaria proteins and human proteins, and we could firstly establish a two-layer heterogeneous network
consisting of malaria protein pairs, human protein pairs, and human-malaria protein pairs, which were
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obtained from malaria protein interactions, human protein interactions, and human-malaria protein
similarities, respectively. However, the network at the initial state is unlikely to comprise all possible
true associations as there are some missing edges and overweighed edges for the human-malaria
protein associations. Thus, further analysis was required to iteratively update the edge weights from
the initial state until the network is stabilized. To see an overview of all networks, Table 1 represents
the number of nodes and edges, and the properties of human protein interaction, malaria protein
interaction, and the heterogeneous networks with initial human-malaria proteins connections and after
the network propagation until it stabilized.

Table 1. Network properties.

Properties Human Network Malaria Network
Initial State

Heterogeneous
Network

Stabilized
Heterogeneous

Network

Nodes 12,038 1787 13,825 13,825
Edges 313,359 11,477 334,361 6,422,644

Average degree 52.06 12.84 48.37 929.14

Transitivity 0.63 0.58 0.56 0.26
Eccentricity 9.45 9.83 9.56 4.72

Diameter 4.36 3.10 6.00 19.00

Notice that, in Table 1, there were 21,511,906 pairs of human and malaria proteins (12,038 human
proteins × 1787 malaria proteins). It is quite a high number, and our final stabilized network could filter
approximately 28% out of the total pairs, which were 6,422,644 − (313,359 + 11,477) = 6,097,808 pairs.
Next, our framework qualified this list with the clustering analysis with protein complexes and known
drug targets. Finally, in total, 14,844 human-malaria protein pairs were selected and discussed later in
the other sections.

Comparing the structures of the human network and malaria network separately, we found that
their degree distributions were significantly different with t-test (p-value less than 2.2 × 10−16) as
shown in Figure 2a. These two networks follow the power-law distribution, which means the networks
have many low-degree nodes and small numbers of high-degree nodes. As expected, the malaria
network comprises a greater number of low-degree nodes compared to the human network. Average
degree of the malaria network was thus less than that of the human network with the values of 12.84
and 52.06, respectively. Figure 2b shows the change in degree distributions of initial and stabilized
heterogeneous network. The degree distribution of the initial heterogeneous network also follows the
power law distribution, while that of the stabilized network diverges from the power-law distribution
and displays a higher density in the network—as expected since there are many more edges connecting
two types of nodes which were recovered by the network propagation algorithm. Biologically, protein
similarities between humans and malaria reflect homologs and infer to be responsible for the same
cellular functions. However, to survive and take advantage of the human host, these homologous
proteins in malaria might be a connection to regulate the other important genes in humans to maintain
their lives in the host. Therefore, the interacting proteins to these homologs could be able to interact or
even work together to maintain the development functions as well. Note that after performing the
network propagation, the stabilized network might contain all possible links. However, all these links
had their own weights of confident associations between human and malaria proteins. The higher the
obtained weight of the link; the more the confidence of the associations was rated. Therefore, our final
stabilized network was obtained when we set the cutoff threshold of the weight that yielded the best
performance to obtain human-malaria protein association. After that, these resulting human-malaria
protein pairs were clustered and evaluated by further analyses with protein complexes and drug targets.
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2.2. Performance in Identifying Human-Malaria Protein Associations

To determine the performance of the framework algorithm, we performed ten times ten-fold
cross-validations to evaluate the performance in terms of accuracy of the heterogeneous network filtering
(more detailed in Section 4). All human proteins were randomly partitioned into ten parts. For each part,
we removed weights of all human-malaria protein connections whose human proteins were in the
discarded part. After that, the remaining human-malaria protein pairs were used to recalculate their edge
weights by the iteratively updated method. When the stabilized network was obtained, the weights of
the removed human-malaria protein pairs were collected as their association scores and then compared
with their sequence homology search results. The different thresholding on association scores for filtering
the list of the possible associations was performed. Then, the standard true-positive rate against the
false-positive rate was measured as a receiver operating characteristic (ROC) curve and the area under
the curve (AUC). The average performance of these ten-time cross-validations was calculated to get the
overall accuracy of the filtering. Based on the propagation algorithm to obtain a stabilized network,
there was an important factor known as a decay factor (α) to diffuse the initial weights of human-malaria
proteins to the other missing edges. Thus, the performance was measured for all possible values of
parameter α from 0.1 to 0.9 in steps of 0.1, as shown in Figure 3. Notice that the performance gradually
declined when the value of αwas increased. The best performance was found at the low alpha parameter
(α = 0.1) with an area under the ROC curve of 0.74.
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By maximizing the sensitivity and specificity of the best performance curve (α = 0.1), the best weight
cutoff to determine whether a connection should be defined or not was found at 0.0003. If an association
score of a connection is greater than this cutoff value, the connection is established. With this criterion,
we yielded the sensitivity of 0.75 and specificity of 0.60. This resulted in 6,097,808 obtained human-malaria
protein pairs (28.34% out of all possible pairs) for our stabilized heterogeneous network.

To demonstrate the advantage of the protein interaction networks, we further performed a test
by creating many random networks, where the protein’s labels of the human network and those of
the malaria network were randomly shuffled when maintaining the networks’ structures as their
original structures since the edges were not changed. The network propagation algorithm was then
applied to these random networks using the same initial human-malaria protein associations derived
from the sequence similarity searches. The random experiments were repeated three times. For each
repetition, we conducted the same procedures of the performance evaluations. With the optimal
alpha values of 0.1, we obtained the best performance of the AUC from all experiments of 0.55, which
showed very low performance. This indicates that the information of both human and malaria protein
interaction networks is crucial and useful information for inferring human-malaria protein associations
from the heterogeneous network and the network propagation algorithm.

2.3. Association Modules and Protein Complexes on the Heterogeneous Network

The stabilized heterogeneous network with human and malaria protein interaction network was
then clustered to find modules of dense connections using the ClusterONE algorithm [34]. With this
clustering algorithm, we obtained 970 module clusters (as provided in Supplementary Table S1). To select
only core clusters, we examined whether the human proteins in each cluster were overrepresented in
protein complexes. To achieve this purpose, we employed protein complex data from the CORUM
database [32], München, Germany. The enrichment test was performed for every network module.
Approximately 387 clusters were found to be formed as a protein complex with the Benjamini-Hochberg
corrected p-values of their enrichment tests < 0.01 (The list of Cluster ID, sets of enriched protein
complexes, and their p-values can be found in Supplementary Table S2). Note that some groups of
proteins, known as our network modules, were enriched for more than one group of protein complexes.

For each module cluster in which their human proteins were enriched in protein complexes,
the associations between human proteins and malaria proteins in the clusters were collected. Note
that some clusters have either only human proteins or only malaria proteins. However, this study
aimed to select more reliable human-malaria protein associations. Therefore, only module clusters
containing both types of proteins and their retrieved associations were selected. We then obtained
1,050,701 human-malaria protein associations from all clusters, as reported in Supplementary Table S3.
With these 1,050,701 associations from all clusters, there are totally 497,815 unique associations. This is
the first established list of potential human-malaria protein associations to be further analyzed and
tested either computationally or experimentally and to be collected in a database. Furthermore, with
this data set, we can then choose the top list of the associations by varying the association scores for
further analyses of our interest. In this study, we qualified this list further with potential drug targets
to cure the Plasmodium vivax malaria.

2.4. Identification of Potential Drug Targets in Humans to Treat Malaria

To identify potential drug targets from the resulting human-malaria protein associations, the association
modules or clusters that were protein complexes were then analyzed for known drug targets. From 387 clusters
enriched with protein complexes, we found 24 clusters enriched in drug targets (reported in Supplementary
Table S4). Out of these clusters, there were 7 clusters that also contained malaria proteins, with the rest
of the clusters having only human proteins. All seven clusters—with their Cluster IDs, the number of
human-malaria protein associations, the number of known drug targets, the number of unknown drug
targets, and the ratio of known drug targets—are shown in Table 2, where a star (*) marks the clusters
that have the ratio of human proteins that were known drug targets to all human proteins in the cluster of
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more than 0.6. With these clusters, 41,549 human-malaria protein associations were found (Supplementary
Table S5). With 41,549 associations from all clusters, there are totally 41,477 unique associations, of which
14,844 are pairs whose human protein is a known target for an approved drug in the DrugBank database,
Edmonton, Alberta, Canada. The list of proteins and the cluster pictures for these seven clusters can be found
in Supplementary Table S6 and Supplementary Figure S7, respectively.

Interestingly, Clusters c1015 and c1073 obtained a high ratio of known drug targets in humans,
as shown in Table 2 and Figure 4. Cluster c1015 contains five malaria proteins associated with five
human proteins that were all known drug targets; while Cluster c1073 contains only a malaria protein
(PVX_098735) associating to sixteen human proteins, fifteen of which are known drug targets. These
two were qualified more for their related functions and associated drugs with pathway enrichment
analysis and drug-target associations.
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Table 2. The list of 7 clusters enriched in drug targets.

Cluster ID The Number of
Association Pairs

The Number of Known
Drug Targets

The Number of Proteins Not
Annotated as Drug Targets

The Ratio of Known
Drug Targets

The Number of
P. vivax Proteins

c1015 * 19 5 0 1.00 5
c1073 * 16 15 1 0.94 1
c1149 35,771 92 201 0.31 166
c1168 5373 56 50 0.53 66

c1185 * 88 13 5 0.72 7
c1199 * 256 15 10 0.60 11
c1208 26 6 7 0.46 2

* Clusters whose ratio of human proteins that were known drug targets to all human proteins in the cluster > 0.6.
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consists of 19 associations of five human proteins (SUCLG1, SDHA, SDHB, SDHC, and SDHD) and five
malaria proteins (PVX_096130, PVX_123265, PVX_003675, PVX_113540, and PVX_003575). (b) Cluster
c1073 consists of 16 associations of sixteen human proteins and only one malaria protein (PVX_098735).

2.4.1. Potential Targets of Succinate Dehydrogenase Complex

Succinate dehydrogenase complex is an enzyme complex, which we found in Cluster c1015 (see
Figure 4a). All human proteins in this cluster were known to be drug targets and there were 19 associations
of these five human proteins (SUCLG1, SDHA, SDHB, SDHC, and SDHD) and five malaria proteins
(PVX_096130, PVX_123265, PVX_003675, PVX_113540, and PVX_003575). This enzyme complex can be
found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only
enzyme that participates in both the citric acid cycle and the electron transport chain [35]. It consists of
four subunits (named A to D) encoded by the nuclear genome. Sequence analysis of the flavoprotein
(Fp) subunit of SDHA and iron-sulfur (Ip) of SDHB were reported to show unique features of the
catalytic subunit in Plasmodium complex II [36]. We did not find any evidence in scientific literature
for an association between SDHC, SDHD, and SUCLG1 to Plasmodium. This is the first computational
approach to qualify the possibility of these associations among human and P. vivax malaria proteins.
Thus, succinate dehydrogenase complex would be a great target for curing this type of malaria.

These five human proteins were further investigated for the pathways they were involved in.
We found 9 related pathways. Obviously, there is only citrate (TCA) cycle pathway in which all these
five proteins were present. It was reported that mitochondrial metabolic plasticity is essential for
parasite development. P. falciparum has significant flexibility in its TCA metabolism [37]. The other
enriched pathways are shown in Table 3. Furthermore, we investigated the five P. vivax proteins
and found that they were enriched in the ubiquinone and other terpenoid-quinone biosynthesis with
a p-value of 8.1 × 10−6.

Table 3. The list of pathways enriched with five promising human proteins in Cluster c1015.

Pathway ID Pathway Name p-Value (Benjamini–Hochberg Correction)

hsa00020 Citrate cycle (TCA cycle) 1.93 × 10−10

hsa01200 Carbon metabolism 1.13 × 10−7

hsa00190 Oxidative phosphorylation 4.12 × 10−5

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 4.12 × 10−5

hsa05012 Parkinson disease 4.12 × 10−5

hsa05010 Alzheimer disease 5.84 × 10−5

hsa05016 Huntington disease 8.33 × 10−5

hsa04714 Thermogenesis 0.000147
hsa01100 Metabolic pathways 0.008858
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To find drugs that were related to these five proteins, we used the drug information from
DrugBank [33] (Edmonton, Alberta, Canada) and the results are shown in Table 4. In total, these five
proteins were related to four drugs—consisting of DB00139, DB04657, DB09270, and DB00756—which
are small molecule drugs. For clinical trials, DB00139 has been used for treating unspecified adult solid
tumor (protocol specific) (phase 1), postpartum anemia (phase 1, 2), anemias (phase 4), and for preventing
cognitive dysfunctions (phase 3). DB04657 or Carboxin is used for targeting succinate dehydrogenase
(ubiquinone) flavoprotein subunit, mitochondrial in humans; at present, there are no clinical trials for
this drug [33]. DB09270 or Ubidecarenone is called coenzyme Q10 and is a powerful antioxidant [38].
The ubidecarenone is a coenzyme related to mitochondrial enzyme complexes and involved in oxidative
phosphorylation in the production of ATP, which is sold as a dietary supplement and is not FDA approved
as a drug, however, it is recommended to be used under discretion. For pharmacology, coenzyme
Q10 was studied to use for treating of several diseases, e.g., Parkinson’s [39], fibromyalgia [40,41],
migraine [42,43], and periodontal disease [44,45]. DB00756 or Hexachlorophene is a bacteriostatic
cleansing agent. In clinical trials, it was used for treating human immunodeficiency virus infections and
infection caused by staphylococci, acne vulgaris (phase 3), dental pain (phase2), and used for preventing
methicillin-resistant staphylococcus aureus skin infections [33]. The complete list of these five proteins
with their associated drugs and drug descriptions is provided in Supplementary Table S8.

Table 4. The list of drug names involved with the five promising human proteins in Cluster c1015.

Human
Proteins UniProt ID UniProt Name DrugBank

ID Drug Name Associated
Condition

SDHA P31040
Succinate dehydrogenase
[ubiquinone] flavoprotein

subunit, mitochondrial
DB00139 Succinic acid

Dietary and
Nutritional
Therapies

SDHA P31040
Succinate dehydrogenase
[ubiquinone] flavoprotein

subunit, mitochondrial
DB04657 Carboxin Not Available

SDHA P31040
Succinate dehydrogenase
[ubiquinone] flavoprotein

subunit, mitochondrial
DB09270 Ubidecarenone Migraine

SDHB P21912
Succinate dehydrogenase
[ubiquinone] iron-sulfur
subunit, mitochondrial

DB00139 Succinic acid
Dietary and
Nutritional
Therapies

SDHC Q99643
Succinate dehydrogenase
cytochrome b560 subunit,

mitochondrial
DB00139 Succinic acid

Dietary and
Nutritional
Therapies

SDHD O14521
Succinate dehydrogenase

[ubiquinone] cytochrome b
small subunit, mitochondrial

DB00139 Succinic acid
Dietary and
Nutritional
Therapies

SDHD O14521
Succinate dehydrogenase

[ubiquinone] cytochrome b
small subunit, mitochondrial

DB00756 Hexachlorophene Bacterial
Infections

SUCLG1 P53597

Succinyl-CoA ligase
[ADP/GDP-forming]

subunit alpha,
mitochondrial

DB00139 Succinic acid
Dietary and
Nutritional
Therapies

2.4.2. Potential Targets of Nicotinic Acetylcholine Receptor

Cluster c1073 contains only one malaria protein (PVX_098735) and sixteen human proteins
(CHRNA1, CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNA9, CHRNB1, CHRNB2,
CHRNB3, CHRNB4, CHRND, CHRNE, CHRNG, and RIMS2), which are all involved in neurological
functions in humans, especially as subunits of nicotinic acetylcholine receptor. PVX_098735 is
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a coatomer subunit beta, which is part of a coatomer complex required for budding from Golgi
membranes and for the transportation of dilysine-tagged proteins [46]. It is known that malaria can
lead to acute or long-term neurological deficits that cause vascular obstruction and reduce cerebral
blood flow [47]. There was an interesting study of Gisselmann et al. [48] on the effects of well-known
anti-malaria drugs like Quinine and its derivatives to human nicotinic acetylcholine receptors. Their
results showed the effects of the quinolone derivatives quinine, quinidine, and chloroquine on human
adult and fetal muscle nicotinic acetylcholine receptors and revealed that the clinically proven efficacy
of quinine could be based on targeting nicotinic acetylcholine receptors. It might be possible that
nicotinic acetylcholine receptors are related to malaria mechanisms in humans. With our framework
analysis, we have found this human receptor related to a protein of P. vivax. It could be a good hint for
further drug development in this direction. Thus, further analysis with pathway enrichments reveals
that neuroactive ligand-receptor interaction, cholinergic synapse and nicotine addiction are highly
overrepresented among these sixteen human proteins.

Fifteen of these proteins were known to be targets for existing drugs from DrugBank [33]
(Edmonton, Alberta, Canada), and only the protein RIMS2 has no drug yet. In total, these fifteen
proteins were related to 58 approved drugs, which are widely used to treat various symptoms of many
diseases. The list of these fifteen proteins with their associated drugs and drug descriptions is provided
in Supplementary Table S9.

3. Discussion

The meta-analysis framework for identifying human-malaria protein associations is proposed in
this article. This framework started at the construction of a two-layer heterogeneous network in which
the first layer was the human protein interaction network and the second layer was the Plasmodium
vivax malaria protein interaction network. The connections of human proteins and malaria proteins
was then derived from human-malaria protein similarities. The structures of this heterogeneous
network had a power-law degree distribution which means this network has a small number of
high-degree nodes and a large number of low-degree nodes. In general, all edges in the network
were weighted initially by their protein interaction scores. After that, the network information
propagation was performed by an iterative approach for renewing edge weights until the network was
stabilized. To measure the performance of the iterative algorithm, we performed ten times ten-fold
cross-validations. Association scores for human-malaria protein pairs were determined from the
average weights after the stabilization from all repetitions. Comparing these scores to the original
defined scores of only human-malaria protein pairs, the ROC curve yielded an accuracy of 74% with
the optimal parameters. With these experiments, we obtained the optimal parameter and used it for
the final model and then performed the association filtering by the heterogeneous network. There
were approximately 6,097,808 (28%) of all possible human-malaria protein pairs firstly filtered as those
likely to be human-malaria protein associations.

Since the number of the first filtered associations were quite high at more than 6 million pairs,
the clustering algorithm for detecting similar modules whose human proteins might form protein
complexes were then applied, and each resulting module was tested for the enrichment of known sets of
protein complexes (see Supplementary Table S10). Only modules containing both human and malaria
proteins and their connections were selected. Thus, after this procedure, 497,815 human-malaria
protein associations were reported and examined further with a set of known drug targets. Finally,
in total, 14,844 human-malaria protein pairs were selected from the 24 clusters enriched with known
drug targets and we found 7 clusters presenting both human proteins and P. vivax proteins. These pairs
were proposed as our potential associations between human and P. vivax proteins. We investigated
human proteins for P. vivax malaria-related phenotypes by manual literature curation and OMIM
search. We found 11 human proteins consisting of ACKR1, CD36, CISH, CR1, FCGR2B, HBB, ICAM1,
NOS2, SLC4A1, TIRAP, and TNF. Unfortunately, these 11 human proteins were not presented in
the filtered 7 clusters. This might be because they are not part of any protein complexes we found.
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However, we investigated the association scores of these proteins to P. vivax proteins and found that
these scores were significantly higher than the scores of the rest associations (p-value < 2.2 × 10−16).
This result presented the significance of our association scores to the relationship between known
human related proteins and P. vivax proteins.

Interestingly, for our potential associations, we found a cluster containing mostly human proteins
of succinate dehydrogenase complex, and all the human proteins in this clusters were known drug
targets for the treatment of several diseases. In addition, we found the nicotinic acetylcholine receptor,
which is important for regulation of synaptic transmission and synaptic plasticity as well as signal
transmission for sympathetic and parasympathetic systems in the human central nervous system.
These were promising target candidates for drug repurposing in curing malaria as well.

4. Materials and Methods

4.1. Datasets

With our meta-analysis framework (Figure 1), we employed various information from different
data sources. All pairwise protein-protein interactions were then selected with high confidence scores.
Initial human-malaria protein associations were obtained from sequence similarities. The datasets in
this framework are explained as follows.

4.1.1. Protein Interaction Information

We first downloaded protein interaction information of human and Plasmodium vivax malaria from
String database version 11 [31], Copenhagen, Denmark; Heidelberg, Germany; Lausanne, Switzerland.
To construct its own protein-protein interaction network of each organism, protein nodes were
connected when their interaction confidence scores were greater than a threshold of 0.9. For Plasmodium
vivax proteins, interaction information on gene products encoded in the genome was obtained from
this database as well. All their gene identifiers and symbols were mapped using the information
dataset from the NCBI database, Bethesda, Maryland, United States.

4.1.2. Protein Sequence Similarity Information

The total of 5392 protein sequences of Plasmodium vivax at all developmental stages were retrieved
from KEGG databases [49,50], Tokyo, Japan. These protein sequences were searched against all human
protein sequences from NCBI database via BlastP, Bethesda, Maryland, United States, with E-value
less than 0.00001. The list of similar human proteins for each malaria protein was obtained and
simultaneously transformed into known homologous human-malaria protein pairs. The weights of
these similar human-malaria protein pairs were then initially defined as 1 and the dissimilarity pairs
were set as 0. These weights were used as initial weights for the iterative propagation processes. Finally,
a total of 1787 malaria proteins and 12,038 human proteins which have at least one connection across
species were selected to construct the heterogeneous network. Consequently, an overall 9525 possible
human-malaria protein pairs were known as initial human-malaria protein associations in the network.

4.1.3. Protein Complex and Drug Target Information

Protein complexes were downloaded and extracted from CORUM database [32], München,
Germany. To find proteins that are associated with diseases and importantly interactive for drugs,
the drug and target information were obtained from the DrugBank database (version 5.1.2) [33],
Edmonton, Alberta, Canada. Only approved drugs and their targets were selected. In total, there
were 83.61% (2158) of all drug targets in this database found to be human proteins, 7.17% (185)
drug targets were Escherichia coli proteins, and the remaining 9.22% (238) of drug targets were other
organism proteins. In this study, the human drug targets were used to identify potential drug targets
in Plasmodium vivax.
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4.2. Heterogeneous Network Model for Human-Malaria Protein Association

A heterogeneous network usually consists of various networks and links between nodes on
different networks [51]. In this work, the heterogeneous network was constructed based on the
conjunction between a human protein interaction network and Plasmodium vivax malaria protein
network by protein sequence similarities. Thus, the construction of the network is explained as follows.

Let H = {h1, h2, h3, . . . , hn} denote the n human protein nodes and Ehh denote edges between
human proteins in the human protein interaction network Gh = (H, Ehh, Whh), where Whh is its
edge weights, which represent the protein interaction confidence scores from String database [31],
Copenhagen, Denmark; Heidelberg, Germany; Lausanne, Switzerland. Similarly, the Plasmodium vivax
malaria protein network is Gp = (P, Epp, Wpp), where P =

{
p1, p2, p3, . . . , pm

}
denotes the m Plasmodium

vivax protein nodes, Epp denotes edges between malaria proteins, and Wpp denotes its edge weights.
The connections between human proteins and malaria proteins are denoted as Ehp, which are edges

of similar human-malaria protein pairs via BlastP search at NCBI, Bethesda, Maryland, United States.
The weights on all these similar human-malaria protein pairs are initially assigned 1 and denoted by Whp.

Finally, our heterogeneous network for our human-malaria protein association prioritization is
represented as a graph:

Ghp =
(
Gh ∪Gp, Ehp, Whp

)
or

Ghp =
(
{H, P}, E =

{
Ehh, Epp, Ehp

}
, W =

{
Whh, Wpp, Whp

})
This network model is well-known as a two-layer heterogeneous network model developed for

drug target prediction [51]. Notice that this Ghp has an incomplete graph with missing association
edges between human and malaria proteins. To infer more association edges, the network propagation
algorithm is then applied as explained in the next subsection.

4.3. Network Propagation Algorithm

As we have considered, this Ghp is an incomplete graph with missing edges between human
and malaria proteins. To find the hidden associations, we aimed to obtain new Ehp and new Whp by
employing the Heterogeneous Graph Based Inference (HGBI) algorithm [51], Manhattan, New York,
United States. The HGBI is an iterative algorithm on a heterogeneous graph. Originally, the concept of
this algorithm is based on the guilt-by-association principle [52,53] to infer new drug targets through
existing relationships between similar drugs and similar targets. We employed this algorithm to find
new potential associations between human and malaria proteins. The algorithm calculated updated
weights by

w(hi, p j) =
∑
u∈H

∑
v∈P

w(hi, u) ·w(u, v) ·w(p j, v) (1)

where w(a, b) is a weight between nodes a and b. This equation means that we can establish a new
weight between a human-malaria protein pair by summarizing all paths over the three types of edges.
This formulation is guaranteed to converge if the Whh and Wpp are properly normalized [51] by

w(hi, h j) =
w(hi, h j)√

m∑
k=1

w(hi, hk)
m∑

k=1
w(hk, h j)

and

w(pi, p j) =
w(pi, p j)√

m∑
k=1

w(pi, pk)
m∑

k=1
w(pk, p j)



Int. J. Mol. Sci. 2020, 21, 1310 14 of 18

When the algorithm converges after some iterations, the information propagation is stabilized.
Equation (1) can be formulated to a proper normalized matrix form as

Wi+1
hp = α(Whh ×Wi

hp ×Wpp) + (1− α)W0
hp (2)

where α is a decay factor with its value between 0 and 1. In Equation (2), W0
hp is an initial weight matrix

that we obtained from a sequence similarity search between human and malaria proteins.

4.4. Performance Measurement

To determine the performance of the algorithm, ten times ten-fold cross-validations were performed
to evaluate the accuracy of the filtering by the heterogeneous network. The human proteins were
randomly partitioned into ten parts. For each iteration, we hid weights of all human-malaria protein
pairs in which their human proteins were included in the current part by setting the weights as zero,
and the remaining pairs were used to recalculate the edge weights. When the iterative algorithm
finished, the weights of the held-out human-malaria connections were collected. AUC or the area
under the receiver operating characteristic (ROC) curve was used to measure the filtering performance.
This scenario was performed ten times to obtain the average performance. In addition, the algorithm
was performed with different parameter values α = 0.1, 0.2, 0.3, . . . , 0.9. We define the weight cutoff to
determine whether a connection should be defined or not by maximizing the sensitivity and specificity.
If a weight of a connection is greater than this cutoff value, the connection is established.

4.5. Association Module Clustering Algorithm

All obtained associations from the stabilized heterogeneous network integrated with known
interactions from human protein interactions and P. vivax protein interactions were used to cluster
proteins into groups via the ClusterONE algorithm [34], Egham Hill, Egham, United Kingdom.
This algorithm is developed to introduce clustering methods based on overlapping neighborhood
expansion for detecting potentially overlapping protein complexes from protein-protein interaction
data. This algorithm consists of three steps. First, starting from a single seed vertex, vertices were
added or removed to find groups by a greedy procedure to obtain high cohesiveness. The growth
process is repeated from different seeds. Secondly, the extension of the overlapping between groups is
quantified. The last step is to discard some complex candidates that contain less than three proteins or
whose density is less than the threshold. We set the parameters for this algorithm with a minimal size of
3 and the node penalty of 2. The algorithm used single-pass merging method with a match coefficient
similarity, and the overlap threshold was set as 0.8. Finally, we obtained 970 clusters, as shown in
Supplementary Table S1.

4.6. Enrichment Test

Enrichment analysis was performed several times in this study. After the graph clustering,
each of the human protein clusters were examined with the set of protein complexes and with the
targets of the approved drugs. In addition, this was done to find pathways that our promising targets
were enriched for. This enrichment test was performed using the one-sided Fisher’s exact test, and
the obtained p-values were adjusted by Benjamini-Hochberg method for multiple-testing correction.
The significance level cutoff of the adjusted p-values was set at 0.01. The clusters whose p-values were
lower than the significance level were defined as enriched with either the protein complexes or the
drug targets.

5. Conclusions

In conclusion, the use of a heterogeneous network provides us an opportunity to integrate various
information into one graph and to discover the strength of relationships across different types of nodes,
especially in our case between human host and malaria parasites. To quantify the direct interactions
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or associations between these two species is a complex and challenging task in wet-lab experiments.
Computational identification of novel potential associations based on the heterogeneous network and
the module clustering proposed in this study could serve as a challenging framework to prioritize and
predict some human-malaria protein associations in advance. Thus, it helps us to better understand the
complex interaction systems between host and parasite for prevention and treatment in the near future.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/4/1310/
s1.

Author Contributions: Conceptualization, A.S. and K.P.; formal analysis, A.S. and K.P.; funding acquisition, A.S.;
methodology, A.S. and K.P.; writing—original draft, A.S.; writing—review and editing, A.S. and K.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by King Mongkut’s University of Technology North Bangkok. Contract
no. KMUTNB-61-GOV-B-24.

Acknowledgments: We acknowledge National e-Science Infrastructure Consortium (http://www.e-science.in.th)
for providing computing resources that have contributed to the research results reported within this paper. We also
would like to thank William Lao, the University of New South Wales, Australia, for his constructive reviews.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Menkin-Smith, L.; Winders, W.T. Malaria (Plasmodium Vivax); StatPearls: Treasure Island, FL, USA, 2019.
2. Mendis, K.; Sina, B.J.; Marchesini, P.; Carter, R. The neglected burden of Plasmodium vivax malaria. Am. J.

Trop. Med. Hyg. 2001, 64 (1–2 Suppl), 97–106. [CrossRef] [PubMed]
3. Vogel, G. The forgotten malaria. Science 2013, 342, 684–687. [CrossRef] [PubMed]
4. Poespoprodjo, J.R.; Fobia, W.; Kenangalem, E.; Lampah, D.A.; Hasanuddin, A.; Warikar, N.; Sugiarto, P.;

Tjitra, E.; Anstey, N.M.; Price, R.N. Vivax malaria: A major cause of morbidity in early infancy. Clin. Infect.
Dis. 2009, 48, 1704–1712. [CrossRef] [PubMed]

5. Nosten, F.; McGready, R.; Simpson, J.A.; Thwai, K.L.; Balkan, S.; Cho, T.; Hkirijaroen, L.; Looareesuwan, S.;
White, N.J. Effects of Plasmodium vivax malaria in pregnancy. Lancet 1999, 354, 546–549. [CrossRef]

6. Valecha, N.; Srivastava, B.; Dubhashi, N.G.; Rao, B.H.; Kumar, A.; Ghosh, S.K.; Singh, J.P.; Kiechel, J.R.;
Sharma, B.; Jullien, V.; et al. Safety, efficacy and population pharmacokinetics of fixed-dose combination of
artesunate-mefloquine in the treatment of acute uncomplicated Plasmodium falciparum malaria in India.
J. Vector Borne Dis. 2013, 50, 258–264.

7. Naing, C.; Racloz, V.; Whittaker, M.A.; Aung, K.; Reid, S.A.; Mak, J.W.; Tanner, M. Efficacy and safety
of dihydroartemisinin-piperaquine for treatment of Plasmodium vivax malaria in endemic countries:
meta-analysis of randomized controlled studies. PLoS ONE 2013, 8, e78819. [CrossRef]

8. Baird, J.K. Resistance to therapies for infection by Plasmodium vivax. Clin. Microbiol. Rev. 2009, 22, 508–534.
[CrossRef]

9. Galappaththy, G.N.; Tharyan, P.; Kirubakaran, R. Primaquine for preventing relapse in people with Plasmodium
vivax malaria treated with chloroquine. Cochrane Database Syst. Rev. 2013, CD004389. [CrossRef]

10. Chu, C.S.; Phyo, A.P.; Turner, C.; Win, H.H.; Poe, N.P.; Yotyingaphiram, W.; Thinraow, S.; Wilairisak, P.;
Raksapraidee, R.; Carrara, V.I.; et al. Chloroquine Versus Dihydroartemisinin-Piperaquine With Standard
High-dose Primaquine Given Either for 7 Days or 14 Days in Plasmodium vivax Malaria. Clin. Infect. Dis.
2019, 68, 1311–1319. [CrossRef]

11. World Health Organization. Guidelines for the Treatment of Malaria, 3rd ed.; World Health Organization:
Geneva, Switzerland, 2015.

12. Lacerda, M.V.G.; Llanos-Cuentas, A.; Krudsood, S.; Lon, C.; Saunders, D.L.; Mohammed, R.; Yilma, D.;
Batista Pereira, D.; Espino, F.E.J.; Mia, R.Z.; et al. Single-Dose Tafenoquine to Prevent Relapse of Plasmodium
vivax Malaria. N. Engl. J. Med. 2019, 380, 215–228. [CrossRef]

http://www.mdpi.com/1422-0067/21/4/1310/s1
http://www.mdpi.com/1422-0067/21/4/1310/s1
http://www.e-science.in.th
http://dx.doi.org/10.4269/ajtmh.2001.64.97
http://www.ncbi.nlm.nih.gov/pubmed/11425182
http://dx.doi.org/10.1126/science.342.6159.684
http://www.ncbi.nlm.nih.gov/pubmed/24202156
http://dx.doi.org/10.1086/599041
http://www.ncbi.nlm.nih.gov/pubmed/19438395
http://dx.doi.org/10.1016/S0140-6736(98)09247-2
http://dx.doi.org/10.1371/journal.pone.0078819
http://dx.doi.org/10.1128/CMR.00008-09
http://dx.doi.org/10.1002/14651858.CD004389.pub3
http://dx.doi.org/10.1093/cid/ciy735
http://dx.doi.org/10.1056/NEJMoa1710775


Int. J. Mol. Sci. 2020, 21, 1310 16 of 18

13. Rochford, R.; Ohrt, C.; Baresel, P.C.; Campo, B.; Sampath, A.; Magill, A.J.; Tekwani, B.L.; Walker, L.A.
Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of
hemolytic toxicity. Proc. Natl. Acad. Sci. USA 2013, 110, 17486–17491. [CrossRef] [PubMed]

14. Rueangweerayut, R.; Bancone, G.; Harrell, E.J.; Beelen, A.P.; Kongpatanakul, S.; Mohrle, J.J.; Rousell, V.;
Mohamed, K.; Qureshi, A.; Narayan, S.; et al. Hemolytic Potential of Tafenoquine in Female Volunteers
Heterozygous for Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency (G6PD Mahidol Variant) versus
G6PD-Normal Volunteers. Am. J. Trop. Med. Hyg. 2017, 97, 702–711. [CrossRef] [PubMed]

15. Acharya, P.; Garg, M.; Kumar, P.; Munjal, A.; Raja, K.D. Host-Parasite Interactions in Human Malaria: Clinical
Implications of Basic Research. Front Microbio.l 2017, 8, 889. [CrossRef] [PubMed]

16. Versiani, F.G.; Almeida, M.E.; Mariuba, L.A.; Orlandi, P.P.; Nogueira, P.A. N-terminal Plasmodium vivax
merozoite surface protein-1, a potential subunit for malaria vivax vaccine. Clin. Dev. Immunol. 2013, 2013,
965841. [CrossRef]

17. Bermudez, M.; Moreno-Perez, D.A.; Arevalo-Pinzon, G.; Curtidor, H.; Patarroyo, M.A. Plasmodium vivax
in vitro continuous culture: the spoke in the wheel. Malar. J. 2018, 17, 301. [CrossRef]

18. Suratanee, A.; Plaimas, K. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to
Infer Protein-Disease Associations. Bioinform. Biol. Insights 2017, 11, 1177932217720405. [CrossRef]

19. Plaimas, K.; Eils, R.; Konig, R. Identifying essential genes in bacterial metabolic networks with machine
learning methods. BMC Syst. Biol. 2010, 4, 56. [CrossRef]

20. Suratanee, A.; Plaimas, K. Network-based association analysis to infer new disease-gene relationships using
large-scale protein interactions. PLoS ONE 2018, 13, e0199435. [CrossRef]

21. Caufield, J.H.; Wimble, C.; Shary, S.; Wuchty, S.; Uetz, P. Bacterial protein meta-interactomes predict
cross-species interactions and protein function. BMC Bioinf. 2017, 18, 171. [CrossRef]

22. Zhang, X.; Xiao, W.; Hu, X. Predicting essential proteins by integrating orthology, gene expressions, and PPI
networks. PLoS ONE 2018, 13, e0195410. [CrossRef]

23. LaCount, D.J.; Vignali, M.; Chettier, R.; Phansalkar, A.; Bell, R.; Hesselberth, J.R.; Schoenfeld, L.W.; Ota, I.;
Sahasrabudhe, S.; Kurschner, C.; et al. A protein interaction network of the malaria parasite Plasmodium
falciparum. Nature 2005, 438, 103–107. [CrossRef] [PubMed]

24. Pierrot, C.; Freville, A.; Olivier, C.; Souplet, V.; Khalife, J. Inhibition of protein-protein interactions in
Plasmodium falciparum: future drug targets. Curr. Pharm. Des. 2012, 18, 3522–3530. [CrossRef] [PubMed]

25. Liu, X.; Huang, Y.; Liang, J.; Zhang, S.; Li, Y.; Wang, J.; Shen, Y.; Xu, Z.; Zhao, Y. Computational prediction of
protein interactions related to the invasion of erythrocytes by malarial parasites. BMC Bioinf. 2014, 15, 393.
[CrossRef] [PubMed]

26. Saha, S.; Sengupta, K.; Chatterjee, P.; Basu, S.; Nasipuri, M. Analysis of protein targets in pathogen-host
interaction in infectious diseases: A case study on Plasmodium falciparum and Homo sapiens interaction
network. Brief Funct. Genom. 2018, 17, 441–450. [CrossRef] [PubMed]

27. Paul, G.; Deshmukh, A.; Kumar Chourasia, B.; Kalamuddin, M.; Panda, A.; Kumar Singh, S.; Gupta, P.K.;
Mohmmed, A.; Chauhan, V.S.; Theisen, M.; et al. Protein-protein interaction studies reveal the Plasmodium
falciparum merozoite surface protein-1 region involved in a complex formation that binds to human
erythrocytes. Biochem. J. 2018, 475, 1197–1209. [CrossRef]

28. Hillier, C.; Pardo, M.; Yu, L.; Bushell, E.; Sanderson, T.; Metcalf, T.; Herd, C.; Anar, B.; Rayner, J.C.;
Billker, O.; et al. Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific
Functionality. Cell Rep. 2019, 28, 1635–1647e5. [CrossRef]

29. Fatumo, S.; Plaimas, K.; Adebiyi, E.; Konig, R. Comparing metabolic network models based on genomic and
automatically inferred enzyme information from Plasmodium and its human host to define drug targets in
silico. Infect. Genet Evol. 2011, 11, 708–715. [CrossRef]

30. Phaiphinit, S.; Pattaradilokrat, S.; Lursinsap, C.; Plaimas, K. In silico multiple-targets identification for heme
detoxification in the human malaria parasite Plasmodium falciparum. Infect. Genet. Evol. 2016, 37, 237–244.
[CrossRef]

http://dx.doi.org/10.1073/pnas.1310402110
http://www.ncbi.nlm.nih.gov/pubmed/24101478
http://dx.doi.org/10.4269/ajtmh.16-0779
http://www.ncbi.nlm.nih.gov/pubmed/28749773
http://dx.doi.org/10.3389/fmicb.2017.00889
http://www.ncbi.nlm.nih.gov/pubmed/28572796
http://dx.doi.org/10.1155/2013/965841
http://dx.doi.org/10.1186/s12936-018-2456-5
http://dx.doi.org/10.1177/1177932217720405
http://dx.doi.org/10.1186/1752-0509-4-56
http://dx.doi.org/10.1371/journal.pone.0199435
http://dx.doi.org/10.1186/s12859-017-1585-0
http://dx.doi.org/10.1371/journal.pone.0195410
http://dx.doi.org/10.1038/nature04104
http://www.ncbi.nlm.nih.gov/pubmed/16267556
http://dx.doi.org/10.2174/138161212801327329
http://www.ncbi.nlm.nih.gov/pubmed/22607144
http://dx.doi.org/10.1186/s12859-014-0393-z
http://www.ncbi.nlm.nih.gov/pubmed/25433733
http://dx.doi.org/10.1093/bfgp/elx024
http://www.ncbi.nlm.nih.gov/pubmed/29028886
http://dx.doi.org/10.1042/BCJ20180017
http://dx.doi.org/10.1016/j.celrep.2019.07.019
http://dx.doi.org/10.1016/j.meegid.2011.04.013
http://dx.doi.org/10.1016/j.meegid.2015.11.025


Int. J. Mol. Sci. 2020, 21, 1310 17 of 18

31. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.;
Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association
networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [CrossRef]

32. Giurgiu, M.; Reinhard, J.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Ruepp, A.
CORUM: The comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res 2019, 47,
D559–D563. [CrossRef]

33. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.;
Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018,
46, D1074–D1082. [CrossRef] [PubMed]

34. Nepusz, T.; Yu, H.; Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction
networks. Nat. Methods 2012, 9, 471–472. [CrossRef] [PubMed]

35. Oyedotun, K.S.; Lemire, B.D. The quaternary structure of the Saccharomyces cerevisiae succinate
dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies.
J. Biol. Chem. 2004, 279, 9424–9431. [CrossRef] [PubMed]

36. Takeo, S.; Kokaze, A.; Ng, C.S.; Mizuchi, D.; Watanabe, J.I.; Tanabe, K.; Kojima, S.; Kita, K. Succinate
dehydrogenase in Plasmodium falciparum mitochondria: molecular characterization of the SDHA and SDHB
genes for the catalytic subunits, the flavoprotein (Fp) and iron-sulfur (Ip) subunits. Mol. Biochem. Parasitol.
2000, 107, 191–205. [CrossRef]

37. Ke, H.; Lewis, I.A.; Morrisey, J.M.; McLean, K.J.; Ganesan, S.M.; Painter, H.J.; Mather, M.W.; Jacobs-Lorena, M.;
Llinas, M.; Vaidya, A.B. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium
falciparum life cycle. Cell Rep. 2015, 11, 164–174. [CrossRef]

38. Xue, R.; Yang, J.; Wu, J.; Meng, Q.; Hao, J. Coenzyme Q10 inhibits the activation of pancreatic stellate cells
through PI3K/AKT/mTOR signaling pathway. Oncotarget 2017, 8, 92300–92311. [CrossRef]

39. Zhu, Z.G.; Sun, M.X.; Zhang, W.L.; Wang, W.W.; Jin, Y.M.; Xie, C.L. The efficacy and safety of coenzyme
Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol. Sci. 2017, 38, 215–224.
[CrossRef]

40. Cordero, M.D.; Alcocer-Gomez, E.; de Miguel, M.; Cano-Garcia, F.J.; Luque, C.M.; Fernandez-Riejo, P.;
Fernandez, A.M.; Sanchez-Alcazar, J.A. Coenzyme Q(10): A novel therapeutic approach for Fibromyalgia?
case series with 5 patients. Mitochondrion 2011, 11, 623–625. [CrossRef]

41. Cordero, M.D.; Alcocer-Gomez, E.; de Miguel, M.; Culic, O.; Carrion, A.M.; Alvarez-Suarez, J.M.; Bullon, P.;
Battino, M.; Fernandez-Rodriguez, A.; Sanchez-Alcazar, J.A. Can coenzyme q10 improve clinical and
molecular parameters in fibromyalgia? Antioxid. Redox Signal 2013, 19, 1356–1361. [CrossRef]

42. Rozen, T.D.; Oshinsky, M.L.; Gebeline, C.A.; Bradley, K.C.; Young, W.B.; Shechter, A.L.; Silberstein, S.D. Open
label trial of coenzyme Q10 as a migraine preventive. Cephalalgia 2002, 22, 137–141. [CrossRef]

43. Shoeibi, A.; Olfati, N.; Soltani Sabi, M.; Salehi, M.; Mali, S.; Akbari Oryani, M. Effectiveness of coenzyme Q10
in prophylactic treatment of migraine headache: an open-label, add-on, controlled trial. Acta Neurol. Belg.
2017, 117, 103–109. [CrossRef] [PubMed]

44. Manthena, S.; Rao, M.V.; Penubolu, L.P.; Putcha, M.; Harsha, A.V. Effectiveness of CoQ10 Oral Supplements
as an Adjunct to Scaling and Root Planing in Improving Periodontal Health. J. Clin. Diagn. Res. 2015, 9,
ZC26-8. [CrossRef] [PubMed]

45. Prakash, S.; Sunitha, J.; Hans, M. Role of coenzyme Q(10) as an antioxidant and bioenergizer in periodontal
diseases. Indian J. Pharmacol. 2010, 42, 334–337. [CrossRef] [PubMed]

46. Carlton, J.M.; Adams, J.H.; Silva, J.C.; Bidwell, S.L.; Lorenzi, H.; Caler, E.; Crabtree, J.; Angiuoli, S.V.;
Merino, E.F.; Amedeo, P.; et al. Comparative genomics of the neglected human malaria parasite Plasmodium
vivax. Nature 2008, 455, 757–763. [CrossRef] [PubMed]

47. Monteiro, M.C.O.; Oliveira, F.R.; Oliveira, G.B.; Torres Romao, P.R.; Ferraz Maia, C.F. Neurological and
behavioral manifestations of cerebral malaria: An update. World J. Transl. Med. 2014, 3, 9–16. [CrossRef]

48. Gisselmann, G.; Alisch, D.; Welbers-Joop, B.; Hatt, H. Effects of Quinine, Quinidine and Chloroquine on
Human Muscle Nicotinic Acetylcholine Receptors. Front Pharmacol. 2018, 9, 1339. [CrossRef] [PubMed]

49. Kanehisa, M. The KEGG database. Novartis Found Symp. 2002, 247, 91–101.

http://dx.doi.org/10.1093/nar/gkw937
http://dx.doi.org/10.1093/nar/gky973
http://dx.doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/pubmed/29126136
http://dx.doi.org/10.1038/nmeth.1938
http://www.ncbi.nlm.nih.gov/pubmed/22426491
http://dx.doi.org/10.1074/jbc.M311876200
http://www.ncbi.nlm.nih.gov/pubmed/14672929
http://dx.doi.org/10.1016/S0166-6851(00)00185-7
http://dx.doi.org/10.1016/j.celrep.2015.03.011
http://dx.doi.org/10.18632/oncotarget.21247
http://dx.doi.org/10.1007/s10072-016-2757-9
http://dx.doi.org/10.1016/j.mito.2011.03.122
http://dx.doi.org/10.1089/ars.2013.5260
http://dx.doi.org/10.1046/j.1468-2982.2002.00335.x
http://dx.doi.org/10.1007/s13760-016-0697-z
http://www.ncbi.nlm.nih.gov/pubmed/27670440
http://dx.doi.org/10.7860/JCDR/2015/13486.6291
http://www.ncbi.nlm.nih.gov/pubmed/26436041
http://dx.doi.org/10.4103/0253-7613.71884
http://www.ncbi.nlm.nih.gov/pubmed/21189900
http://dx.doi.org/10.1038/nature07327
http://www.ncbi.nlm.nih.gov/pubmed/18843361
http://dx.doi.org/10.5528/wjtm.v3.i1.9
http://dx.doi.org/10.3389/fphar.2018.01339
http://www.ncbi.nlm.nih.gov/pubmed/30515099


Int. J. Mol. Sci. 2020, 21, 1310 18 of 18

50. Tanabe, M.; Kanehisa, M. Using the KEGG database resource. Curr. Protoc. Bioinf. 2012, Chapter 1. Unit1 12.
[CrossRef]

51. Wang, W.; Yang, S.; Li, J. Drug target predictions based on heterogeneous graph inference. Pac. Symp. Biocomput.
2013, 53–64.

52. Barabasi, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease.
Nat. Rev. Genet. 2011, 12, 56–68. [CrossRef]

53. Chiang, A.P.; Butte, A.J. Systematic evaluation of drug-disease relationships to identify leads for novel drug
uses. Clin. Pharmacol. Ther. 2009, 86, 507–510. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/0471250953.bi0112s38
http://dx.doi.org/10.1038/nrg2918
http://dx.doi.org/10.1038/clpt.2009.103
http://www.ncbi.nlm.nih.gov/pubmed/19571805
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Initial and Stabilized Heterogeneous Networks 
	Performance in Identifying Human-Malaria Protein Associations 
	Association Modules and Protein Complexes on the Heterogeneous Network 
	Identification of Potential Drug Targets in Humans to Treat Malaria 
	Potential Targets of Succinate Dehydrogenase Complex 
	Potential Targets of Nicotinic Acetylcholine Receptor 


	Discussion 
	Materials and Methods 
	Datasets 
	Protein Interaction Information 
	Protein Sequence Similarity Information 
	Protein Complex and Drug Target Information 

	Heterogeneous Network Model for Human-Malaria Protein Association 
	Network Propagation Algorithm 
	Performance Measurement 
	Association Module Clustering Algorithm 
	Enrichment Test 

	Conclusions 
	References

