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Abstract

In crowding, perception of an object deteriorates in the presence of nearby elements.

Although crowding is a ubiquitous phenomenon, since elements are rarely seen in isolation,

to date there exists no consensus on how to model it. Previous experiments showed that the

global configuration of the entire stimulus must be taken into account. These findings rule

out simple pooling or substitution models and favor models sensitive to global spatial

aspects. In order to investigate how to incorporate global aspects into models, we tested a

large number of models with a database of forty stimuli tailored for the global aspects of

crowding. Our results show that incorporating grouping like components strongly improves

model performance.

Author summary

Visual crowding highlights interactions between elements in the visual field. For example,

an object is more difficult to recognize if it is presented in clutter. Crowding is one of the

most fundamental aspects of vision, playing crucial roles in object recognition, reading

and visual perception in general, and is therefore an essential tool to understand how the

visual system encodes information based on its retinal input. Hence, classic models of

crowding have focused only on local interactions between neighboring visual elements.

However, abundant experimental evidence argues against local processing, suggesting

that the global configuration of visual elements strongly modulates crowding. Here, we

tested all available models of crowding that are able to capture global processing across

the entire visual field. We tested 12 models including the Texture Tiling Model, a Deep

Convolutional Neural Network and the LAMINART neural network with large scale com-

puter simulations. We found that models incorporating a grouping component are best

suited to explain the data. Our results suggest that in order to understand vision in gen-

eral, mid-level, contextual processing is inevitable.
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Introduction

When an element is presented in the presence of nearby elements or clutter, it becomes harder

to perceive, a well-known effect called crowding. One of the main characteristics of crowding

is that the element itself is not invisible, contrary to contrast- and backward-masking; rather

its features appear jumbled and distorted (Fig 1). Crowding is a ubiquitous phenomenon

because elements are rarely encountered in isolation in everyday situations (Fig 1C). Thus,

understanding crowding is crucial for understanding vision in general.

For about half a century, the consensus was that flankers interfere with a target element

only when placed within a spatially restricted window around the target, the so-called Bouma

law (Fig 1B; [1–4]):

Size of Boumas window � 0:5�eccentricity

Classic models of crowding proposed that early visual areas, such as V1, process the features

of stimuli with high precision. Crowding occurs when neural signals are pooled along the

visual hierarchy, e.g., when V2 neurons pool neural signals from V1 neurons [5]. Hence, in

line with classic hierarchical feedforward processing (Fig 2A), crowding may be seen as a natu-

ral consequence of object recognition in the visual system. For example, a hypothetical neuron

coding for a square might respond to signals from neurons coding for the lines making up the

square. In order to achieve translational invariance, the square neuron is sensitive to lines all

over its receptive field and pools this information in order to decide whether a square is pres-

ent. According to this logic, crowding occurs when elements that do not belong to the same

object are pooled. In this sense, crowding is an unwanted by-product of object recognition

and, for this reason, a bottleneck of vision (for reviews, see [2,6]). Other models have proposed

that performance in crowding deteriorates because features of the target are substituted for fea-

tures of the flanking elements [4,7]. As mentioned, all these models are local in the sense that

crowding is determined by nearby elements only. Based on these two lines of thought, pooling

and substitution, researchers have suggested that with more flankers performance deteriorates

because more irrelevant features are pooled or substituted.

The understanding of crowding has largely changed in the last decade. For example, it has

been shown that detailed information can survive crowding [8,9]. Crowding occurs in the

fovea and is not restricted to the periphery, contrary to earlier proposals [10,11]. Most impor-

tantly for the present discussion, performance depends on elements far beyond Bouma’s win-

dow. For example, in supercrowding, elements outside of Bouma’s window decrease

performance beyond the decrement arising from elements within the window [12]. Surpris-

ingly, adding flankers can even reduce crowding, and such uncrowding effects can depend on

elements outside of Bouma’s window (Fig 2; [10,13–17], review: [18]). For example, observers

performed a vernier discrimination task. When a surrounding square was added to the ver-

nier, the task became much more difficult: a classic crowding effect. However, adding more

flanking squares improved performance gradually, i.e., performance improved the more

squares were presented ([19]; Fig 2B). The entire line of squares extends over 17 degrees in the

right visual field, while the single vernier offset threshold is less than 200” (Fig 2D). Hence, per-

formance is not exclusively determined by local interactions: fine-grained vernier acuity in the

range of about 200” depends on elements as far away as 8.5 degrees—a ratio of two orders of

magnitude, extending far beyond Bouma’s window. Moreover, performance depends on the

overall configuration [20]. For example, in three-by-seven displays of squares and stars (Fig

2C), a shift of the central row changes performance strongly (Fig 2C, 4th and 5th configura-

tions). Similar effects were found with stimuli other than verniers [21,22], as well as in auditory

[23] and haptic crowding [24].
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Because they cannot produce long-range effects, local models cannot explain the global

aspects of crowding. Here, we tested which global models, integrating information across large

parts of the visual field, can explain global effects on crowding (see Fig 3 for a list). We also

tested the most prominent local models to verify our hypothesis that local models are inade-

quate to explain global aspects of crowding.

The models that we tested differ with respect to four criteria:

Spatial extent: Local vs. Global. In a local model, elements far from the target do not exert

any effects on the target. By contrast, in a global model, any element in the visual field may

potentially interfere with target processing.

Mechanism of interference: Pooling, substitution, or other?

Organisation: Feed-forward (features at a given level are only affected by lower level features)

vs. recurrent processing (features at a given level can be affected by lower or higher level

features).

Fig 1. Crowding. a. In crowding, the perception of a target element deteriorates in the presence of nearby elements.

When fixating the left cross, the target letter V on the right is hard to identify because of the nearby flankers. b. The

task is easier than in (a), because the flankers are further away from the target letter V. Bouma’s law states that

crowding occurs only when flankers are sufficiently close to the target, within the so-called Bouma’s window. c.

Crowding is a ubiquitous phenomenon since elements are rarely seen in isolation. For example, when fixating the

central red dot, the child on the left is easier to detect because it is not surrounded by nearby flankers, as is the child on

the right.

https://doi.org/10.1371/journal.pcbi.1006580.g001

Beyond Bouma’s window: How to explain global aspects of crowding?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006580 May 10, 2019 3 / 28

https://doi.org/10.1371/journal.pcbi.1006580.g001
https://doi.org/10.1371/journal.pcbi.1006580


Grouping component: Does the model incorporate a grouping component? Certain models

explicitly compute grouping-like aspects by determining which low-level elements should

belong to the same higher level group. Only elements within a group interfere with each other.

Methods

To test the models, we used human data from previous work exploring the crowding/

uncrowding phenomena [10,11,15,17,19,20]. The stimulus database comprises 40 different sti-

muli belonging to 11 different categories: circles, Gestalts, hexagons, irregular1, irregular2,

lines, octagons, patternIrregular, patternStars, squares and stars. An example of each category

is shown in Fig 4. Behavioral results can be found in the original papers (listed in Fig 14). In

each category, we have the vernier target alone, plus crowding and uncrowding configurations.

All the stimuli are shown in Fig 14 and behavioural results can be found in the original papers.

Fig 2. a. Standard view of visual processing. First, edges are detected by low-level neurons with small receptive fields. Higher level neurons pool signals

from lower level neurons in a hierarchical, feedforward manner, creating higher level representations of objects by combining low-level features [25,26]. For

example, two low-level edge detectors may be combined to create a “corner” representation. Four such corner detectors can be assembled to create a

rectangle representation. Receptive field size naturally increases along this pathway since, for example, a rectangle covers larger parts of the visual field than

the lines making up the rectangle. b. Uncrowding. Observers performed a vernier discrimination task. The y-axis shows the threshold for which observers

correctly discriminate the vernier offset in 75% of trials (so performance is good when the threshold is low). First, only a vernier is presented, an easy task

(performance for this condition is shown as the dashed horizontal line). Then, a flanking square is added making the task much more difficult (leftmost

stimulus). This is a classic crowding effect. Importantly, adding more flanking squares improved performance gradually, i.e., performance improved the

more squares are presented [19]. We call this effect uncrowding. c. The global configuration of the entire stimulus determines crowding. Performance is

strongly affected by elements far away from the target as shown in these examples [15]. d. Performance is not determined by local interactions only. In this

display, fine-grained vernier acuity of about 200” depends on elements as far away as 8.5 degrees—a difference of two orders of magnitude, extending far

beyond Bouma’s window.

https://doi.org/10.1371/journal.pcbi.1006580.g002
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With a few exceptions (see details in the results section), we ran each model on all stimuli. For

some models, we could not use the entire database because computation time was too long

(deep convolutional networks, LAMINART, Texture Tiling Model), or because the model was

not adapted to accommodate certain kinds of stimuli (Population Coding). Human and model

results are summarized in the discussion (Figs 14 & 15). All the code we used is available online

at https://github.com/adriendoerig/beyond-boumas-window-code. All the results can be

found at https://github.com/adriendoerig/beyond-boumas-window-results.

There are two fundamentally different approaches to measure model performance. First, a

linking hypothesis may be used to relate model output to performance (both are scalar num-

bers). For example, template matching computes how similar the model output is to the target

image. If they are similar, performance is good. The second, textural approach is used to quan-

tify performance in textural models. The idea is that peripheral vision is ambiguous because

information is compressed by summary statistics. If a model uses a proper algorithm for repre-

senting these ambiguities, presenting the processed image in the fovea should lead to similar

human performance as presenting the original unprocessed image in the periphery [27].

Accordingly, to measure the performance of textural algorithms, the stimuli are fed through a

texture synthesis procedure. Then, observers freely examine the output image and report ver-

nier orientation. If this task is easy, performance is good. For each model, we used the linking

hypothesis proposed by the original authors when available. When this was not possible (for

example for Alexnet, which has never been applied to crowding results before), we detail

Fig 3. Tested models and their characteristics. Models may integrate information locally or globally, and the

interference mechanism may be pooling, substitution, or other. Models are feed-forward or recurrent, and may or may

not compute grouping-like aspects of the stimulus. The aim of the current work is to investigate which models can

explain the global effects of crowding.

https://doi.org/10.1371/journal.pcbi.1006580.g003
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which linking hypothesis we used in the corresponding section. In the following, we present,

first, textural models and, second, models using a linking hypothesis.

An important point is that different readouts lead to different results. Hence, the different

methods of model evaluation used here could affect our results. However, we are mainly inter-

ested in qualitative rather than quantitative comparisons and the readout functions we used

cannot confuse crowding and uncrowding. More specifically, the readout processes we use

produce results monotonically linked to the model outputs. Hence, they cannot confuse

uncrowding cases (a U-shape function where the vernier alone condition leads to good perfor-

mance, a single flanker deteriorates performance, and multiple flankers lead again to good per-

formance) with cases that do not show uncrowding (a monotonic function where the vernier

alone condition leads to good performance, a single flanker deteriorates performance, and

multiple flankers deteriorate performance even more).

Because different models were evaluated differently, it was impossible to come up with one

performance measure and to compare models via something like the Akaike Information Cri-

terion. However, despite this variety of performance measures, our results are qualitatively

unambiguous: each model either is capable of producing uncrowding, or it is not. We took the

parameters directly from the original models whenever possible. Otherwise, we tried our best

to search the parameter space (see results). We cannot exclude that other combinations of

parameters fit the dataset better. However, we will argue that the models that cannot produce

uncrowding fail to do so for principled reasons, and not because of poor parameter choices

(see discussion).

Fig 4. Stimulus categories. We used 40 different stimuli from 11 different categories. The task was always to report the offset direction of the central

vernier. This figure shows one example from each category. The stimulus database is tailored to test for global effects such as uncrowding. Human

data was taken from previous work [10,11,15,17,19,20]. Human and model results are summarized in the discussion (Fig 14 shows the results for all

stimuli and models).

https://doi.org/10.1371/journal.pcbi.1006580.g004
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Results

Texture-like models

The following models are based on texture analysis. The outputs are images, and the texture

method is applied as described in the methods.

Epitomes. In the Epitomes model, described by Jojic et al. [28], large repeating patterns

are summarized by small repeated representative image patches. Repeated patterns are substi-

tuted with their exemplars. The original image can subsequently be retrieved with good accu-

racy from the compressed representation, even though neighboring features encoded in the

same patch are mingled. Epitomes are effectively a “substitution” model that exploits regulari-

ties. Although this model was not proposed as a model of crowding, it embodies many of the

key characteristics of local pooling and substitution models.

Using the author’s code available online (http://www.vincentcheung.ca/research/

sourcecode.html) we ran the model on all stimuli with the original parameters (designed to

optimize image reconstruction accuracy for natural images and texture overlays). To evaluate

performance, we used the texture evaluation method with the authors as subjects, analysing

the results qualitatively (see methods). In addition, we computed the model threshold as

Z Z

x;y
jleftStimðx; yÞÞj� jrightStimðx; yÞÞjdxdy

where leftStim(x,y) is the normalized intensity of pixel (x,y) in the left vernier offset version of

the output. Effectively, this equation quantifies how different the normalized output images

are for the left and the right vernier offset versions of the stimulus. If they are very different,

the task is easy. Consistently across the dataset, the model successfully produces crowding but

not uncrowding: performance was always worse when adding more flankers (Fig 5). We sug-

gest that the model cannot explain uncrowding because it compresses information from local

regions of the image, ignoring global structure.

Single texture model. Portilla & Simoncelli [29] proposed a set of statistics capable of cap-

turing key aspects of texture appearance to human vision (Fig 6A). Balas et al., [27] suggested

an explanation of crowding in which peripheral vision might measure these texture statistics

in pooling regions that overlap and tile the visual field. The intuition is that summary statistics

provide an efficient way of extracting relevant information at low computational cost from

natural images. Though Balas et al. proposed a model covering the entire visual field as

described in the next subsection, they initially tested the predictions of a single pooling region,

since texture synthesis procedures did not exist for multiple overlapping pooling regions. Each

of their stimuli fell within a single Bouma-sized patch. They have since suggested that this

shortcut of using a single pooling region, which greatly reduces computation time, can often

suffice for texture-like stimuli that fall within a single pooling region [30].

Although the model was intended by Balas et al. to be applied only over a Bouma’s window-

sized patch, here we applied it to the entire stimulus to see if this kind of texture synthesis

could capture long-range interactions between the vernier and other elements. The texture sta-

tistics are computed from pixel intensities taken from the entire image. Using the code pro-

vided online by Portilla & Simoncelli (https://github.com/LabForComputationalVision/

textureSynth), we created textures from all of our stimuli and the authors analyzed the results

qualitatively using the texture measure (see Fig 6C for two examples). The model produces

strong crowding: vernier offsets are harder to discriminate from the textures when flankers are

present. However, the model cannot explain uncrowding: consistently across our whole data-

set, uncrowded conditions are worse than crowded conditions for this model (Fig 6C). More

elements always deteriorate performance. In their original contribution, Balas et al. seeded the
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texture synthesis algorithm using a low-pass, noisy version of the stimulus to reduce position

noise. We also ran our stimuli using this method (see results repository online). While the out-

put images became less distorted than without using the seed, it did not change the conclusion,

because the target vernier remained much harder to detect in the textures synthesized from

the uncrowded 7 flankers stimuli than from the crowded single flanker stimuli–i.e., there was

no uncrowding.

Texture tiling model (TTM). The TTM model was first described by Balas et al. [27],

with its first full instantiation developed by Freeman & Simoncelli [31]. It computes summary

statistics for overlapping local patches of the visual field, mimicking the way V2 receptive fields

Fig 5. Epitomes. a. Illustration of the epitome model. An image (left) is compressed into an epitome (center), a

summary of local features. The image on the right is reconstructed from the epitome. b. As an example for the classic

texture evaluation, we show the stimulus and reconstructed image for the 1- and 7-square conditions. Human vernier

offset thresholds are better for the 1-square than the 7-square condition. The model does not produce uncrowding

because vernier offset direction in the output is not easier to make out in the 7-square than in the 1-square case

(according to the authors’ judgment). c. Example for our performance measure. Human and model thresholds (see

main text for how model threshold was computed) for vernier alone, single square and 7 squares conditions. The

7-square threshold is higher than the 1- square threshold, in contrast with human performance. Note: the model

outputs a number quantifying how different the left and right vernier offset versions of the input are (so the higher this

difference, the better the performance). To make comparison with the human threshold easier, we applied the

following monotonic transformation to the output: “threshold-like output” = 1/“raw output”. Then, we scaled the

result to be in the same range as the human results. This monotonic re-scaling cannot change the conclusions because

monotonic outputs are mapped on monotonic performance and the same is true for U-shaped functions (see

methods).

https://doi.org/10.1371/journal.pcbi.1006580.g005
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Fig 6. Texture Synthesis and Texture Tiling Model. a. A texture (right) synthesized from the input on the left using the Portilla & Simoncelli [29] summary

statistics. The output resembles crowding. Pooling- and substitution-like effects occur. b. In the TTM, instead of applying the summary statistics process to the

whole image at once, only local patches of the image are processed, yielding a local summary statistics model. The local patches are thought to reflect V2

receptive fields. c. Whole-field summary statistics. From left to right: stimuli and Portilla & Simoncelli textures for the vernier, 1-square and 7-square

conditions. The vernier offset is easy to determine from the texture in the vernier alone condition, and slightly harder in the crowded condition (a right-offset

is discernable in the middle top of the display). Across all data, the model consistently produces crowding, but no uncrowding, as exemplified in the right

condition in which no offset is present at all. d. Texture Tiling model. The left column shows three synthesized examples from the 1-square condition. On the

right is the 7-flanking squares case. The model cannot produce uncrowding: since the stimulus on the right is less crowded than the stimulus on the left in the

human data, the direction of the vernier should be easier to make out on the right than on the left. However, this is not the case.

https://doi.org/10.1371/journal.pcbi.1006580.g006
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grow in size with eccentricity (Fig 6B). Balas, Rosenholtz and others have studied this model

extensively, calling it the Texture Tiling Model (TTM; [32,33]). In a series of papers, this model

explained well the local aspects of visual tasks such as crowding and visual search. We ran a

selection of stimuli through the TTM model (circles, squares, and irregular1; code for the model

accompanies [34]). Similarly to the previous textures, the results were analysed by the authors

using the texture measure. Crowding was well captured, but uncrowding could not be explained

by TTM (Fig 6D). The vernier was not better represented as the number of flankers increased.

We suggest that TTM alone cannot explain uncrowding because it is a sophisticated local

mechanism that scrambles together neighboring elements. There is no mechanism allowing

elements that do not share a pooling region with the target to directly affect the target repre-

sentation. Our results suggest that neither pooling summary statistics over the entire stimulus

nor pooling over previously tested local regions explain the behavioural results. If the whole

field is used, uncrowding cannot occur because more elements mean more interference and

thus worse performance. On the other hand, using local regions does not help because far

away elements cannot improve performance in cases where humans show uncrowding.

Deep textures. Gatys and colleagues [35] used deep neural networks to create textures. The

algorithm starts with a noise image and iteratively modifies it to match the correlations between

neuron activities in a set of layers (Fig 7A). This procedure synthesizes textures that are often

indistinguishable from the original image, creating true metamers [36]. Deep textures were not

intended to be applied to images like our stimuli, nevertheless we were interested in seeing if they

could handle them because one could think of deep textures as synthesizing textures based on

learned features rather than on the hand-coded features of Portilla & Simoncelli [29]. Perhaps the

learned features provide a better representation and thus do a better job of predicting crowding.

Using Gatys et al.’s code with their suggested set of parameters (https://github.com/

leongatys/DeepTextures), we created textures of each stimulus in our database (Fig 7B shows a

selection of examples). We first evaluated model performance by the texture measure per-

formed by the authors. Since the results were much less clear than for the previous texture

approaches, we also conducted a psychophysical experiment with naive participants. Five sub-

jects performed the classic texture measure: they were first explained the texture synthesizing

process and then were shown textures synthesized from our stimuli. They were asked to report

if they thought the texture was synthesized from a left- or right-vernier stimulus. We used three

categories of stimuli (Gestalts, squares and circles), with ten textures per stimulus (a total of 100

textures). Performance was at chance for all stimuli. Textures for the untested stimulus catego-

ries strongly resemble the tested categories (the vernier offset orientation is not visible in the

textures, even for the vernier-alone condition). We tried different stimulus sizes, but this did

not improve the results. In conclusion, despite its clear success at texture synthesis for natural

images, the model in its present form is not suitable to study crowding with our stimuli.

Wallis et al. [37] have proposed a foveated model in which these deep statistics are com-

puted over local image patches, just as the TTM computes Portilla and Simoncelli’s statistics

over local patches. The code is not yet publicly available, so we did not test it explicitly, how-

ever, we believe it will not explain uncrowding for exactly the same reasons that the TTM does

not handle uncrowding better than Portilla and Simoncelli’s whole field statistics: distant ele-

ments that are not in pooling regions around the target cannot affect the target representation.

Models using a linking hypothesis

The following models all use a linking hypothesis to relate their output (a number) to human

performance. Whenever possible, we used the same linking hypothesis as in the original con-

tribution. When no linking hypothesis was available, we specify the method used.
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Wilson & Cowan network with end-stopped receptive fields. Wilson & Cowan [38] pro-

posed a mathematical model of simple cortical (excitatory and inhibitory) neurons interacting

through recurrent lateral connexions. Variations of this kind of model have successfully

accounted for visual masking data using stimuli similar to our lines category [39]. We used a

similar neural network for our crowding stimuli. The model first convolves the input image

with an on-center, off-surround receptive field mimicking processing by the LGN. Next, the

input activations are fed into both an excitatory and an inhibitory layer of neurons, which are

reciprocally connected such that the excitatory units excite the inhibitory units and the inhibi-

tory units inhibit the excitatory units. Details of the model, its filters, and its parameters can be

found in [39] and [40]. Although the filters are local, the strength of activity at any given pixel

location partly depends on the global pattern of activity across the network because of the feed-

back connections. More generally, the feedback in the network functions like a discontinuity

detector by enhancing discontinuities and suppressing regularities. Clarke, Herzog & Francis

[41] applied this model to crowding stimuli, but it performed poorly and produced no

Fig 7. Deep textures. a. In the deep textures algorithm, the correlation between a deep neural network’s unit activities

is used as a summary statistic. Textures are then synthesized to match that statistic. b. Original stimuli and textures

synthesized from these stimuli using the deep textures algorithm by Gatys et al. [35]. The vernier offset is poorly

visible, therefore, despite its clear success at synthesizing textures, the model in its present form in not suitable to

model crowding with our stimuli. We tried different zooms on our stimuli but the results did not change.

https://doi.org/10.1371/journal.pcbi.1006580.g007
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uncrowding. For example, there was no difference between the stimuli in the Gestalts category

and the length of the bars in the lines category had no effect at all on performance. Here, to

improve the model, we replaced the classic receptive fields by end-stopped receptive fields so

that each neuron is optimally activated only by stimuli of a specific length. There were three

different sizes for the end-stopped receptive-fields, corresponding to the size of a vernier bar,

the size of the whole vernier, and the size of the flankers. To measure performance for each

stimulus, for each end-stopped receptive field size, we took as output the state of the excitatory

layer after stabilization (40 time-steps) and cross-correlated it with the vernier alone output.

The cross-correlations for each end-stopped receptive field size were summed to yield a single

output number per stimulus. We then fitted a psychometric function on one class of stimuli

(training set) and used this function to provide model performance for all other classes of sti-

muli (testing set). Apart from the end-stopped receptive fields modification, we used the same

parameters as in Hermens et al. [39].

We fit the psychometric function based on the model’s output for the squares category, i.e.,

the squares category is the training set, and used this fit to measure performance on all other

stimulus categories, i.e., all other categories are the testing set. We also tried to use each of the

other categories as the training set; using the squares yielded the best results. The model pro-

duces crowding: performance drops in the presence of flankers. It also produces uncrowding

but only for the training set (squares) and, to a lesser extent, for the irregular1 category.

Indeed, performance is better in the 7 squares than in the single square condition (Fig 8B), and

marginally better in the 7 irregular1 than in the single irregular1 condition (Fig 8C). For the

other categories, there is no uncrowding (see Fig 8D for an example). The choice of the train-

ing and testing sets has a strong influence on the conditions that mimic human performance.

Squares and lines are the categories for which size regularity seems to play the most important

role. For all other classes, there is no uncrowding, regardless of the training. This poor general-

ization capability suggests that the model uses idiosyncratic features of its training set rather

than capturing general regularities, similar to overfitting.

Zhaoping’s V1 recurrent model. This recurrent neural network model is described by Li

Zhaoping [42]. The network consists of a grid of neurons tuned to 12 orientations that are

linked by lateral connections that follow a specific pattern (see Fig 9A & 9B). The connectivity

pattern allows the network to reproduce many experimental effects such as pop-out, figure-

ground segmentation and border effects. It has also been shown to highlight certain parts of

visual displays such as masked verniers [43], and we wondered if it could similarly produce

uncrowding. We recoded the network from scratch following the detailed instructions and

using the same parameters as in [42] and studied it as another recurrent model of early visual

cortex. We ran all our stimuli and assessed performance by cross-correlating each output with

the output of the vernier without flankers. The magnitude of the cross-correlation is taken as a

measure of vernier offset discrimination performance. The model produces crowding but not

uncrowding consistently across the dataset (see Fig 9C).

A variation of the LAMINART model. The LAMINART model by Cao & Grossberg [44]

is a neural network capable of computing illusory contours between collinear lines. Francis,

Manassi & Herzog [45] augmented it with a segmentation process in which elements linked by

illusory contours are grouped together by dedicated neural populations. This dedicated neural

processing operates in the same way for all conditions and plays an important role in explain-

ing many other visual phenomena (review: [46]). This model process was intended as an

implementation of a two-stage model of crowding, with a strong grouping process: stimuli are

first segmented into different groups and, subsequently, elements within a group interfere.

After dynamical processing, different groups are represented by distinct neural populations.

Performance is determined by template matching. Importantly, crowding is low when the
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vernier is alone in its group (i.e., when the population representing the vernier does not also

represent other elements) and high otherwise.

The segmentation process is started by local selection signals and spreads along connected

contours (Fig 10). The location of each selection signal follows a Gaussian distribution centred

on a given location, with a constant standard deviation. Uncrowding occurs when the selection

Fig 8. Wilson and Cowan network with end-stopped receptive fields: a. Structure of the network in [39] which we

augmented with end-stopped receptive fields. An excitatory and an inhibitory layer of neurons are activated by the

stimulus and interact with one another. The output of the excitatory layer is cross-correlated with a vernier template to

measure performance. b. Output for the squares category (with psychometric function fitted on the squares category).

In accordance with human results, performance is better in the 7 squares than in the 1 square case. c. Output for the

irregular category (with psychometric function fitted on the squares category). Performance is marginally better in the

7 irregular1 than in the 1 irregular1 case. d. Output for the stars category (with psychometric function fitted on the

squares category). There is no uncrowding for this stimulus. Uncrowding occurs only for specific kinds of stimuli,

where element size regularities seem important. Further, performance depends strongly on which data are used for the

training set (i.e., for fitting the psychometric function), suggestive of overfitting. e. Model output images. Columns are

different stimuli: vernier, 1 square and 7 squares. The first row shows the stimuli, and the three subsequent rows show

the model output for the short, medium and long end-stopped receptive fields. The crucial result is that the vernier is

better represented in the short and medium populations in the 7 squares than in the 1 square conditions (i.e.,

uncrowding occurs). As mentioned, uncrowding occurred for very few stimuli categories. In cases that didn’t show

uncrowding, the vernier representation deteriorated further when flankers were added (see results on the online

repository). Note: the model outputs a cross-correlation quantifying how similar the model output is to the model

output in the vernier alone condition (so the higher this cross-correlation, the better the performance). To make

comparisons with human thresholds easier, we applied the same linking hypothesis as Hermens et al. [39]: we fitted a

psychometric function to link model outputs to behavioural results, as explained in the main text.

https://doi.org/10.1371/journal.pcbi.1006580.g008
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Fig 9. V1 Segmentation model. a. The input is sampled at each grid position by neurons tuned to 12 orientations,

mimicking V1 simple cells. b. The connectivity pattern between cells depends on their relative position and orientation

as shown here. Solid lines indicate excitation and dashed lines indicate inhibition. As shown, each neuron excites

aligned neurons and inhibits non-aligned neurons. Each neuron has the same connectivity pattern, suitably rotated

and translated. c. Output images for the square category. Each small oriented bar shows the maximally active

orientation at this grid position. d. Results for the squares category. The dashed red bar shows the vernier threshold,

which is matched for humans and the model. As shown, uncrowding does not occur in the model, because

performance is worse for the 7 squares than the 1 square stimulus. Note: the model outputs a cross-correlation

quantifying how similar the model output is to the model output in the vernier alone condition (so the higher this

cross-correlation, the better the performance). To make comparison with the human threshold easier, we applied the

same procedure as we did for the epitomes, i.e., we applied the following monotonic transformation to the output:

“threshold-like output” = 1/”raw output”. Then we scaled the result to be in the same range as the human results. This

monotonic re-scaling does not change the conclusions–the phenomenon of uncrowding cannot be altered.

https://doi.org/10.1371/journal.pcbi.1006580.g009
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signals hit a group of flankers without hitting the vernier, rescuing it from the deleterious

effects of the flankers. In our simulations, each stimulus is run twenty times, each time drawing

a new selection signal location. The final performance is averaged over these twenty trials. Cru-

cially, segmentation becomes easier with more flankers, because a group of many flankers con-

nected by illusory contours produces a larger region for selection (Fig 10).

To account for the observers’ proclivity to succeed in the vernier discrimination task, the

central location of a selection signal is tuned to produce the least amount of crowding for each

condition. This assumption follows the idea that an observer does the best job possible in each

given situation. Although this added flexibility is not present in other models, it does not con-

stitute an unfair advantage for the LAMINART. Indeed, it is not strictly necessary in order for

the model to produce uncrowding. For example, if the segmentation signals’ central location

followed a uniform distribution over the whole stimulus, it would still hit a large group of

flankers (without hitting the target) more easily than a small group of flankers. In summary,

whenever the flankers form a wide group that can be easily segregated from the vernier,

uncrowding should be produced. Hence, uncrowding is largely independent of the selection

signals’ distribution.

Many stimuli in the dataset had been simulated by the model in Francis et al. [45]. Here, we

improved the model by using more orientations and we ran the model on our dataset, using

the template matching measure (some stimuli could not be run for reasons detailed below).

Overall, the LAMINART explains the data set well (Fig 10).

More precisely, the categories circles, Gestalts, lines, octagons, squares and hexagons are all

well explained. Categories irreg1, irreg2 and stars cannot be explained, but they include bars of

many different orientations, and the current LAMINART simulation is only capable of han-

dling eight orientations. We did not run the stimuli in the patternStars and patternIrregular

categories because they are too large to be processed in realistic time. In general, situations

where the model fails tend to be those in which the model groups elements while the data sug-

gests it should not, leading in some cases to no uncrowding, and in other cases to excessive

uncrowding. One example is when flankers (e.g., squares and stars) group together when they

should not. Another example is when flankers group with the target vernier (e.g., irreg1), sug-

gesting the need to improve the grouping mechanism itself (Fig 10).

Across all stimuli and all models, the LAMINART is by far the most successful model in

this comparative study because it can explain a wide range of uncrowding results, as well as

capture classic crowding effects.

Alexnet (Convolutional Neural Network). Deep Convolutional Neural Networks

(CNNs) are local, feedforward, pooling networks. Training involves using feedback signals to

adjust weights between neurons in subsequent layers. Once the network has been trained,

Fig 10. The LAMINART variation. a: Activity in the LAMINART model. Colors represent the most active orientation (red: vertical, green:

horizontal). When a stimulus is presented, segmentation starts to propagate along connected (illusory or actual) contours from two locations marked

by attentional selection signals. Visual elements linked together by illusory contours form a group. After dynamic, recurrent processing, the stimulus is

represented by three distinct neural populations, one for each group. Crowding is high if other elements are grouped in the same population as the

vernier, and low if the vernier is alone. On the left, the flanker is hard to segment because of its proximity to the vernier. Across the trials, the selection

signals often overlap with the whole stimulus, considered as a single group. Therefore, the flanker interferes with the vernier in most trials, and

crowding is high. On the right, the flankers are linked by illusory contours and form a group that spans a large surface. In this case, segmentation

signals can easily hit the flankers group successfully (without hitting the vernier). The vernier thus ends up alone in its group in most trials and

crowding is low. b: The left row shows human performance with the square flanker stimuli. The right row is the output of the LAMINART model. It

fits the data very well. The same holds true for a majority of our stimuli. To compute the LAMINART’s output values, we used the same linking

hypothesis as in the original description of the model [45]: template matching is used to decide if the target vernier offset is left or right, and this result

is monotonically transformed into a threshold-like measure. c: Sometimes flankers group together (illusory contours are formed) when they should

not, erroneously predicting uncrowding for this condition. d: Sometimes flankers group with the vernier when they should not. Here, weak illusory

contours connect the central flanker and the vernier. No uncrowding can be produced for this condition because segmentation always spreads to the

vernier, independently of the success of the selection signals.

https://doi.org/10.1371/journal.pcbi.1006580.g010
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users typically fix the weights and use the network in a feedforward manner. Given enough

time and training samples, CNNs can learn any function by learning adequate weights [47,48].

CNNs fit very nicely in the standard view of vision research, in which basic features, such as

edges, are combined in a hierarchical, feedforward manner to create higher-level representa-

tions of complex objects (Fig 2A). We reasoned that crowding would occur in these networks

for exactly the same reason as in classic local pooling models: the target and the flankers’ repre-

sentations at a given layer are pooled within the receptive fields of the subsequent layer, thus,

leading to poorer performance. Although CNNs obviously compute groups such as objects or

animals, these groups have no effect whatsoever on crowding of lower level features. Indeed,

there are no connections from higher to lower level layers. Thus, elements far away from the

Fig 11. Alexnet. a. Stimuli consisted of either verniers, verniers surrounded by a single square or verniers with seven

squares. The stimuli had varying sizes, vernier offsets and positions. Alexnet’s architecture and a classifier are shown

on the right (there was a classifier at each layer). The boxes correspond to the input (leftmost box) and activated

neuron layers (see [49] for the detailed architecture of Alexnet). We trained softmax classifiers on all ReLU layers

following the convolution layers and the last fully connected layer to detect vernier orientation from the layer’s activity.

b. Accuracy of softmax classifiers trained to detect vernier orientation from different layers in the deep neural network

Alexnet. Across all layers, the offsets in crowded stimuli (1 square flanker) are always better detected than offsets in

uncrowded stimuli (7 square flankers). This runs contrary to human performance. NB. This model only produces

percent correct, there is no output image.

https://doi.org/10.1371/journal.pcbi.1006580.g011
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vernier cannot interact with nearby elements and lead to uncrowding. To test this hypothesis,

we processed the square category through Alexnet [49], a CNN trained to classify natural

images with high accuracy, using Tensorflow [50]. In order to determine vernier offset dis-

crimination in different layers, we trained classifiers to identify the vernier offset from the acti-

vations of different layers of Alexnet (Fig 11A). The classifiers had a single hidden layer with

512 units, followed by a softmax layer with two outputs, corresponding to left and right. In the

training phase, we ran verniers through the network, and trained classifiers to identify the off-

set orientation from the different layers’ activations (which were normalized to zero mean and

unit standard deviation). Each layer had its own classifier. We used all ReLU layers following

the convolution layers and the last fully connected layer. A different classifier was trained for

each of these layers. During the test phase, we used verniers alone, verniers flanked with a

Fig 12. Hierarchical Sparse Selection model. a. The model posits that receptive fields along the visual hierarchy are

large and dense. This allows for “lossless” transmission of information through the visual system. For instance, the

offset of the vernier in this illustration is not corrupted by pooling thanks to the density of the receptive fields (blue and

red circles). Crowding occurs because, when we try to access information, only a few sparse receptive fields are used

for readout (red circles). Hence, crowding occurs at readout because of sparse sampling of receptive fields. This sparse

readout can occur at any stage of visual processing, from low-level features (shown here) to faces. b. Uncrowding does

not occur in the Hierarchical Sparse Selection model because performance is worse for the model on the 7 squares than

the 1 square condition, contrary to human performance. NB. This model only produces a scalar output, there is no

output image.

https://doi.org/10.1371/journal.pcbi.1006580.g012
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single square (crowded stimuli) and verniers with 7 squares flankers (uncrowded stimuli).

Both training and testing stimuli had varying sizes, offsets and positions in the image. Fig 11

shows average performance for each layer over 6 runs. For each run, we trained a new classifier

on each layer, using 250000 verniers in the training set. In the testing phase, we ran 3000 verni-

ers, 3000 crowded stimuli and 3000 uncrowded stimuli through Alexnet. Our classifiers pre-

dicted vernier orientation from the layer activations for each of these inputs. Interestingly, our

classifiers could well retrieve the test vernier orientations with 100% accuracy in almost all

convolutional layers (layers 2, 3, 4 and 5). Adding square flankers deteriorated performance

strongly. The single square (crowded) stimuli could be decoded only in the convolutional lay-

ers 2, 3 and 4, and in fully connected layer 7, but with much poorer accuracy than the vernier

alone. Crucially, unlike in humans, the 7 squares (uncrowded) stimulus performance was

always worse or equal to the performance on the single square (crowded) stimulus. Hence, the

deep network produced crowding, but not uncrowding. We suggest that the mechanism lead-

ing to these results is similar to the classic local pooling account of crowding.

Hierarchical Sparse Selection (HSS). This model was described by Chaney, Fischer &

Whitney [51]. In a series of experiments, it was shown that in spite of difficulty identifying a

crowded target, crowding does preserve some information about the target, i.e., information is

rendered inaccessible but not destroyed (see [8,9] for reviews). For example, a face surrounded

by other faces cannot be explicitly identified, but information about its features can neverthe-

less survive crowding and contribute to the perceived average of a set of faces [52]. To accom-

modate these results, Chaney et al. proposed that information is not lost along the visual

processing hierarchy. Instead, crowding occurs because readout is sparse. Specifically, given a

feature map representing a stimulus, only a subset of the neurons from this map can be used to

decode the target, which leads to crowding’s deleterious effects (Fig 12A).

Using the author’s code, we tested all our stimuli and found that crowding could be

explained, but uncrowding did not occur in the model (Fig 12B). Originally, the model was

used to detect crosses, triangles and circles. We modified the model’s readout layer to classify

vernier orientation, which was achieved with 99.13% accuracy (the rest of the model does not

need any change to accommodate new stimuli). Then, we dropped 75% of the neurons for the

sparse readout, which led to a vernier classification accuracy of 81.48%. We tested all our sti-

muli by asking the model to classify the vernier orientation, first without dropping any neu-

rons, then with 75% of the neurons dropped for the sparse readout, as we did for the verniers.

For all stimuli, performance dropped with the sparse readout. For example, the 1 square condi-

tion was classified with 93.35% accuracy when all neurons were used, and this dropped to

Fig 13. Fourier model. Left. The Fourier model computes Fourier transforms for the left- and right-offset versions of

each stimulus. If these transforms are very different, crowding is low because the offset direction is easy to decode in

Fourier space [15]. Right. Output of the Fourier model. The model failed on most stimuli [15]. NB. This model only

produces a scalar output, there is no output image.

https://doi.org/10.1371/journal.pcbi.1006580.g013
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Fig 14. Summary of results. Results for all models (columns). In black, the left panel displays all crowding stimuli and the right panel displays all uncrowding

stimuli (i.e., better performance when extra elements are added to the crowded condition) as observed in human data (rows). Superscript numbers indicate

which publication the results are taken from (1: Sayim, Westheimer & Herzog [17]; 2: Manassi et al. [11]; 3: Manassi, Sayim & Herzog [19]; 4: Manassi et al.

[15]). Red indicates that the model predicts crowding, green indicates uncrowding and gray indicates that we did not run the model on the stimulus. A perfect

model would have only red in the left half of the table and only green in the right half. Only the LAMINART is capable of producing uncrowding consistently.

Fourier and the Wilson-Cowan network produce uncrowding, but suffer from overfitting (see discussion). For these two models, we provide the results for the

best parameters. For example, the Wilson and Cowan with different parameters can explain the lines category but then it cannot explain the squares and

irregular1 categories.

https://doi.org/10.1371/journal.pcbi.1006580.g014
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75.55% with sparse readout. The 7 squares condition had a similar profile, but classification

accuracy was worse than for the 1 square condition (71.73% with all neurons and 59.23% with

sparse readout). This pattern of results was found in all stimulus categories: sparse readout

impaired performance, and adding more flankers impaired performance too. Thus, there was

crowding but no uncrowding. We would like to mention that Chaney et al. argue that

uncrowding can in fact be explained, if the target and flanker are represented in different fea-

ture maps, which are however not implemented at the moment. In essence, visual stimuli are

segmented into different feature maps (this must happen early in the visual pathway to explain

the low-level vernier results), and subsequently the HSS model applies within feature maps, on

this pre-segmented input.

Models tested elsewhere

The following models were not implemented here, but we mention them for completeness.

Saccade-confounded summary statistics. Nandy & Tjan [53] proposed a model linking

summary statistics to saccadic eye movements: crowding is proposed to occur because the

acquisition of summary statistics in the periphery is confounded by eye-movement artifacts.

Fig 15. Model comparison. All models produce crowding, but only the Fourier, Wilson and Cowan and LAMINART models produce uncrowding. The

Fourier and the Wilson and Cowan model overfit and thus do not capture general principles. The LAMINART is the only model that explicitly computes

grouping like aspects and segments the image into different layers.

https://doi.org/10.1371/journal.pcbi.1006580.g015
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This leads to inappropriate contextual interactions in the periphery and in this way produces

crowding. For the present purposes this is not directly relevant, because foveal and peripheral

uncrowding results are qualitatively identical [11], which the saccade-confounded summary

statistics model cannot explain since it suggests that crowding can only occur in peripheral

regions. Furthermore, it is not clear how uncrowding can occur in this model.

Population coding. This kind of model was first described by Van den Berg, Roerdink, &

Cornelissen [54]. A similar model was proposed by Harrison & Bex [55]. Both models elegantly

produce both pooling and substitution behaviour by assuming that an element’s orientation is

represented by a population code: a probability distribution of its orientation. When many ele-

ments are present, the population codes interfere and disturb the target element’s representation,

which leads to crowding. This interference depends on distance and is usually modeled as a 2D

Gaussian. Dayan & Solomon [56] also proposed a model in which elements are represented as

probability distributions. They added a Bayesian process to account for the accumulation of evi-

dence over time. Their model captures local crowding effects similarly to Van den Berg et al. and

Harrison & Bex’s models: the interference comes from the representations of neighbouring ele-

ments deleteriously affecting each other. This model and the one by Van den Berg and colleagues

cannot handle images as input and thus could not be tested with our stimuli.

We have shown elsewhere that the Harrison & Bex [55] implementation cannot explain

uncrowding [57]. Agaoglu & Chung [58] showed that the interaction between elements

depends on which of them is considered as the target for report. Hence, the crowding interfer-

ence between elements in the display depends on the task, which is not easily incorporated in

the models without a dedicated process. Van den Berg et al. [54] suggested that elements do

not interfere when they are represented in different perceptual groups, similar to the LAMI-

NART model. Similarly, Harisson & Bex [55] have suggested that a preprocessing stage deter-

mining which elements interfere is needed.

Fourier model. The Fourier transform is sensitive to global aspects of spatial configura-

tions because it is based on periodic features. Even if it was never explicitly proposed to explain

crowding, it may capture some effects of uncrowding that have to do with regularities in the

stimulus. Previously [15,41], we used a Fourier-based model and tested it on the entire dataset.

Essentially, this is a texture-like model, assuming that the brain Fourier transforms the visual

input. Repetitive structures, such as arrays of squares are more compactly coded in the Fourier

space than the 2D space. We restate the results here for comparison with the other models.

The model first bandpass-filters the stimuli (passing a small range of frequencies at all orienta-

tions), then computes the Fourier transforms of the filtered left- and right-offset cases for each

stimulus. Similarly to what was done to measure performance of Zhaoping’s recurrent V1

model, these are cross-correlated with the filtered versions of the verniers without any flankers

and the magnitude of the cross-correlation is taken as a measure of vernier offset discrimina-

tion performance. This process is repeated over all possible pass-bands (which is finite given a

fixed image size) until the pass-band yielding performance most similar to humans is found.

Across the dataset, this approach failed to reproduce the data (see Fig 13), suggesting that such

a simple use of global regularities in the display is insufficient to explain crowding. Depending

on the set of Gabor filters, uncrowding occurred for certain stimuli, but this was never consis-

tent over several stimulus types, which is suggestive of overfitting. With one set of filters the

lines category could be explained, with another the Gestalts category could be explained.

Discussion

For decades, crowding was thought to be fully determined by nearby elements. For this reason,

target elements were presented only with a few nearby elements, and models were local in
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nature. However, experiments of the last two decades have shown that elements far beyond

Bouma’s window can strongly affect performance. Crowding can become stronger [12] or

weaker [10,13–16] when elements are presented outside Bouma’s window. Hence, local mod-

els cannot provide a complete account of crowding. In addition to spatial extent, it is the spe-

cific stimulus configuration that determines crowding. Configurational effects are not small

modulations of crowding but have large effect sizes and, more importantly, can qualitatively

change the pattern of results. For example in Fig 2B, performance changes in a non-linear U-

shaped fashion with best performance for the unflanked target, strong crowding for few flank-

ers, and weaker crowding when flankers make up a regular configuration.

A major question is at which computational level crowding occurs. In local models, only

nearby elements interfere with target processing, often due to low level mechanisms such as

pooling. In global models, features across the entire visual field are potentially important.

Global interactions may be restricted to low level features, such as the orientations of the stim-

ulus elements. At the other extreme, explicitly computing objects (such as the squares in Fig 2)

may turn out to be necessary. Likewise, face crowding may or may not necessitate the explicit

computation of faces [8,52,59,60]. For this reason, some global models explicitly compute

grouping-like aspects. Only elements within a group interfere with each other. Classically,

models restricting themselves to lower level features are given priority because they offer more

parsimonious explanations.

Model comparison

Here, we investigated all available models suited to explain the global aspects of crowding.

All models (leaving aside Deep Textures, which was never proposed to explain crowding

with laboratory stimuli) produced crowding comparable to the human data. However, only

the LAMINART model was consistently able to produce uncrowding (Figs 14 & 15). The Wil-

son and Cowan network produced uncrowding only for the squares category (and to a lesser

extent for the irregular1 category). The Fourier model produced uncrowding only for the

Gestalts and lines stimuli. In both models, uncrowding depended heavily on parameter values,

a signature of overfitting. In the Wilson and Cowan network, the end-stopped receptive fields

led to grouping elements of similar size, but this did not generalize to explain other global

effects.

We think there are principled reasons why most models cannot reproduce most of the

global uncrowding findings. First, the effects of global configuration (Fig 2C) operate on a

much higher level than most models can capture. To phrase it this way, we think that human

performance is based on global configurations and not on simple hidden sub-regularities, such

as repeating patterns or simple summary statistics. Second, as Wallis et al. [37] put it: “Based

on our experiments we speculate that the concept of summary statistics cannot fully account

for peripheral scene appearance. Pooling in fixed regions will either discard (long-range) struc-

ture that should be preserved or preserve (local) structure that could be discarded. Rather, we

believe that the size of pooling regions needs to depend on image content”. For this reason, we

think that performance in crowding cannot be explained simply as a by-product of basic spa-

tial processing, e.g., by summary statistics. In contrast, which elements interfere seems to

depend on the global stimulus layout. We propose that the LAMINART can consistently pro-

duce uncrowding because it can deal with this requirement by incorporating a grouping-like

process: elements linked by illusory contours are grouped together and segmented from ele-

ments in other groups. Interference happens only between elements within a group.

Another way to approach the importance of grouping for crowding is that it provides extra

information that makes one condition inherently easier than another. Vernier acuity tasks are
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often thought to be mediated by the responses of one or more feature detectors. Each feature

detector might itself look like a vernier offset, or might be similar to an orientation detector

such as a Gabor. Regardless, correct performance at the vernier task requires precise placement

of the detector; a slightly misplaced detector can easily give the wrong answer, particularly

when the vernier is flanked by other stimuli. Crowding induces location uncertainty. Any

information that can help correctly place the detector–essentially any cue to the right posi-

tion–would improve performance. Strong stimulus grouping could be one such cue (Rosen-

holtz et al., under review). In this case too, it is crucial to understand how the brain groups

visual elements across the entire visual field.

The LAMINART model links elements by illusory contours, which is a rather basic group-

ing mechanism. It remains an open question whether more complex features are necessary to

explain crowding/uncrowding such as an explicit computation of objects, e.g. squares, faces

etc. For example, can the irregular shapes category be explained with simple contour integra-

tion? Likewise, it remains an open question whether face crowding can be explained without

the explicit computation of faces.

In the LAMINART model, the grouping and interference processes are separate. Alterna-

tively, grouping and interference may be intimately linked. One possibility is that the groups

correspond to optimal statistical representations. For example, elements may form a group

when they can be well compressed by summary statistics. In this scenario, grouping is part of

the summary statistics process itself. There are probably many other ways in which grouping

may play a role.

A major problem with the grouping approach is the lack of a well-defined, objective mea-

sure of grouping. If there is no objective measure, groups can be chosen ad hoc to explain

experimental results, leading to circular explanations. As a first step towards an objective mea-

sure of grouping, subjective measures (i.e., asking observers to report what they feel belongs to

a group) can complement studies. Such subjective ratings about perceptual groups have corre-

lated well with psychophysical performance levels [11].

Future models

As we have shown, none of the current models can fully explain (un)crowding. What would

the model of the future look like? What components are crucial?

First, as mentioned earlier, we can rule out local models because elements across large parts

of the visual field influence perception of the target.

Second, to explain the complex effects of spatial configurations in crowding, our results

suggest that grouping-like, mid or higher level aspects need to be incorporated in a model.

However, the exact nature of this process is unknown. For example, it may or may not be that

mid-level processing is sufficient. In addition, the incorporation of higher level processes does

not exclude the additional use of summary statistics and other lower level components. The

grouping stage is difficult to study because of the seemingly infinite number of possible visual

configurations. We believe that new tools are needed to help navigate the huge search space

effectively. For example, Van der Burg, Olivers, & Cass [61] have proposed a genetic algorithm

to find configurational features important for crowding.

Third, we cannot rule out feedforward models. Indeed, it is a mathematical fact that any

recurrent model can be “unfolded” into a feed-forward network [62–64]. However, these feed-

forward models are usually extremely large and computationally expensive. For this reason, we

suggest that models with feedback connections are much more likely to be able to explain how

complex spatial configurations influence target processing. For example, higher level grouping

processing, such as computing the squares and grouping them together, may feed back to
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lower level processing of the target, i.e., the vernier. Support for this hypothesis comes from

the finding that the Alexnet CNN could not produce uncrowding, presumably because high-

level features cannot influence low-level processing.

Fourth, the nature of interference remains unclear. One option is that interference occurs

during complex spatial processing by an unknown mechanism. Another option is that the clas-

sic interference mechanisms operate after complex spatial processing is accomplished. For

example, pooling may occur only for grouped elements. In the same line of reasoning, Chaney

et al. [51], Van den Berg et al. [54] and Harrison & Bex [65] noted that adding a grouping

stage to their interference mechanism may help explain a wider range of results. Combining

complex spatial processing with good interference mechanisms may, therefore, allow for a

happy marriage between interference- and grouping-based mechanisms leading to a truly uni-

fied model of crowding.

Conclusion

The global stimulus configuration plays a crucial role in crowding, which cannot be captured

by local models. For this reason, we propose that models of crowding need to include grouping

like processes. While our results show that none of the current models lacking a grouping pro-

cess can explain the global uncrowding phenomena, they may be good candidates for a poten-

tial second, interference stage.

How are basic features of the visual field grouped to form objects? The most successful

model we analyzed, the LAMINART variation, suggests that this is done by linking features

together by illusory contours. Further work is needed to assess how far this mechanism can go

and what alternative or additional components are necessary, such as summary statistics. For

example, the groups may correspond to optimal statistical representations (elements that can

easily be compressed using summary statistics would form a group).

Most importantly, large scale, configurational effects are not restricted to visual crowding

with vernier targets. Uncrowding occurs also for letters and Gabors [66], as well as in audition

[23] and haptics [24]. Similar effects are found in backward masking [67] and overlay masking

[17,68]. Hence, crowding is a special case of contextual processing. Vision research has largely

missed these aspects because of the use of well-controlled stimuli, which are usually presented

in isolation or with only a few nearby flankers. Our results suggest that in order to understand

vision in general, a mid-level, contextual processing stage is inevitable.

Acknowledgments

We thank Thomas Wallis, Alexander Ecker and Mauro Manassi for helpful discussions and

the reviewers for insightful comments. We also thank the authors who shared their code on

the web or by email.

Author Contributions

Conceptualization: Adrien Doerig, Michael H. Herzog.

Formal analysis: Adrien Doerig, Alban Bornet, Aaron M. Clarke.

Software: Adrien Doerig, Alban Bornet, Aaron M. Clarke.

Supervision: Michael H. Herzog.

Writing – original draft: Adrien Doerig.

Writing – review & editing: Adrien Doerig, Alban Bornet, Ruth Rosenholtz, Gregory Francis,

Aaron M. Clarke, Michael H. Herzog.

Beyond Bouma’s window: How to explain global aspects of crowding?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006580 May 10, 2019 25 / 28

https://doi.org/10.1371/journal.pcbi.1006580


References
1. Bouma H. Visual interference in the parafoveal recognition of initial and final letters of words. Vision

Res. 1973; 13: 767–782. https://doi.org/10.1016/0042-6989(73)90041-2 PMID: 4706350

2. Levi DM. Crowding-An essential bottleneck for object recognition: A mini-review. Vision Res. 2008; 48:

635–654. https://doi.org/10.1016/j.visres.2007.12.009 PMID: 18226828

3. Pelli DG, Palomares M, Majaj NJ. Crowding is unlike ordinary masking: Distinguishing feature integra-

tion from detection. J Vis. 2004; 4: 12–12. https://doi.org/10.1167/4.12.12 PMID: 15669917

4. Strasburger H, Harvey LO, Rentschler I. Contrast thresholds for identification of numeric characters in

direct and eccentric view. Percept Psychophys. 1991; 49: 495–508. https://doi.org/10.3758/

BF03212183 PMID: 1857623

5. Pelli DG. Crowding: a cortical constraint on object recognition. Curr Opin Neurobiol. 2008; 18: 445–451.

https://doi.org/10.1016/j.conb.2008.09.008 PMID: 18835355

6. Pelli DG, Tillman KA. The uncrowded window of object recognition. Nat Neurosci. 2008; 11: 1129–

1135. https://doi.org/10.1038/nn.2187 PMID: 18828191

7. Ester EF, Klee D, Awh E. Visual crowding cannot be wholly explained by feature pooling. J Exp Psychol

Hum Percept Perform. 2014; 40: 1022. https://doi.org/10.1037/a0035377 PMID: 24364703

8. Manassi M, Whitney D. Multi-level Crowding and the Paradox of Object Recognition in Clutter. Curr

Biol. 2018; 28: R127–R133. https://doi.org/10.1016/j.cub.2017.12.051 PMID: 29408262

9. Whitney D, Haberman J, Sweeny TD. From textures to crowds: multiple levels of summary statistical

perception. New Vis Neurosci. 2014; 695–710.

10. Malania M, Herzog MH, Westheimer G. Grouping of contextual elements that affect vernier thresholds.

J Vis. 2007; 7: 1–1. https://doi.org/10.1167/7.2.1 PMID: 18217816

11. Manassi M, Sayim B, Herzog MH. Grouping, pooling, and when bigger is better in visual crowding. J

Vis. 2012; 12: 13–13. https://doi.org/10.1167/12.10.13 PMID: 23019118

12. Vickery TJ, Shim WM, Chakravarthi R, Jiang YV, Luedeman R. Supercrowding: Weakly masking a tar-

get expands the range of crowding. J Vis. 2009; 9: 12–12. https://doi.org/10.1167/9.2.12 PMID:

19271922

13. Banks WP, Larson DW, Prinzmetal W. Asymmetry of visual interference. Percept Psychophys. 1979;

25: 447–456. https://doi.org/10.3758/BF03213822 PMID: 492909

14. Livne T, Sagi D. Configuration influence on crowding. J Vis. 2007; 7: 4–4. https://doi.org/10.1167/7.2.4

PMID: 18217819

15. Manassi M, Lonchampt S, Clarke A, Herzog MH. What crowding can tell us about object representa-

tions. J Vis. 2016; 16: 35–35. https://doi.org/10.1167/16.3.35 PMID: 26913627

16. Põder E. Crowding, feature integration, and two kinds of “attention.” J Vis. 2006; 6: 7–7. https://doi.org/

10.1167/6.2.7 PMID: 16522143

17. Sayim B, Westheimer G, Herzog MH. Gestalt factors modulate basic spatial vision. Psychol Sci. 2010;

21: 641–644. https://doi.org/10.1177/0956797610368811 PMID: 20483840

18. Herzog MH, Sayim B, Chicherov V, Manassi M. Crowding, grouping, and object recognition: A matter of

appearance. J Vis. 2015; 15: 5–5. https://doi.org/10.1167/15.6.5 PMID: 26024452

19. Manassi M, Sayim B, Herzog MH. When crowding of crowding leads to uncrowding. J Vis. 2013; 13:

10–10. https://doi.org/10.1167/13.13.10 PMID: 24213598

20. Herzog MH, Manassi M. Uncorking the bottleneck of crowding: a fresh look at object recognition. Curr

Opin Behav Sci. 2015; 1: 86–93. https://doi.org/10.1016/j.cobeha.2014.10.006

21. Chakravarthi R, Pelli DG. The same binding in contour integration and crowding. J Vis. 2011; 11: 10–

10. https://doi.org/10.1167/11.8.10 PMID: 21757504

22. Livne T, Sagi D. Multiple levels of orientation anisotropy in crowding with Gabor flankers. J Vis. 2011;

11: 18–18. https://doi.org/10.1167/11.13.18 PMID: 22101017

23. Oberfeld D, Stahn P. Sequential grouping modulates the effect of non-simultaneous masking on audi-

tory intensity resolution. PloS One. 2012; 7: e48054. https://doi.org/10.1371/journal.pone.0048054

PMID: 23110174

24. Overvliet KE, Sayim B. Perceptual grouping determines haptic contextual modulation. Vision Res.

2016; 126: 52–58. https://doi.org/10.1016/j.visres.2015.04.016 PMID: 25982716

25. DiCarlo JJ, Zoccolan D, Rust NC. How Does the Brain Solve Visual Object Recognition? Neuron. 2012;

73: 415–434. https://doi.org/10.1016/j.neuron.2012.01.010 PMID: 22325196

26. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2.

Beyond Bouma’s window: How to explain global aspects of crowding?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006580 May 10, 2019 26 / 28

https://doi.org/10.1016/0042-6989(73)90041-2
http://www.ncbi.nlm.nih.gov/pubmed/4706350
https://doi.org/10.1016/j.visres.2007.12.009
http://www.ncbi.nlm.nih.gov/pubmed/18226828
https://doi.org/10.1167/4.12.12
http://www.ncbi.nlm.nih.gov/pubmed/15669917
https://doi.org/10.3758/BF03212183
https://doi.org/10.3758/BF03212183
http://www.ncbi.nlm.nih.gov/pubmed/1857623
https://doi.org/10.1016/j.conb.2008.09.008
http://www.ncbi.nlm.nih.gov/pubmed/18835355
https://doi.org/10.1038/nn.2187
http://www.ncbi.nlm.nih.gov/pubmed/18828191
https://doi.org/10.1037/a0035377
http://www.ncbi.nlm.nih.gov/pubmed/24364703
https://doi.org/10.1016/j.cub.2017.12.051
http://www.ncbi.nlm.nih.gov/pubmed/29408262
https://doi.org/10.1167/7.2.1
http://www.ncbi.nlm.nih.gov/pubmed/18217816
https://doi.org/10.1167/12.10.13
http://www.ncbi.nlm.nih.gov/pubmed/23019118
https://doi.org/10.1167/9.2.12
http://www.ncbi.nlm.nih.gov/pubmed/19271922
https://doi.org/10.3758/BF03213822
http://www.ncbi.nlm.nih.gov/pubmed/492909
https://doi.org/10.1167/7.2.4
http://www.ncbi.nlm.nih.gov/pubmed/18217819
https://doi.org/10.1167/16.3.35
http://www.ncbi.nlm.nih.gov/pubmed/26913627
https://doi.org/10.1167/6.2.7
https://doi.org/10.1167/6.2.7
http://www.ncbi.nlm.nih.gov/pubmed/16522143
https://doi.org/10.1177/0956797610368811
http://www.ncbi.nlm.nih.gov/pubmed/20483840
https://doi.org/10.1167/15.6.5
http://www.ncbi.nlm.nih.gov/pubmed/26024452
https://doi.org/10.1167/13.13.10
http://www.ncbi.nlm.nih.gov/pubmed/24213598
https://doi.org/10.1016/j.cobeha.2014.10.006
https://doi.org/10.1167/11.8.10
http://www.ncbi.nlm.nih.gov/pubmed/21757504
https://doi.org/10.1167/11.13.18
http://www.ncbi.nlm.nih.gov/pubmed/22101017
https://doi.org/10.1371/journal.pone.0048054
http://www.ncbi.nlm.nih.gov/pubmed/23110174
https://doi.org/10.1016/j.visres.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/25982716
https://doi.org/10.1016/j.neuron.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22325196
https://doi.org/10.1371/journal.pcbi.1006580


27. Balas B, Nakano L, Rosenholtz R. A summary-statistic representation in peripheral vision explains

visual crowding. J Vis. 2009; 9: 13–13. https://doi.org/10.1167/9.12.13 PMID: 20053104

28. Jojic N, Frey BJ, Kannan A. Epitomic analysis of appearance and shape. Proceedings Ninth IEEE Inter-

national Conference on Computer Vision. 2003. pp. 34–41 vol. 1. https://doi.org/10.1109/ICCV.2003.

1238311

29. Portilla J, Simoncelli EP. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet

Coefficients. Int J Comput Vis. 2000; 40: 49–70. https://doi.org/10.1023/A:1026553619983

30. Zhang X, Huang J, Yigit-Elliott S, Rosenholtz R. Cube search, revisited. J Vis. 2015; 15: 9–9.

31. Freeman J, Simoncelli EP. Metamers of the ventral stream. Nat Neurosci. 2011; 14: 1195–1201. https://

doi.org/10.1038/nn.2889 PMID: 21841776

32. Keshvari S, Rosenholtz R. Pooling of continuous features provides a unifying account of crowding. J

Vis. 2016; 16: 39–39. https://doi.org/10.1167/16.3.39 PMID: 26928055

33. Rosenholtz R, Huang J, Raj A, Balas BJ, Ilie L. A summary statistic representation in peripheral vision

explains visual search. J Vis. 2012; 12: 14–14. https://doi.org/10.1167/12.4.14 PMID: 22523401

34. Rosenholtz R, Yu D, Keshvari S. Challenges to pooling models of crowding: Implications for visual

mechanisms. J Vis. 19.

35. Gatys L, Ecker AS, Bethge M. Texture Synthesis Using Convolutional Neural Networks. In: Cortes C,

Lawrence ND, Lee DD, Sugiyama M, Garnett R, editors. Advances in Neural Information Processing

Systems 28. Curran Associates, Inc.; 2015. pp. 262–270. Available: http://papers.nips.cc/paper/5633-

texture-synthesis-using-convolutional-neural-networks.pdf

36. Wallis TSA, Funke CM, Ecker AS, Gatys LA, Wichmann FA, Bethge M. A parametric texture model

based on deep convolutional features closely matches texture appearance for humans. J Vis. 2017; 17:

5–5. https://doi.org/10.1167/17.12.5 PMID: 28983571

37. Wallis T, Funke C, Ecker A, Gatys L, Wichmann F, Bethge M. Towards matching peripheral appearance

for arbitrary natural images using deep features. J Vis. 2017; 17: 786–786.

38. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic ner-

vous tissue. Kybernetik. 1973; 13: 55–80. https://doi.org/10.1007/BF00288786 PMID: 4767470

39. Hermens F, Luksys G, Gerstner W, Herzog MH, Ernst U. Modeling spatial and temporal aspects of

visual backward masking. Psychol Rev. 2008; 115: 83. https://doi.org/10.1037/0033-295X.115.1.83

PMID: 18211186

40. Panis S, Hermens F. Time course of spatial contextual interference: Event history analyses of simulta-

neous masking by nonoverlapping patterns. J Exp Psychol Hum Percept Perform. 2014; 40: 129.

https://doi.org/10.1037/a0032949 PMID: 23713795

41. Clarke AM, Herzog MH, Francis G. Visual crowding illustrates the inadequacy of local vs. global and

feedforward vs. feedback distinctions in modeling visual perception. Front Psychol. 2014; 5.

42. Li Z. Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cor-

tex. Netw Comput Neural Syst. 1999; 10: 187–212.

43. Zhaoping L. V1 mechanisms and some figure–ground and border effects. J Physiol-Paris. 2003; 97:

503–515. https://doi.org/10.1016/j.jphysparis.2004.01.008 PMID: 15242660

44. Cao Y, Grossberg S. A laminar cortical model of stereopsis and 3D surface perception: closure and da

Vinci stereopsis. Spat Vis. 2005; 18: 515–578. https://doi.org/10.1163/156856805774406756 PMID:

16312095

45. Francis G, Manassi M, Herzog MH. Neural dynamics of grouping and segmentation explain properties

of visual crowding. 2017;

46. Grossberg S. Towards solving the hard problem of consciousness: The varieties of brain resonances

and the conscious experiences that they support. Neural Netw. 2017; 87: 38–95. https://doi.org/10.

1016/j.neunet.2016.11.003 PMID: 28088645

47. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436–444. https://doi.org/10.1038/

nature14539 PMID: 26017442

48. Lin HW, Tegmark M, Rolnick D. Why Does Deep and Cheap Learning Work So Well? J Stat Phys.

2017; 168: 1223–1247. https://doi.org/10.1007/s10955-017-1836-5

49. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems. 2012. pp. 1097–1105.

50. Abadi Martı́n, Agarwal Ashish, Barham Paul, Brevdo Eugene, Chen Zhifeng, Citro Craig, et al. Tensor-

Flow: Large-Scale Machine Learning on Heterogeneous Systems [Internet]. 2015. Available: https://

www.tensorflow.org/

51. Chaney W, Fischer J, Whitney D. The hierarchical sparse selection model of visual crowding. Front

Integr Neurosci. 2014; 8.

Beyond Bouma’s window: How to explain global aspects of crowding?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006580 May 10, 2019 27 / 28

https://doi.org/10.1167/9.12.13
http://www.ncbi.nlm.nih.gov/pubmed/20053104
https://doi.org/10.1109/ICCV.2003.1238311
https://doi.org/10.1109/ICCV.2003.1238311
https://doi.org/10.1023/A:1026553619983
https://doi.org/10.1038/nn.2889
https://doi.org/10.1038/nn.2889
http://www.ncbi.nlm.nih.gov/pubmed/21841776
https://doi.org/10.1167/16.3.39
http://www.ncbi.nlm.nih.gov/pubmed/26928055
https://doi.org/10.1167/12.4.14
http://www.ncbi.nlm.nih.gov/pubmed/22523401
http://papers.nips.cc/paper/5633-texture-synthesis-using-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/5633-texture-synthesis-using-convolutional-neural-networks.pdf
https://doi.org/10.1167/17.12.5
http://www.ncbi.nlm.nih.gov/pubmed/28983571
https://doi.org/10.1007/BF00288786
http://www.ncbi.nlm.nih.gov/pubmed/4767470
https://doi.org/10.1037/0033-295X.115.1.83
http://www.ncbi.nlm.nih.gov/pubmed/18211186
https://doi.org/10.1037/a0032949
http://www.ncbi.nlm.nih.gov/pubmed/23713795
https://doi.org/10.1016/j.jphysparis.2004.01.008
http://www.ncbi.nlm.nih.gov/pubmed/15242660
https://doi.org/10.1163/156856805774406756
http://www.ncbi.nlm.nih.gov/pubmed/16312095
https://doi.org/10.1016/j.neunet.2016.11.003
https://doi.org/10.1016/j.neunet.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/28088645
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/s10955-017-1836-5
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1371/journal.pcbi.1006580


52. Fischer J, Whitney D. Object-level visual information gets through the bottleneck of crowding. J Neuro-

physiol. 2011; 106: 1389–1398. https://doi.org/10.1152/jn.00904.2010 PMID: 21676930

53. Nandy AS, Tjan BS. Saccade-confounded image statistics explain visual crowding. Nat Neurosci. 2012;

15: 463–469. https://doi.org/10.1038/nn.3021 PMID: 22231425

54. Van den Berg R, Roerdink JB, Cornelissen FW. A neurophysiologically plausible population code

model for feature integration explains visual crowding. PLoS Comput Biol. 2010; 6: e1000646. https://

doi.org/10.1371/journal.pcbi.1000646 PMID: 20098499

55. Harrison WJ, Bex PJ. A Unifying Model of Orientation Crowding in Peripheral Vision. Curr Biol. 2015;

25: 3213–3219. https://doi.org/10.1016/j.cub.2015.10.052 PMID: 26628010

56. Dayan P, Solomon JA. Selective Bayes: Attentional load and crowding. Vision Res. 2010; 50: 2248–

2260. https://doi.org/10.1016/j.visres.2010.04.014 PMID: 20435055

57. Pachai MV, Doerig AC, Herzog MH. How best to unify crowding? Curr Biol. 2016; 26: R352–R353.

https://doi.org/10.1016/j.cub.2016.03.003 PMID: 27166689

58. Agaoglu MN, Chung ST. Can (should) theories of crowding be unified? J Vis. 2016; 16: 10–10.

59. Kalpadakis-Smith A, Goffaux V, Greenwood J. Crowding for faces is determined by visual (not holistic)

similarity: Evidence from judgements of eye position. 2017;

60. Sun H-M, Balas B. Face features and face configurations both contribute to visual crowding. Atten Per-

cept Psychophys. 2015; 77: 508–519. https://doi.org/10.3758/s13414-014-0786-0 PMID: 25341649

61. Van der Burg E, Olivers CN, Cass J. Evolving the keys to visual crowding. J Exp Psychol Hum Percept

Perform. 2017; 43: 690. https://doi.org/10.1037/xhp0000337 PMID: 28182476

62. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neu-

ral Netw. 1989; 2: 359–366.
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