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Simple Summary: Beetroot is one of the most consumable plants across the world. Previous studies
have shown many health benefits of beetroot, with evidence of having potent hypoglycemic, antioxi-
dant, and anti-inflammatory effects. The data obtained from this study further confirmed this effect
in streptozotocin-diabetic animals. They showed the ability of methanolic beetroot extract to prevent
the associated hepatic oxidative stress, inflammation, steatosis, and dyslipidaemia. However, the
protection mechanisms involve, at least, upregulation of endogenous antioxidants, anti-apoptotic
Bcl2, and PPARα.

Abstract: The present study examined if methanolic beetroot extract (BE) could prevent dyslipidemia
and hepatic steatosis and damage in a type-2 diabetes mellitus (T2DM) rat model and studied
some mechanisms of action. T2DM was induced in adult male Wistar rats by a low single dose of
streptozotocin (STZ) (35 mg/kg, i.p) and a high-fat diet (HFD) feeding for 5 weeks. Control or T2DM
rats then continued on standard or HFDs for another 12 weeks and were treated with the vehicle or
BE (250 or 500 mg/kg). BE, at both doses, significantly improved liver structure and reduced hepatic
lipid accumulation in the livers of T2DM rats. They also reduced body weight gain, serum glucose,
insulin levels, serum and hepatic levels of cholesterol, triglycerides, free fatty acids, and serum
levels of low-density lipoproteins in T2DM rats. In concomitant, they significantly reduced serum
levels of aspartate and alanine aminotransferases, hepatic levels of malondialdehyde, tumor-necrosis
factor-α, interleukin-6, and mRNA of Bax, cleaved caspase-3, and SREBP1/2. However, both doses
of BE significantly increased hepatic levels of total glutathione, superoxide dismutase, and mRNA
levels of Bcl2 and PPARα in the livers of both the control and T2DM rats. All of these effects were
dose-dependent and more profound with doses of 500 mg/kg. In conclusion, chronic feeding of BE
to STZ/HFD-induced T2DM in rats prevents hepatic steatosis and liver damage by its hypoglycemic
and insulin-sensitizing effects and its ability to upregulate antioxidants and PPARα.

Keywords: beetroot; NAFLD; liver; lipid; antioxidant; SREBP1; PPARα

1. Introduction

Type-2 diabetes mellitus is a chronic disorder that results mainly from the ineffective-
ness of insulin peripheral action or resistance [1]. T2DM is associated with serval tissue
damage and is a leading cause for the development of non-alcoholic fatty liver disease
(NAFLD) due to increased hepatic de novo lipogenesis [2]. Yet, NAFLD remains the most
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prevalent hepatic disease, with an overall global prevalence of more than 37% [3]. How-
ever, obesity, due to high-calorie intake and physical inactivity are the major risk factors
for developing T2DM and NAFLD [4]. Other common risk factors include genetic and
environmental factors, infection, and altered gut microbiota [4].

Dyslipidemia and hepatocyte damage are major (and the earliest) consequences as-
sociated with NAFLD [2]. Hepatic oxidative stress and inflammation, mainly due to the
co-existence of peripheral insulin resistance (IR), are the key pathological mechanisms
leading to hepatic damage in NAFLD patients by acting in a vicious cycle [4–6]. Within this
view, the influx of free fatty acids (FAs) and inflammatory cytokines/adipokines is highly
increased to the liver, causing a state of inflammation, stimulating the generation of reactive
oxygen species (ROS) by activating the Kupffer cells, increasing macrophage infiltration,
damaging the mitochondria, activating lipogenesis, and promoting endoplasmic reticulum
stress [4,7–10]. ROS and inflammatory cytokines cause hepatic IR, stimulate de novo
lipogenesis, and promote hepatocyte damage and fibrosis by impairing insulin signaling
and activating several lipogenic, apoptotic, and fibrotic signaling pathways [4–7,9,11].

Of interest, the process of lipid synthesis in the livers is a tightly regulated mecha-
nism that is controlled by several transcriptional factors. In the liver, the sterol regulator
element-binding proteins (SREBPs), including SREBP1c and SREBP2, are a family of tran-
scription factors that stimulates the synthesis of cholesterol (CHOL) and triglycerides (TGs),
respectively, in response to insulin, glucose, FFAs, and ROS [12]. However, the perox-
isome proliferator-activated receptor-alpha (PPARα) is the major transcriptional factor
that stimulates the mitochondria FAs oxidation by activating the mitochondrial carnitine
system [13]. In patients and animal models of NAFLD, authors have shown sustained
activation of SREBP1 with concomitant downregulation of PPARα, which were shown
to be the major hallmarks of the disease [14–16]. However, suppressing SREBPs and/or
activation of PPARα are effective strategies to prevent NAFLD [14–16].

Lifestyle modification and the use of insulin sensitizers, antioxidants, and anti-
inflammatory drugs protected against NAFLD and liver damage in experimental animals,
showing promising results in human trials [9,10,17,18]. Beta vulgaris L. (beetroot) is a
common herbal plant found mainly in Europe, Asia, and America. At present, several
health benefits of beetroot have been reported in several experimental and clinical studies,
including antioxidant, anti-inflammatory, anti-tumorigenesis, anti-diabetic, nephroprotec-
tive, hepatoprotective, diuretics, and hypoglycemic potential [19–25]. Moreover, beetroot
has shown potent hepatoprotective and hypolipidemic effects in rats and rabbits fed high
cholesterol (CHOL) diets [22,24,26]. Moreover, daily administration of beetroot juice to
NAFLD patients significantly reduced serum levels of fasting glucose and lipids and atten-
uated the increase in some liver transaminases [27]. Similar results, with an improvement
in the degree of hepatic steatosis and body weight, were shown in obese rats fed a high-fat
diet (HFD) [28].

In rodents, the chronic consumption of HFD that is accompanied by a single early low
dose of the diabetic agent, streptozotocin (STZ), is the most common method to induce
NAFLD [29]. However, the protective effect of beetroot against NAFLD and hepatic damage
in diabetic animals was poorly investigated. In addition, the mechanism underlying the
beetroot hypolipidemic effect is still unclear.

Therefore, we investigated the protective effects of beetroot methanolic extract against
the development of NAFLD in an HDF/STZ (T2DM) animal model. Moreover, we in-
vestigated the possible mechanisms of action by targeting its hepatic effect on markers of
oxidative stress and lipogenesis (SREBP1/2 and PPARα).

2. Materials and Methods
2.1. Animals

All rats used in this study were adult male Wistar rats, aged 10 weeks and weighing
200 ± 20 g. All animals were provided from (and kept in) the animal Department at King
Saud University, Riyadh, Saudi Arabia. Housing conditions were standardized at 22± 2 ◦C
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with a humidity ratio of 50%. During the days of the experiments, the rats had free access
to their diets and drinking water. Ethical confirmation was approved by the institutional
animal use committee (IRB no.: KSU-SE-21-21).

2.2. Animal Diets

All diets used in this study were purchased from Research Diets Inc., New Brunswick,
NJ, USA. The standard diet (category number (cat. no.) D12450B) contained 3.82 kcal/g
(10% fat), whereas the HFD (cat. no. D12451) contained 4.7 kcal/g (45% fat). The ingredients
of both diets are available on the company’s website.

2.3. Beetroot Extract Preparation

Freshly cultivated beetroot stems were purchased from a certified local supplier in
Riyadh, Saudi Arabia, and the methanolic extract was prepared as described previously [30].
Briefly, all stems were washed with water, the skin was removed, and the pulp was chopped
into smaller slices (1 mm). Then, all stem parts were dried at 40 ◦C and blended to yield
a powder soaked in methanol 1:10 (w/v) for 48 h at 4 ◦C. The extract was filtered, and
the solvent was removed under a vacuum. The extract was then lyophilized and kept at
−20 ◦C until use.

2.4. Induction of T2DM

T2DM was induced in rats was conducted as per the protocol by Dwivedi and Jena [31].
In brief, streptozotocin (STZ) (cat. no. sc-200719A, Santa Cruz Biotechnology, Dallas, TX,
USA) was freshly dissolved in sodium citrate buffer (0.1 M/pH = 5.5). The animals were
fed HFD diets for 2 weeks. By the end of the 2 weeks, the animals were intraperitoneally
(i.p.) injected with the prepared STZ solution (35 mg/kg) and continued their HFD for
another 3 weeks. By the end of week 5, blood glucose, triglycerides (TGs), and cholesterol
(CHOL) levels were measured. Animals with blood glucose higher than 250 mg/dl were
considered to have T2DM. Control rats were fed a standard diet for the first 5 weeks and
were injected with a single equivalent volume of sodium citrate buffer as the vehicle on the
first day of week 2.

2.5. Experimental Design

By the end of week 5, the control or T2DM-induced animals continued with their
desired diets and were treated for another 12 weeks, as follows, for (1) control rats: fed
only standard diets and administered 5% carboxymethyl cellulose (CMC) as a vehicle.
(2) Control + BE (250 mg/kg): continued on a standard diet and orally administered
beetroot extract (250 mg/kg/day). (3) Control + BE (500 mg/kg): continued normal
died and orally given beetroot extract alone (500 mg/kg/day). (4) T2DM model group:
continued on HFD and orally administered 5% CMC. (5) T2DM + BE (250 mg): rats with
pre-established T2DM that continued HFDs, and were concomitantly orally treated with
beetroot extract (250 mg/kg/day). (6) T2DM + BE-(500 mg/kg): rats with pre-established
T2DM that continued HFDs, and were concomitantly orally treated with beetroot extract
(250 mg/kg/day). Treatment with BE was conducted orally by gavage. Throughout the
experiment, the body weight of the rats was recorded every week. Each group contained
8 rats. A presentative diagram of the experimental design and classification of the various
groups is shown in Figure 1.

2.6. Collection of Blood and Tissue Samples

By the last day of week 17—the rats fasted overnight, and were anesthetized with
ketamine/xylazine hydrochloride solution (90:10 mg/kg) [32]. Blood samples (1 mL) were
collected from the heart in plain tubes and centrifuged at 3000 rpm (10 min). The serum was
collected and stored at −20 ◦C for further biochemical analysis. The livers were collected
on ice and cut into smaller pieces, some of which were kept in 10% buffered formalin, and
the remaining were frozen at −80 ◦C for biochemical and molecular analysis.
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2.7. Extraction of Lipids from the Liver

Freshly collected livers (n = 8/group) were directly used to extract lipid using the
methanol: chloroform: normal saline method, as described by Folch et al. [33]. Briefly,
liver tissues were homogenized in methanol:chloroform solution (1:2 v/v) (0.25 g/10 mL)
and kept at 4 ◦C for 1 h. After filtration, normal saline (2 mL) was added to each tube,
mixed well, centrifuged (3800 rpm/10 min), and the lower organic layer was isolated.
The solvent was evaporated, and the solid material containing the lipids was dissolved in
0.5 mL isopropanol and used for different lipid quantification.

2.8. Biochemical Analysis

Serum levels of glucose and insulin were measured using the Rat colorimetric and
ELISA kits (cat. no. 10009582 Cayman Chemical, MI, USA, and cat. no. 589501, Ann Arbor,
MI, USA, respectively). The homeostasis model of insulin resistance was calculated as
described by Salgado et al. [34] using the following formula—HOMA-IR fasting insulin
(ng/mL) × fasting glucose (mg/dl)/405. Hepatic tissue was homogenized in ice-cold PBS
(pH = 7.4) and centrifuged at a speed of 11,500 rpm at 4 ◦C for 15 min; the supernatant
containing tissue extract was collected and used to measure biochemical parameters. Serum
and hepatic CHO, TGs, high-density lipoprotein cholesterol (HDL-c), and low-density
lipoprotein cholesterol (LDL-c) levels were determined using Rat specific assay kits (cat.
no. ECCH-100, BioAssay Systems, CA, USA, cat. no. 10010303, Cayman Chemical, MI,
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USA, cat. no. K4436, BioVision, CA, USA, and cat. no. 79960, Crystal Chemicals, PA, USA,
respectively). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST)
activities, hepatic malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase
(SOD) levels were measured using Rat ELISA kits (cat. no. MBS269614; cat. no. MBS264975,
cat. no. MBS268427, cat. no. MBS738685, cat. no. MBS265966, MyBioSource, CA, USA,
respectively). Hepatic levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-
6) were measured using Rat ELISA kits (cat. no. MBS2507393; cat. no. MBS175908,
MyBioSource, CA, USA, respectively).

2.9. Real-Time PCR

Real-time PCR measured the mRNA expression of some lipogenic and apoptotic
factors (Table 1). All primers were purchased from (Promega, WI, USA). Primer sequences
related genes are provided in Table 1. Total RNA has extracted the 0.25 mg frozen livers
using ReliaPrep™ RNA Miniprep Systems (cat. no. Z6010, Promega, WI, USA). The
template cDNA of each sample was synthesized with the help of GoScript synthesis kit
(cat. no. A5001, Promega, WI, USA). Amplification was conducted in a real-time PCR
machine (model: CFX, Bio-Rad, CA, USA) using the Ssofast EvaGreen Supermix kit and
instrument setting provided in a 96-well plate. All procedures were conducted as per each
kit’s instructions. Two samples with no template cDNA were included as negative controls.
The amplification of each target was normalized to its corresponding mRNA levels of
β-actin using the −2∆∆CT method on the available software.

Table 1. Primer’s characteristics of the real-time PCR.

Gene Primers (5′→3′) GenBank
Accession # Product Length

PPARα F: TGCGGACTACCAGTACTTAGGG
R: GCTGGAGAGAGGGTGTCTGT NM_013196.1 116

SREBP-1c F: GCA AGG CCA TCG ACT ACA TC
R: TTT CAT GCC CTC CAT AGA CAC NM_001276707.1 161

Bcl2 F: TGGGATGCCTTTGTGGAACT
R: TCTTCAGAGACTGCCAGGAGAAA U34964.1 73

SREBP-2 F: CTGACCACAATGCCGGTAAT
R: CTTGTGCATCTTGGCATCTG NM_001033694.1 204

Bax F: ATGGAGCTGCAGAGGATGATT
R: TGAAGTTGCCATCAGCAAACA NM_017059 97

Caspase-3 F: AATTCAAGGGACGGGTCATG
R: R-GCTTGTGCGCGTACAGTTTC U49930 67

B-actin F: ATC TGG CAC CAC ACC TTC
R: AGC CAG GTC CAG ACG CA NM_031144 291

2.10. Histopathological Analysis

Alterations in liver morphology were determined by staining. Formalin-preserved
tissues were hydrated and cleared with ethanol and xylene. Then, they were embedded
in paraffin, cut at 3–5 µM, and routinely stained with hematoxylin and eosin (H&E). All
photos were captured under a light microscope.

2.11. Statistical Analysis

GraphPad Prism statistical software (V8, Australia) was used for statistical analyses.
Normality was tested using the Shapiro–Wilk test. All analyses were conducted using a
two-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. The values were
presented as mean ± standard deviation (SD) and were considered significantly different
at p < 0. 05.
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3. Results
3.1. BE Ameliorates the Gain in Body Weight and Reduces Fasting Glucose and Insulin Levels in
T2DM Rats

As shown in Table 2, the final body weights, fasting blood glucose levels, fasting
insulin levels, and HOMA-IR were not significantly different between the control and
control + BE (250 mg/kg). However, only fasting blood glucose levels and HOMA-IR
were significantly lower in control + BE (500 mg/kg)-treated rats compared to control
rats (Table 2). A significant increase in the final body weights, fasting glucose and insulin
levels, and values of HOMA-IR were seen in T2DM-induced rats when compared to
control rats, which were then significantly reduced in T2DM, and treated with BE at doses
of 250 or 500 mg/kg (Table 2). However, the reduction in all of these parameters was
more significant in T2DM + BE (500 mg/kg)-treated rats when compared to T2DM + BE
(250 mg/kg)-treated rats, levels that were not significantly different when compared to
control rats (Table 2).

Table 2. Average final body weights (A), levels of fasting glucose (B) and insulin (C), and values of HOMA-IR (D) in all
groups of rats.

Items Control Control + BE
(250 mg/kg)

Control + BE
(500 mg/kg) T2DM

T2DM +
BE (250 mg/kg)

+ CC

T2DM +
BE (500 mg/kg)

Final body
weight (g) 442 ± 24.3 446 ± 17.5 454 ± 27.6 576 ± 25.4 abc 536 ± 21.6 abcd 451 ± 18.9 de

Plasma fasting
glucose (mg/dL) 100 ± 8.6 96 ± 7.8 65 ± 11.3 ab 253 ± 18.5 abc 189 ± 15.1 abcd 121 ± 10.1 abcde

Plasma fasting
insulin 4.8 ± 0.71 4.6 ± 0.73 4.7 ± 61 9.3 ± 0.81 abc 6.9 ± 0.41 abcd 5.0 ± 0.56 de

(ng/mL)
HOMA-IR 1.19 ± 0.23 1.11 ± 0.19 0.75 ± 0.11 ab 5.8 ± 0.82 abc 3.2 ± 0.33 abcd 1.5 ± 0.24 abcde

Data were analyzed by one-way ANOVA followed by Tukey’s test as post hoc and presented as mean ± SD of eight rats/group.
a: vs. the control rats. b: vs. the control + beetroot extract (BE) (250 mg/kg)-treated rats. c: vs. the control + BE (500 mg/kg)-treated rats.
d: vs. T2DM-treated rats. e: vs. T2DM + BE (250 mg/kg).

3.2. BE Attenuates T2DM-Induced Dyslipidemia

Serum and hepatic levels of FFAs, TGs, and CHOL, as well as serum levels of LDL-c,
were significantly higher in T2DM-induced rats when compared to control rats (Table 3).
However, serum and hepatic levels of FFAs, TGs, and CHOL, and levels of LDL-c were
significantly lower in both control + BE (250 and 500 mg/kg) and T2DM + BE (250
and 500 mg/kg)-treated rats when compared to either the control or T2DM-induced rats
(Table 3). Levels of all these biochemical markers were significantly lower in control + BE
(500 mg/kg) and T2DM + BE (500 mg/kg) when compared to the control or T2DM rats,
which received the lower dose of the extract (250 mg/kg) (Table 3).

3.3. BE Attenuates Oxidative Stress in the Livers of T2DM Rats

Levels of MDA were significantly higher, but levels of SOD and GSH were significantly
lower in the livers of T2DM-induced rats compared to control rats (Figure 2A–C). However,
levels of MDA were significantly lower, and levels of SOD and GSH were significantly
higher in the livers of both the control and T2DM rats, which received either the lower
or higher doses of the BE (250 and 500 mg/kg) when compared to either the control or
T2DM-induced rats, respectively (Figure 2A–C). In addition, the reduction in levels of MDA
and the increase in the levels of SOD and GSH were significantly higher in control + BE
(500 mg/kg) and T2DM + BE (500 mg/kg) when compared to control + BE (250 mg/kg)
and T2DM + BE (350 mg/kg), respectively (Figure 2A–C). While levels of MDA remained
slightly but significantly reduced, levels of SOD and GSH were not significantly different
between T2DM + BE (500 mg/kg)-treated rats and control rats (Figure 2A–C).
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Table 3. Lipid profiles in the serum and livers of all groups of rats.

Control Control + BE
(250 mg/kg)

Control + BE
(500 mg/kg) T2DM

T2DM +
BE (250 mg/kg)

+ CC

T2DM +
BE (500 mg/kg)

Serum
TGs (mg/dl) 51.1 ± 4.8 40.3 ± 2.8 a 30.5 ± 2.9 ab 120 ± 8.3 abc 85.4 ± 4.2 abcd 55.8 ± 3.6 bcde

CHOL (mg/dl) 79.8 ± 6.1 68.8± 3.9 a 55.1 ± 4.3 ab 162 ± 10.9 abc 136 ± 10.1 abcd 95.2 ± 5.5 abcde

LDL-c (mg/dl) 42.4 ± 4.1 32.1 ± 5.4 a 27.8 ± 4.2 ab 96.1 ± 5.6 abc 77.1 ± 4.6 abcd 54.6 ± 3.7 abcde

FFAs (µM/l) 199 ± 13.1 167 ± 10.3 a 135 ± 7.5 ab 756 ± 114 abc 462 ± 79 abcd 244 ± 32 abcde

Liver
TGs (mg/g) 0.41 ± 0.06 0.33 ± 0.04 a 0.24 ± 0.03 ab 0.88 ± 0.12 abc 0.7 ± 0.06 abcd 0.43 ± 0.05 bcde

CHOL (mg/g) 2.8 ± 0.22 2.11 ± 0.17 a 1.7 ± 0.09 ab 6.3 ± 0.51 abc 4.9 ± 0.36 abcd 3.0 ± 0.26 bcde

FFAs (µM/g) 59.6 ± 7.9 49.1 ± 4.2 a 32.9 ± 3.1 ab 340 ± 27.1 abc 236± 26 abcd 110 ± 16.2 abcde

Data were analyzed by one-way ANOVA followed by Tukey’s test as post hoc and presented as mean± SD of 8 rats/group. a: vs. the control
rats. b: vs. the control + beetroot extract (BE) (250 mg/kg)-treated rats. c: vs. the control + BE (500 mg/kg)-treated rats. d: vs. T2DM-treated
rats. e: vs. T2DM + BE (250 mg/kg).
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followed by Tukey’s test as post hoc and presented as mean ± SD of eight rats/group. a: vs. the
control rats. b: vs. the control + beetroot extract (BE) (250 mg/kg)-treated rats. c: vs. the control + BE
(500 mg/kg)-treated rats. d: vs. T2DM-treated rats. e: vs. T2DM + BE (250 mg/kg).

3.4. BE Attenuates Serum Transaminases and Hepatic Inflammatory Markers in T2DM Rats

Serum levels of ALT and AST and hepatic levels of TNF-α and IL-6 were not signif-
icantly different between control and control + BE (250 and 500 mg/kg) (Figure 3A–D).
Levels of ALT and AST and hepatic levels of TNF-α and IL-6 were significantly higher in
T2DM-induced rats compared to control rats, but progressively decreased in T2DM + BE
(250 and 500 mg/kg) when compared to T2DM-induced rats (Figure 3A–D). Serum levels
of ALT remained slightly increased, whereas serum levels of AST and hepatic levels TNF-α
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and IL-6 were not significantly different when T2DM + BE (250 mg/kg)-treated rats were
compared to control rats (Figure 3A–D).
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Figure 3. Serum levels of alanine aminotransferase (ALT) (A), aspartate aminotransferase (AST)
(B), hepatic levels of tissue necrosis factor dismutase (TNF-α) (C), and interleukin-6 (IL-6) (D) in all
groups of rats. Data were analyzed by one-way ANOVA followed by Tukey’s test as post hoc and
presented as mean± SD of eight rats/group. a: vs. the control rats. b: vs. the control + beetroot extract
(BE) (250 mg/kg)-treated rats. c: vs. the control + BE (500 mg/kg)-treated rats. d: vs. T2DM-treated
rats. e: vs. T2DM + BE (250 mg/kg).

3.5. BE Downregulates the Transcription SREBP1/2, Stimulates PPARα, and Inhibits Intrinsic
Cell Apoptosis in the Livers of T2DM Rats

Hepatic mRNA levels of SREBP1c, SREBP2, Bax, Bcl2, and caspase-3 did not signifi-
cantly change between the control and control + BE (250 or 500 mg/kg) (Figure 4A,C,D).
The mRNA levels of PPARα were significantly higher in the livers of both control + BE
(250 mg/kg) and control + BE (500 mg/kg) when compared to control rats, with a higher
significant increase seen with the higher dose of the extract (Figure 4A–D). mRNA levels of
SREBP1, SREBP2, Bax, Bcl2, and caspase-3 were significantly higher, but mRNA levels of
PPARα were significantly lower in the livers of T2DM-induced rats compared to control
rats (Figure 4A–D). The mRNA levels of SREBP1, SREBP2, Bax, Bcl2, and caspase-3 were
significantly lower, but mRNA levels of PPARα were significantly higher in the livers of
both T2DM + BE (250 mg/kg) and T2DM (500 mg/kg)-treated rats when compared to
T2DM rats (Figure 4A–D). The improvement in all these markers was significantly higher
in T2DM + 500 mg/kg-treated rats when compared to those that received the lower dose
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of the extract (250 mg/kg), levels that were not significantly different when compared to
control rats (Figure 4A–D).
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Figure 4. mRNA levels of SREBP1 (A), SREBP2 (A), PPARα (B), caspase-3 (C), and Bax (D), Bcl2
(D) in the livers of all groups of rats. Data were analyzed by one-way ANOVA followed by Tukey’s
test as post hoc and presented as mean ± SD of eight rats/group. . a: vs. the control rats. b: vs. the
control + beetroot extract (BE) (250 mg/kg)-treated rats. c: vs. the control + BE (500 mg/kg)-treated
rats. d: vs. T2DM-treated rats. e: vs. T2DM + BE (250 mg/kg).

3.6. BE Improved Liver Architectures of T2DM Rats

Normal histological architectures with normal hepatocytes, central vein (CV), and
sinusoids were seen in the control, control + BE (250 mg/kg), and control + BE (500 mg/kg)-
treated rats (Figure 5A–C, respectively). Livers of T2DM induced rats showed severe
accumulation of fat droplets in the cytoplasm of the hepatocytes with dilated CV and
sinusoids (Figure 5D). An improvement in the structure of the livers with a significant
reduction in lipid accumulation was seen in the livers of T2DM + BE (250 mg/kg)-treated
rats (Figure 5E). However, almost normal morphology of the liver section was seen in the
livers of T2DM + BE (500 mg/kg)-treated rats (Figure 5F).
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Figure 5. Photomicrographs of the liver section of all groups of rats as stained by hematoxylin and
eosin (H&E) staining; 200 ×. (A–C) show the control, control + BE (250 mg/kg), and control + BE
(500 mg)-treated rats and showing normal hepatocytes structure (long arrow) radiating from a central
vein (CV). Note the normally sized sinusoids (short arrow). (D): was taken from a T2DM-induced rat
and showed dilated CV with increased cytoplasmic fat accumulation and ballooning (long arrow)
in the hepatocytes. The sinusoids were abnormally dilated (short arrow). (E): was taken from a
T2DM + BE (250 mg/kg)-treated rats and showed an improvement in the structure of the hepatocytes.
Although some livers appear normal with no fat accumulation (long thick arrow), many hepatocytes
remained filled with fat droplets (long thin arrow). In addition, most of the sinusoids appeared
normally sized (short arrow). (F): was taken from a T2DM + BE (500 mg/kg) and showed almost
normal morphology with those observed in control, with normal hepatocytes (long arrow) and
sinusoids (short arrow).
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4. Discussion

T2DM is characterized by a significant increase in final body weights, sustained hy-
perglycemia, hyperinsulinemia, and IR and is associated with NAFLD [35]. In rodents,
STZ-induced DM is the most acceptable model to study the complication of T2DM and
NAFLD [36,37]. Using this animal model, simple steatosis is seen after 6–8 weeks, whereas
NASH characterized by hepatocellular ballooning is seen after 8–12 weeks [29]. At this
stage, the animals also show an increase in their final body weight, fasting hyperglycemia,
hyperinsulinemia, dyslipidemia, and increased transaminase levels [29,38]. These clinical
manifestations were also observed in the STZ/HFD treated rats of this study, thus validat-
ing our animal model. However, the attenuation of all these markers in beetroot-treated
T2DM rats was our solid and initial evidence for this plant’s anti-diabetic and hepatopro-
tective effects. Moreover, our data showed that this protection occurs in a dose-dependent
manner where the higher dose of the extract (500 mg/kg) showed more profound results.

Insulin is the major metabolic hormone that regulates blood glucose levels by inhibit-
ing gluconeogenesis, stimulating glycogen synthesis, peripheral glucose disposal, and
adipogenesis [39]. Under IR, as in HFD-induced obesity, hyperglycemia dominates, and
the delivery of FFAs and inflammatory cytokines from the periphery to the liver is in-
creased, thus stimulating the generation of ROS and inflammatory cytokines by activating
numerous pathways [4,6]. These ROS and inflammatory cytokines act viciously to induce
hepatic IR and hepatocytes apoptosis [4]. In addition, glucose is continuously produced by
the liver due to oxidative/inflammation-induced impairment in insulin signaling [40]. In
the same line, the observed increment in the levels of ROS, MDA, TNF-α, and IL-6, and
the parallel reduction in the levels of the antioxidants (i.e., GSH and SOD) in the livers of
T2DM-induced rats support the indispensable roles of oxidative stress and inflammation in
mediating liver damage under HFD, and diabetic conditions, which support others [41–45].
In addition, T2DM-induced rats showed a significant increase in the mRNA levels of
markers of intrinsic cell apoptosis (Bax and caspase-3) with a concomitant reduction in the
levels of Bcl2, which indicates the activation of intrinsic cell death. Indeed, several lines of
evidence have shown that mitochondria-mediated cell apoptosis is the most common cell
modality in the livers of animal models of NAFLD, and is mediated by oxidative stress
and inflammation [46–48].

The treatment with the highest dose of beetroot extract reversed the alterations in
these oxidants, inflammatory, and apoptotic markers, and concomitantly reduced fasting
circulatory glucose and insulin levels, as well as the hepatic and serum FFAs levels. Such
reduction in the levels of FFAs with the concomitant decrease in HOAM-IR values in the
T2DM-treated rats is a clear indication for the improvement of peripheral insulin sensitivity.
However, although the lower dose failed to alter insulin levels, the levels of TNF-α or IL-6,
apoptotic markers in the control, or T2DM-treated rats—it reduced fasting glucose levels
in control rats, thus suggesting a potent hypoglycemic effect. These data may indicate the
ability of the beetroot to reduce either glucose absorption or hepatic synthesis. Moreover,
both doses of the beetroot extract stimulated levels of SOD and GSH in the livers of control
rats, suggesting an independent antioxidant effect that may mediate its anti-inflammatory
effect. Therefore, we could strongly argue that the hepatoprotective effect of beetroot
extract in STZ/HFD-induced T2DM rats is mediated by a concomitant hypoglycemic,
insulin sensitizing, and antioxidant potential.

Supporting our data, several lines of evidence have also shown the potent hypo-
glycemic, anti-inflammatory, and antioxidant potentials of beetroot juice or extracts in a
variety of animal models [49,50]. Indeed, daily consumption of red beetroot juice extracts
significantly reduced fasting glucose levels in diabetic individuals, as well as in STZ and
alloxan-induced diabetic animals, effects that were attributed to increased insulin release
(in T1DM), decreased glucose absorptions, stimulated insulin sensitivity, GLUT-2/4 re-
ceptor expression, and inhibited hepatic glucose synthesis [25,30,51–53]. Moreover, the
antioxidant protective effects of beetroots/juice extracts were reported in the livers of
several animal models of liver injury, including those induced by chlorpyrifos (CPF), car-
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bon tetrachloride (CCl4), 7,12-dimethylbenz[a]anthracene (DMBA), N-nitrosodiethylamine
(NDEA), and were shown to be mediated by direct scavenging and inhibiting or ROS,
suppressing lipid peroxidation upregulation of GSH, and phase II antioxidant enzymes
(e.g., glutathione peroxidase (GPx), catalase, glutathione reductase (GSHR), glutathione
transferase) [54–59]. However, the stimulatory effect of beetroot on the levels of GSH and
other antioxidant enzymes was attributed to upregulation of the nuclear factor-erythroid
factor 2-related factor 2 (Nrf2), a major antioxidant transcription factor [30,50,60]. In ad-
dition, beetroot extract also reduced the generation of RSOS, TNF-α, and IL-6, inhibited
NF-κB, enhanced catalase and Bcl2, and reduced the levels of Bax and cleaved caspase-3
in the kidneys of gentamicin-treated rats [61]. It significantly reduced the hepatic levels
of inflammatory markers and reduced circulatory levels of AST, ALT, lactate dehydro-
genase (LDH), and gamma-glutamyl transferase (γGTT) in the livers of NDEA-treated
rats [59,62]. Moreover, extracts of beetroots significantly reduced levels of AST in patients
with NAFLD [27].

In the liver, the regulation of SREBP1/2 is regulated by insulin [63]. SREBP1c and
SREBP2 stimulate de novo lipid synthesis by activating several lipogenic genes in the liver.
Indeed, SREBP1c stimulates FAs and CHOL synthesis by upregulating FAS, and ACC-1
whereas SREBP2 stimulates CHOL synthesis by activating the HMGCR [12]. PPARα is
an anti-lipogenic transcription factor that stimulates the mitochondria FAs uptake and
oxidation by activating the L-carnitine system [13]. Fasting hyperglycemia and increased
influx of FFAs, as well as higher levels of ROS and inflammatory cytokines in the liver,
stimulate SREBP1/2 in the livers of NAFLD patients and animals, even independent of
insulin resistance [64–67].

The increased FA oxidation suppresses PPARα in patients or animal models of
NAFLD [68]. In the same line as these studies, levels of SREBP1/2 were significantly
lower, whereas levels of PPARα were significantly higher in the livers of STZ/HFD-treated
rats, which explains the concomitant increase in hepatic fat droplet accumulation and
the higher levels of CHOL and TGs in the livers and serum of rats. Such activation of
SREBP1c/2 could be explained by the development of hepatic IR, as well as by the effects
afforded by hyperglycemia, ROS, and inflammatory cytokines. However, the significant
reduction in the levels of PPARα in the livers of these diabetic rats could be attributed to
the increase in hepatic levels of FFAs, which probably increased peripheral influx, or due
to the activation of SREBP1c.

The hypolipidemic effect of beetroot juice or extract is well-reported in healthy individ-
uals, rodents, rabbits fed a “cholesterol diet”, and diabetic animals [51,52,69–72]. In most
of these studies, the beneficial effects of beer root included lowering circulatory CHOL,
TGs, and LDL-c levels and increasing HDL-c levels. Similar supporting results were also
demonstrated in the livers of the control and T2DM-induced rats of this study, which were
treated with both doses of the extract. Moreover, at both low and higher doses, beetroot
extract also reduced hepatic FFAs, CHOL, and TGs in the serum and livers of the control
and T2DM-treated rats. Yet, the mechanisms of such effect are poorly investigated and
remain unknown. However, and as discussed previously, the significant reduction in the
levels of FFAs could be explained by the improvement of peripheral insulin sensitivity and
the subsequent decrease in the adipose tissue lipolysis.

The novelist finding of this study is the ability of both doses of the beetroot extract to
attenuate the increase in the levels of SREBP1/2 and stimulate PPARα to attenuate dyslipi-
demia hepatic lipid synthesis in T2DM-induced rats. These effects could be explained by
the hypoglycemic, insulin-sensitizing, antioxidant, and anti-inflammatory effects of the
extract. However, one interesting observation is that both doses of the extract also increased
the transcription of PPARα in the livers of control rats. This could explain why the livers
and serum of these rats also showed lower CHOL, FFAs, and TGs levels. Hence, the
beetroot extract seems more likely to have a direct independent effect on PPARα, which un-
derlies its hypolipidemic effect. As beetroot extract did not affect levels of SREBP1/SREBP2
in the livers of control rats, these findings suggest that the beetroot-induced suppression of
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these transcription factors occurred indirectly due to its hyperglycemic effect and its ability
to attenuate the hepatic oxidative stress, inflammation, and IR in T2DM-rats.

One limitation in this study is that our data were based only on studying the effects
of the extract on mRNA levels of the target lipogenic transcription factors. Studying the
protein expression of these targets may provide the readers and us with more accurate data
for the effect of BE, which should be considered in future studies. Moreover, we were unable
to determine the exact constituent of the extract responsible for these effects. Beetroots
are rich in compounds that can exert such effects. These include betalains, flavonoids
(e.g., gallic acid, betavulgaroside, myricetin, apigenin, luteolin, quercetin, and kaempferol),
fibers, and pectin. These ingredients are known for their hypoglycemic, hypolipidemic,
and antioxidant potential, and they can modulate numerous cells signaling with the cells
they constitute; it is well established in the literature. This has been discussed in previous
studies and reviews [49,50,60]. Moreover, further investigation is required to examine
the precise molecular mechanisms responsible for the hypoglycemic, hypolipidemic, and
antioxidant effects of the extract. One important common target could be the AMPK/SIRT1
axis, which represents the most important energy sensors that regulate glucose and lipid
metabolism, as well as the cellular redox potential in most cells [73].

5. Conclusions

The findings of this study show that beetroot is an effective therapy to treat NAFLD
in rodents. Since NAFLD is a complex disorder with several underlying mechanisms and
co-morbidities, the data are encouraging, and may lead to future subclinical and clinical
studies, for researchers to examine the effects of the methanolic extract of beetroot in
diabetic and metabolically active patients. In addition, these data are encouraging, for
researchers to further isolate and identify an active ingredient that could be provided
commercially to patients to reduce the socioeconomic burden of this disease, and prevent
all associated comorbidities.
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58. Szaefer, H.; Krajka-Kuźniak, V.; Ignatowicz, E.; Adamska, T.; Baer-Dubowska, W. Evaluation of the Effect of Beetroot Juice on
DMBA-induced Damage in Liver and Mammary Gland of Female Sprague-Dawley Rats. Phytotherapy Res. 2014, 28, 55–61.
[CrossRef]

59. Arazi, H.; Eghbali, E. Possible Effects of Beetroot Supplementation on Physical Performance through Metabolic, Neuroendocrine,
and Antioxidant Mechanisms: A Narrative Review of the Literature. Front. Nutr. 2021, 8, 660150. [CrossRef] [PubMed]

60. Baião, D.D.S.; da Silva, V.; Paschoalin, M. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be
Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants 2020, 9, 960.
[CrossRef] [PubMed]

61. El Gamal, A.A.; AlSaid, M.S.; Raish, M.; Al-Sohaibani, M.; Al-Massarani, S.M.; Ahmad, A.; Hefnawy, M.; Al-Yahya, M.;
Basoudan, O.A.; Rafatullah, S. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated
oxidative stress, inflammation, and apoptosis in rodent model. Mediat. Inflamm. 2014, 2014, 983952. [CrossRef]
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