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ABSTRACT

Inference of active regulatory mechanisms under-
lying specific molecular and environmental pertur-
bations is essential for understanding cellular re-
sponse. The success of inference algorithms relies
on the quality and coverage of the underlying net-
work of regulator–gene interactions. Several com-
mercial platforms provide large and manually curated
regulatory networks and functionality to perform in-
ference on these networks. Adaptation of such plat-
forms for open-source academic applications has
been hindered by the lack of availability of accu-
rate, high-coverage networks of regulatory interac-
tions and integration of efficient causal inference
algorithms. In this work, we present CIE, an inte-
grated platform for causal inference of active reg-
ulatory mechanisms form differential gene expres-
sion data. Using a regularized Gaussian Graphical
Model, we construct a transcriptional regulatory net-
work by integrating publicly available ChIP-seq ex-
periments with gene-expression data from tissue-
specific RNA-seq experiments. Our GGM approach
identifies high confidence transcription factor (TF)–
gene interactions and annotates the interactions with
information on mode of regulation (activation vs.
repression). Benchmarks against manually curated
databases of TF–gene interactions show that our
method can accurately detect mode of regulation.
We demonstrate the ability of our platform to iden-
tify active transcriptional regulators by using con-
trolled in vitro overexpression and stem-cell differen-
tiation studies and utilize our method to investigate
transcriptional mechanisms of fibroblast phenotypic
plasticity.

INTRODUCTION

Technological advancements in high-throughput sequenc-
ing have made it possible to measure expression of genes at
a relatively low cost. However, the direct measurement of
regulatory mechanisms, such as transcription factor (TF)
activity, in a high-throughput manner is still not readily
available. Consequently, there is a need for computational
approaches that can identify active regulatory mechanisms
from observable gene expression data. The scientific com-
munity has developed a multitude of algorithms and bio-
physical models to study the impact of TF activity on gene
expression. Some of these algorithms attempt to infer TF
activity and dynamics directly from gene expression data
(1,2). Others rely on biophysical approaches to model ex-
pression of genes based on known TF–gene interactions (3).
Another class of algorithms, which are the main focus of
this work, use prior biological knowledge on biomolecu-
lar interactions to link a differential gene expression (DGE)
profile to upstream regulators (e.g. TFs) (4–7). The essential
ingredients of these algorithms are (i) a DGE profile, (ii) a
network of biomolecular interactions and (iii) an inference
algorithm to query the network.

The DGE profile as obtained from RNA-seq or microar-
ray studies is the observable input and quantifies the differ-
ence in transcript abundance between two conditions (e.g.
healthy versus disease, stimulated versus not stimulated,
etc.). The network of biomolecular interactions encapsu-
lates the prior biological knowledge. The accuracy and abil-
ity of inference algorithms to identify upstream molecu-
lar drivers of observed DGE profiles rely to a large de-
gree on the quality and coverage of the network and avail-
ability of auxiliary information on interactions within the
network. There are several sources of publicly available
protein–protein interactions (PPIs) and signaling pathways
(e.g. STRINGdb (8), Pathway Commons (9), Kyto Encyclo-
pedia of Genes and Genomes (KEGG) Pathways (10), etc.).
In case of regulatory networks, Ingenuity (www.ingenuity.
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com) provides a high-coverage manually curated network
of regulatory interactions in an integrated platform, Inge-
nuity Pathway Analysis tool (4). Among other things, this
platform provides pathway inference, enrichment analysis
functionality and network visualization tools. However, the
Ingenuity tools are inaccessible for the majority of academic
applications and there is a need for freely available alterna-
tives for academic purposes.

Several approaches for reconstruction of regulatory net-
works form gene expression data have been proposed by
the scientific community. These approaches can be broadly
categorized as (i) co-expression based approaches (11,12),
(ii) non-steady state approaches based on time-series anal-
ysis (13) and (iii) text-mining approaches (14–16). In co-
expression based approaches, the objective is to identify
gene–regulator interactions by analyzing correlation pat-
terns using a variety of methods, including direct correla-
tion, partial correlation (e.g. using GGMs) (17), mutual in-
formation based methods (18) and Bayesian network re-
construction methods (19,20). A limitation of these ap-
proaches is that the recovered interactions are typically as-
sociative (undirected). Methods based on non-steady state
approaches typically attempt to inference the dynamics of
gene–regulator interactions and can yield more accurate re-
sults (21). However, they require time-course gene expres-
sion data across multiple conditions, which may not be
readily available. Text-mining based methods attempt to ex-
tract interactions from biomedical literature. There is vast
body of literature on these approaches and several data-
bases include interactions obtained from text-mining meth-
ods (14). These approaches, however, typically yield low
coverage and assessing false positives can be very chal-
lenging. It should be noted that several of the aforemen-
tioned methods utilize other sources of information as prior
knowledge to increase the accuracy of the recovered net-
work. In particular methods based on interventional data
(e.g. single gene KO) are very promising (22,23). However,
these approaches are tailored for a specific condition or par-
ticular pathways and generalization to multiple conditions
is currently infeasible.

Consequently, several public sources of gene regulatory
interactions are derived from aforementioned computa-
tional and experimental approaches. These sources include
the Transcriptional Regulatory Element Database (TRED)
(24), the Transcription Regulatory Regions Database
(TRRD) (25) and Transcriptional Regulatory Relationships
Unraveled by Sentence-based Text Mining (TRRUST) (14).
These databases provide valuable information on gene reg-
ulatory mechanisms, but drawbacks exist. The scope of the
databases containing experimentally validated interactions
are very small, and cover only a fraction of TF–gene in-
teractions. On the other hand, databases of computation-
ally predicted and expression-driven interactions are typi-
cally very noisy. Importantly, the majority of the databases
do not report the direction of regulation (activation ver-
sus repression)––which is crucial to understanding the func-
tional behavior of the cell.

In this work, we present Causal Inference Engine (CIE),
a platform for active regulator inference on biological net-
works consisting of a web-server and a user-friendly R-
package. The platform provides various inference models,

including methods based on Fisher’s exact test (enrich-
ment test) as well as directional enrichment models that
can utilize information on mode of regulation (6,7). More-
over, we present an approach based on regularized Gaus-
sian Graphical Models (GGM) to construct an accurate
and high-coverage annotated networks of TF–gene regu-
latory interactions. We achieve this by integrating publicly
available high-throughput ChIP-seq experiments deposited
in ChIP-Atlas (26) with tissue specific gene expression data
from GTEx (27). The key differences of our approach from
previous approaches include: (i) TF–gene interactions de-
rived from ChIP-seq experiments are utilized to construct a
penalty matrix encoding the prior causal graph of TF–gene
interactions. (ii) The penalty matrix is utilized to regular-
ize the log-likelihood of a GGM constructed from tissue-
specific gene expression data, from which a posterior TF–
gene interaction is constructed. The design of the regular-
ization is such that the GGM essentially eliminates the in-
teractions in the prior ChIP-network that are not supported
by the expression data, resulting in posterior tissue-specific
and causal ChIP-networks. (iii) An additional advantage is
determination of the mode of regulation of the posterior in-
teractions, resulting in network of annotated tissue-specific
TF–gene interactions. (iv) In addition to tissue specific in-
teractions, we provide cross-tissue interactions, i.e. interac-
tions that appear in multiple tissues and are in a sense ‘Uni-
versally applicable’. (v) Subsequent integrated algorithms
in the CIE platform for directional enrichment analysis, de-
signed to identify active transcriptional regulators of DGE
data provides a comprehensive pipeline for analysis of tran-
scriptional regulators.

We show the consistency and accuracy of our recon-
structed network by benchmarking against manually cu-
rated interactions in the gold standard databases. We
demonstrate the utility of our platform in identifying active
regulators using controlled in vitro overexpression studies as
well as more complex gene expression data from a stem cell
differentiation experiment. Additionally, we show how our
platform can assist in identifying novel transcriptional reg-
ulatory mechanisms using gene expression data from pri-
mary prostate fibroblast cells stimulated with TGF� and
CXCL12. Although our focus in this work is on transcrip-
tional regulatory networks, the R-package provides func-
tionality to perform inference on any type of user provided
network. The CIE platform provides higher-order path-
way enrichment analysis on identified active regulators us-
ing Reactome pathways (28). Figure 1 shows a schematic
overview of the CIE platform.

MATERIALS AND METHODS

Regulatory network

The interaction network can be viewed as a graph G = (V,
E), consisting of a set of nodes V (biological entities) and a
set of edges E = (u, v). The network is not limited to inter-
actions between TFs and genes and can include other types
of interactions (e.g. interactions between compounds and
proteins, PPIs, etc.). Some of these edges may be associa-
tions (an undirected edge u − v, indicating change in u is
correlated with change in v), causal (a directed edge u → v,
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Figure 1. CIE platform for inference of active regulators. CIE takes a user provided DGE profile as input (left panel). User selects a prior regulatory
network from the provided databases. In the server side (middle panel), the input is processed and the Shiny app calls R functions to perform the inference
analysis based on the user selected options. Predicted active regulators associated with the DEG profile are displayed with interactive graphics and are
downloadable in table format (right panel). CIE also offers pathway enrichment analysis by mapping the inferred regulators to pathways from the Reactome
database.

indicating that u regulates v) or signed causal (with + or −,
indicating mode of regulation).

Databases

We utilized three sources of TF–gene interaction networks.
Our criterion for inclusion was that they either must include
high-confidence, manually curated interactions with liter-
ature support or must have direct experimental evidence.
These sources are:

(i) The TRRUST database: TRRUST (14) is a manually
curated database of human transcriptional regulatory net-
work derived from PubMed articles with partial informa-
tion on mode of regulation. It contains 9396 regulatory in-
teractions between 795 human TFs and 2067 target genes.

(ii) The TRED database: TRED (24) is an integrated
repository for both cis- and trans- regulatory elements in
mammals with experimental evidence. It includes a total of
6726 interactions between 36 TF and 2910 genes. These in-
teractions are not annotated with mode of regulation.

(iii) ChIP-seq derived TF–gene interactions: we obtained
all publicly available ChIP-seq data (>96 000 experiments)
that are processed and deposited into ChIP-Atlas (26). A
TF–gene interaction network was assembled by merging all
experiments and applying various filters for peak signal in-
tensity (0–1000) and distance to the transcription start site
(TSS) (1, 5 and 10 kb). These filters are integrated in the CIE
platform and can be applied interactively in the web-app.
For example, peak intensity score of 500 and distance of 5
kb to TSS results in 185 271 interactions between 642 TFs
and 16 148 target genes. Note that ChIP-seq network does
not directly provide information on mode of regulation and
all TF–gene interactions in this database are unannotated.

(iv) STRINGdb: In addition to TF–gene interactions, we
also included Protein-gene interactions from STRINGdb
(8). STRINGdb includes PPIs from various sources includ-
ing curated, experimentally supported and computationally
derived interactions. Some of the interactions are causal
and annotated, but most interactions in the STRINGdb are
undirected. For each undirected PPI u − v, we constructed
two directed interactions u → v and v → u.

Differential gene expression profiles

We used several DGE profiles from microarray and RNA-
seq experiments to evaluate the utility of our platform.
For microarray data, gene expression profiles were normal-
ized and differentially expressed genes were computed us-
ing the R limma package (29). We applied a 1.3 absolute
value fold change and <0.05 False Discovery Rate (FDR)
corrected P-value filter for selecting differentially expressed
genes. RNA-seq data was processed using the HISAT2 (30)
pipeline and differentially expressed genes were identified
for each treatment the edgeR package (31). Similar filters
for FDR and fold change were applied to identify differen-
tially expressed genes. The datasets that we utilized for our
evaluation are:

(i) Controlled overexpression experiments. We utilized
three datasets from (32), in which recombinant antiviruses
were used to infect normal human epithelial cell in order
to overexpress specific oncogenes. The over expressed genes
are E2F3, c-Myc and H-Ras. There are 272, 220 and 268
differentially expressed genes compared to the WT in the
experiments respectively.

(ii) Stem cell directed differentiation. We used a time-
course in vitro differentiation model of pancreatic beta cell
development from (33). NEUROG3+ Pancreatic progeni-
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tor cells convert to NKX2-2+ endocrine cells, which are
able to further differentiate into fully functional insulin pro-
ducing cells upon implantation into mice (34). A total of
1000 differentially expressed genes were identified from this
dataset.

(iii) fibroblast phenotypic plasticity. We utilized data from
RNA-seq experiments performed on prostatic stromal fi-
broblasts stimulated with Vehicle, TGF� and CXCL12 (35).
A total of 10 032 differentially expressed genes were iden-
tified in fibroblasts treated with TGF� or CXCL12. The
DGE profile of TGF� and CXCL12 were 75% similar (7502
transcripts). A total of 1012 (10%) were induced by TGF�
treatment only and 1357 (13%) by CXCL12 treatment only.
A total of 161 (2%) were differentially regulated in opposite
directions by CXCL12 and TGF�.

Construction of transcriptional regulatory networks

The network constructed from ChIP-data is noisy as the ex-
periments are performed under various conditions in differ-
ent cell lines. Moreover, the interactions are not annotated
with mode of regulation (activation versus repression). To
reduce the noise and annotate the interactions, we utilized a
regularized Gaussian Graphical Model (glasso) (36) to in-
tegrate the ChIP-derived network with tissue specific RNA-
seq data obtained form the Genotype-Tissue Expression
project (The GTEx Consortium) (27). Processed normal-
ized gene expression values were obtained from (37), where
GTEx RNA sequencing reads from 15 tissues from 2585
paired-end RNA-seq samples were re-processed, uniformly
realigned and normalized to remove batch effects and tis-
sues with low number of samples. Every ChIP-derived in-
teraction was taken account without any filters (≈4 × 106

interactions). To construct the tissue-specific annotated reg-
ulatory networks, we estimated a sparse covariance matrix
using each tissue-expression data separately, while softly en-
forcing ChIP-derived interaction using an �1 penalty ma-
trix. Gene expression was log transformed prior to analysis.
Only protein-coding genes were utilized and genes with no
one-to-one map between Ensemble ID and HGNC symbol
were excluded.

The process of constructing a posterior network form
gene expression data and ChIP-network is as follows. Let S
denote the empirical covariance matrix estimated from the
RNA-seq expression data for a given tissue, � be the (un-
known) covariance matrix and � = �−1 be the precision
matrix. Glasso directly estimates the precision matrix � by
maximizing the �1 penalized log likelihood

L = − log(det �) + tr(S�) + k�||�||1, (1)

on the space of positive semi-definite matrices. Here � is a
shrinkage parameter matrix and k is a scaler tuning parame-
ter. The prior ChIP-network structure was incorporated in
the penalty as follows. First, we constructed an adjacency
matrix A from the ChIP-network. The rows and columns
of A were arranged by TFs first and then by genes. If there
is a connection between TF i and gene j the corresponding
entry in the adjacency matrix is set to 1 (i.e. Aij = 1), and
otherwise it is set to 0. The penalty matrix � has the same
size as the adjacency matrix. The entries of this matrix are
constant values and are set to differentially penalize the con-

nections based on the information in the adjacency matrix
as follows:

�i j =
{

λd i = j ;
λs i �= j ; Ai j = 0,
λp i �= j ; Ai j �= 0.

(2)

In our implementation, diagonal elements were not pe-
nalized (i.e. �d = 0). Interacting TFs and genes (i.e. Aij = 1)
were penalized by a small nonzero value (�s = 0.05) and
non-interacting pairs were penalized by a relatively large
value (�p = 0.5). The matrix was then scaled by a constant
value k. We utilized a path of values ranging from 1 to 6 with
step size 0.1 for k. For each scaling value, we fitted the model
by maximizing the log likelihood and calculated the corre-
sponding precision matrix �, from which a posterior reg-
ulatory network was constructed based on the conditional
independence property of GGMs (38). More precisely there
is a connection between TF i and gene j if and only if �ij
≥ �. The threshold value � was selected 1e − 4 empirically
as a small value. For each posterior network, we calculated
the scale-free property using the R-squared (R2) value be-
tween log (p(d)) and log (d) , where p(d) represents the pro-
portion of nodes in the network with d interactions (39,40).
We chose a value of k for each tissue that generated the high-
est R2 value. Figure 2 illustrates the approach. Once the final
posterior network was constructed, the signs of the interac-
tions were determined using the partial correlation matrix:

ρi j = − �i j√
�i i

√
� j j

, i �= j (3)

Note that the connections in each posterior network are
supported by both ChIP-seq data as well as by partial corre-
lation of gene expression values. A total of 15 tissue-specific
posterior network were constructed using this process. Ad-
ditionally, we examined the overlap between these networks
to identify the connections that appear across multiple tis-
sues. Such connections can be viewed as consistent universal
interactions. We refer to these network as merged networks.
In our implementation, we constructed merged network us-
ing interactions that are consistent in at least 2, 3, 4 or 5
tissues.

Inferring active regulators

CIE provided several (directional and un-directional) en-
richment tests to query the networks and identify transcrip-
tional regulators from a user provided DGE profile. The
starting point of the inference is selection of one of the
causal networks of interactions that are provided by CIE.
The type of inference depends on the availability of infor-
mation on the mode of regulation in the causal graph. The
first method is the Fisher’s exact test or the enrichment scor-
ing (ES) statistic, which is the standard for gene set enrich-
ment analysis (41). This method does not take informa-
tion on mode regulation into account. The next enrichment
method is Ternary scoring (TS) statistic proposed by Chin-
delevitch et al. (7). This method is suitable for fully anno-
tated networks. For networks with a mixture of annotated
and unannotated edges, we utilized the Quaternary scoring
(QS) statistic proposed by Fakhry et al. (6).
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Figure 2. Assembly of tissue-specific regulatory networks. The empirical covariance matrix was estimated from GTEx tissue-specific gene expression data.
ChIP-Atlas prior network was converted into an adjacency matrix of prior TF–gene interactions and softly enforced into graphical lasso using a penalty
matrix � with various degrees of stringency. The sparse precision matrix � was estimated by optimizing the penalized log likelihood, from which the
posterior network was constructed. The precision matrix encodes the direct interaction between entities in the network. A non-zero value �ij ≥ � indicates
that there is an interaction between ith TF and jth target gene. The sign of interaction (activation versus repression) is calculated from the partial correlation
matrix.

All these methods are build on a common core, calculat-
ing the goodness of the fit of the score, which measure the
agreement between predictions made by regulators in the
graph and the observed DEG profile. For each regulator in
the selected network, a contingency table is constructed that
tabulates the agreement between the predictions made by
the regulator according to the graph and the observations
based on the DGE profile. The rows of the table represent
the prediction made by the regulator and the columns rep-
resent observed differential expression profile. In case of the
ES statistic, a 2 × 2 contingency is constructed, with rows
representing genes that are predicted to be regulated or un-
regulated by the regulator according to the network, and
the columns representing genes that are observed to be reg-
ulated, or unregulated according to the observed DGE pro-
file. In case of TS statistics a 3 × 3 contingency table is con-
structed, with rows representing genes that are predicted to
be upregulated, downregulated, or unregulated by the reg-
ulator and the columns represent genes that are observed to
be upregulated, downregulated or unregulated according to
the DGE profile. At last, in case of QS statistic a 4 × 3 con-
tingency table is constructed in a similar manner with an
additional row representing regulated or unregulated corre-
sponding to unsigned edges in the network. The statistical
significance of the score is calculated using a permutation
(generalized hyper-geometric) test and the P-values are re-
ported (see Supplementary Figure S6 for the details of in-
ference algorithm).

The CIE web server

The CIE web server was implemented using R Shiny,
Docker, ShinyProxy and a NGINX web server. The ap-
plet RCytoscapeJs was used for network visualization. The
core of functionality of the web server is driven by the CIE
R package. The open-source version of Shiny is a single-
threaded web server for web applications implemented with

R. If it is used to run a web application that takes a few sec-
onds at most to load, this will not cause any noticeable im-
pairment. However, CIE takes up to several minutes to load
and the open-source Shiny web server cannot allow another
user to connect during this time as it can only do one task at
a time. To overcome this limitation, we used ShinyProxy and
Docker container to allow creation of multiple instances.
ShinyProxy detects a new user’s request and starts a Docker
container of CIE application specifically for the user. NG-
INX takes the request from the user and forwards it through
reverse proxy to ShinyProxy. The CIE web server is located
at ‘https://umbibio.math.umb.edu/cie/app’, and is accessi-
ble by all major browsers. The inference result table con-
sists of the regulator’s symbol, total number of target genes,
number of the significant target genes (i.e. differentially ex-
pressed genes), and the corresponding P-values. The result
table can be downloaded in a text format. Users can also
run higher-order pathway enrichment analysis by mapping
the inferred regulators to Reactome pathways (28).

The CIE R-package

We also provide CIE R-package for offline and local usage
available to download at ‘https://github.com/umbibio/CIE-
R-Package’, under the GNU public license. The package is
capable of producing the same plots and results as the web
server with a simple function call and allows for more fine-
tune control, automation and customized input networks.
The CIE R package is parallelized to provide efficient and
fast inference. It utilizes the multidplyr and dopar packages
to implement this parallel computation. Multidplyr allows
the table of statistics from which enrichment is calculated
to be produced quickly, and dopar calculates the P-values
in parallel by wrapping a function call to their calculator.
Our package is documented and includes a comprehensive
manual and instructional vignettes.

https://umbibio.math.umb.edu/cie/app
https://github.com/umbibio/CIE-R-Package
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RESULTS

We performed our GGM approach to integrate ChIP-
derived network from ChIP-Atlas (26) with tissue-specific
gene expression data from GTEx (27) (Supplementary Ta-
ble S1). For each tissue, a grid of regularization parameters
was applied, and the best network based on the highest R-
squared value was selected (Supplementary Table S2). We
also identified the optimal networks using a cross valida-
tion strategy and compared the results with the R-squared
metric (Supplementary Table S4).

Summary statistics

We examined the overlap between recovered interactions in
each tissue. Figure 3A shows the number of recovered regu-
latory interactions shared between tissues. Interactions that
appear across several tissues are called consistent and reflect
non-tissue specific, universal TF–gene interactions. As ex-
pected, we observed a significant drop in number of consis-
tent interactions as number of tissues increase. There are a
total number of 95 745 interactions between 739 TFs and 14
660 genes that appear across at least five tissues. We further
examined the consistency of recovered signs (mode of regu-
lation) across tissues. This analysis was carried out on inter-
actions that appear in at least 5 tissues. For each interaction,
the proportion of times that the interaction was annotated
as positive (or negative) across the tissues in which the inter-
action appeared was calculated (see Supplementary Figure
S5 for the consistency changes across tissues). Completely
consistent interactions will have either positive proportion
of 1 (i.e. recovered always as positive) or 0 (i.e. recovered
always as negative). Figure 3B shows the frequency of the
positive proportions. As can be observed the distribution is
bimodal, with most interactions recovered consistently as
either positive or negative, indicating that TF–gene interac-
tions tend to be activation or repression independent of the
tissue. For cross-tissue merged networks, a majority voting
scheme was used to annotate inconsistent interactions.

Furthermore, we investigated the optimal networks se-
lected by the cross-validation strategy, and similar pattern
can be observed between recovered interactions among tis-
sues (Supplementary Figure S3). A cross tissue analysis
of fitted log-likelihoods indicates that the recovered inter-
actions have high tissue specificity (Supplementary Figure
S4).

Benchmark results

We compared our inferred mode of regulation with the signs
reported in the TRRUST and STRING databases including
high-quality and manually curated sources of human TF–
gene interactions, which can be considered as the gold stan-
dard for our purpose. For this benchmark, we merged all
annotated interactions across all tissues. Figure 4A shows
the number of posterior interactions and their associated
sign distribution recovered by the GGM approach. Of the
interactions in the ChIP-network, 47% were supported by
a tissue-specific gene expression data and annotated by our
GGM approach (Figure 4A, top). The final sign of recov-
ered interactions were decided according to a majority vot-

ing scheme resulting in 55% positive and 45% negative in-
teractions (Figure 4A, top). We compared the sign of anno-
tated interactions with the signs reported in the TRRUST
and STRING databases as a gold standard. The overlap
between the ChIP-network and the gold standard is 5701
TF–gene interactions (Figure 4A, bottom), of which 2619
are annotated in both gold standard and the tissue cor-
rected ChIP-network. Further restricting the interactions
in the ChIP-network to consistent interactions that appear
across at least three tissues, results in 390 overlaps with gold
standard interactions (see also Supplementary Figures S1
and 2). Figure 4B shows classification performance of these
2619 and 390 overlapping interactions between three-tissue
merged (corrected) ChIP-networks with the gold standard.
As can be seen the agreement is high in both cases (F1-
scores 0.74 and 0.92), demonstrating that our approach is
highly accurate in identifying signs of regulation (see Sup-
plementary Equation S1 for F1-score calculation details).

We further compared our result with the CV-based ap-
proach and benchmarked our method against a closely re-
lated prior-based integrative framework for regulatory net-
work inference (MerlinP) (11). Our merged inferred net-
work shows significant agreements of 91% and 86% with CV
and MerlinP approaches respectively in predicting mode of
regulation (Supplementary Tables S5 and 7).

Recovering known perturbations in controlled overexpression
experiments

To test the performance of our tissue-corrected ChIP-
network and inference algorithms, we used the CIE plat-
form to identify drivers of differential expressed genes in
controlled overexpression studies. For this analysis, we uti-
lized three differential expression profiles, all of which were
obtained by over expressing an oncogene. The genes are
E2F3, c-Myc and H-Ras. The number of differentially ex-
pressed genes in experiment are 272, 220 and 268, respec-
tively. Table 1 outlines the top 10 regulators predicted by
CIE on each experiment sorted by the FDR corrected P-
values of the enrichment statistics (ES). The FDR corrected
P-values of the Ternary score (TS) along with the predicted
direction of regulation by the Ternary method are also pre-
sented in the table.

In the case of E2F3 experiment, E2F1 is returned as the
top putative regulator along with E2F2 as another top regu-
lator. E2F1, E2F2 and E2F3 are close related family of TFs
with very similar roles that function to control the cell cycle
and are implicated in cancer (42). The direction of regula-
tion for these factors are correctly predicted as upregulated
by Ternary method. Another predicted regulator is EZH2,
which is a downstream of the pRB-E2F pathway and is es-
sential for proliferation and amplified in several primary tu-
mors (43). Interestingly, the Ternary method predicts the di-
rection of regulation of CEBPD as down. It is documented
that CEBPD reverses E2F1-mediated gene repression and
increased level of CEBPD attenuates E2F1-induced cancer
cell proliferation (44). In the c-Myc experiment, the algo-
rithm recovered MYC as one of the top putative regulators
and it is predicted to be upregulated. CIE also predicted
WDR5, a required interactor of MYC that associates with
the same target genes in vivo and is implicated in driving tu-
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Figure 3. (A) Number of interactions shared across tissues. (B) Proportion of positive interactions shared in at least five tissues. The bimodal distribution
shows that interactions are consistently annotated as positive (1.0) or negative (0).

Figure 4. (A) Summary statistics of annotated interactions in the ChIP-network and overlap with gold standard. (B) Classification performance of anno-
tated interactions in ChIP-network compared with gold standard.
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Table 1. Top 10 predicted regulators by CIE on tissue corrected ChIP-network

E2F3 c-Myc H-Ras

Name ES TS Reg. Name ES TS Reg Name ES TS Reg.

E2F1 3.9e-8 4.9e-11 up TP53 8.8e-18 2.5e-20 up FOSL1 2.6e-28 2.0e-42 up
PSIP1 1.7e-6 1.6e-6 up SSRP1 3.5e-14 2.2e-22 up TP63 4.5e-13 9.6e-2 up
FOXM1 3.7e-6 1.5e-8 up WDR5 1.9e-12 5.6e-20 up KDM6B 2.4e-12 6.2e-19 up
EZH2 3.7e-6 2.2e-4 up SMARCA4 1.0e-11 2.7e-12 up ELF3 2.1e-11 1.6e-12 up
BRCA1 1.5e-5 3.1e-3 up E2F4 2.1e-9 3.3e-17 up EGR1 3.1e-11 3.0e-6 up
E2F2 4.3e-5 1.1e-5 up MYC 2.1e-8 1.9e-5 up MAFF 3.2e-10 3.3e-15 up
MYBL2 5.7e-5 5.6e-4 up TRIM28 1.7e-7 9.6e-14 up FOS 1.7e-9 1.0e-5 up
E2F7 6.8e-5 5.4e-6 up TEAD4 1.9e-7 3.7e-12 up JUNB 2.9e-9 1.9e-12 up
ETS1 1.2e-4 6.6e-3 up NFKB1 6.2e-7 1.7e-6 up BCL3 6.1e-8 2.7e-8 up
CEBPD 1.0e-3 1.8e-2 down ILF3 8.4e-7 3.4e-12 up SMAD3 6.7e-8 7.7e-9 up

Columns: Predicted regulator (Name), FDR corrected P-value (Enrichment Score: ES and Ternary Score: TS), predicted direction of regulation (Reg.).

morigenesis (45). Finally, in the H-Ras experiment, EGR1 is
the top putative regulator returned by the algorithm with a
significant P-value and predicted to be upregulated. EGR1
is a key regulator of oncogenic processes and is downstream
of H-RAS (46). In all cases the biology behind the recovered
regulators is sufficiently evident, demonstrating the ability
of the CIE platform and the tissue corrected ChIP-network
in recovering correct regulators of DGE.

Note that Quaternary score is equal to Ternary score
when we have annotated interactions only. Quaternary
score is useful for mixed signed and unsigned graphs. For
completely unsigned graphs, Quaternary is equivalent to
Fisher’s exact test. Ternary (and Quaternary) scores are gen-
erally more stringent than the enrichment score. Unlike the
enrichment score, they also match the direction of regula-
tion between the network and the DEG profile. Addition-
ally, the Ternary and Quaternary are able to make inference
on the direction of perturbation of the predicted active reg-
ulators.

We compared the performance of the inference algo-
rithms on the original ChIP-Atlas, the CV-based networks,
MerlinP and three-tissue corrected ChIP-network. The
analysis was performed using Fisher’s exact and the Ternary
algorithms (Supplementary Tables S3, 6 and 8). Further-
more, we extracted all identified regulators with enrich-
ment P-value < 0.05 to investigate unrelated prediction and
false positive rate (Supplementary File S1.xlsx). The results
show that the tissue-corrected ChIP-network encapsulates
the TF–gene interactions more accurately is able to success-
fully recover correct regulator.

Drivers of stem cell directed differentiation

To test the utility of the CIE platform and the higher-order
pathway enrichment on inferred regulators in generating bi-
ological insight, we utilized a more complex data set of stem
cell directed differentiation of pancreatic beta cells (33) and
the mixed signed STRINGdb network with QS method.
Figures 5A and B show the CIE causal regulatory inference
results. Among the top predictors, Gastrin (GAST), IL6
and NEUROG3 are predicted to be upregulated by CIE, all
of which are involved in the development of the pancreatic
endocrine cell lineage (47,48). Users can interactively select
top regulators predicted by CIE and perform pathway en-
richment analysis using the Reactome (28) pathways. Fig-

ure 5C shows the enriched Reactome pathways returned by
CIE using the top five predicted regulators. Several signifi-
cant pathways were acquired through this analysis such as
regulation of gene expression in late stage (branching mor-
phogenesis) pancreatic bud precursor cells, which is essen-
tially pointing to the endocrine differentiation of the epithe-
lial cells (49). Furthermore, Regulation of beta-cell devel-
opment is also identified, which provides a direct link to
the transient cellular stages leading to the generation of all
pancreatic endocrine cells including insulin-producing beta
cells (49). At last, transcriptional regulation of pluripotent
stem cells is identified, which encodes regulatory networks
underlying embryonic stem cells differentiation into any cell
type or tissue type in body (50).

Signaling mechanisms underlying fibroblast-to-myofibroblast
phenoconversion. In this section we show how the CIE
platform can be utilized to test a specific biological hypoth-
esis regarding transcriptional regulators. We demonstrate
this use case in the context of fibroblast phenotypic plas-
ticity. Fibroblasts are an abundant cell type within the hu-
man connective tissue and play a primary role in secre-
tion of the components of the extracellular matrix (51). Fi-
broblasts have striking similarities with mesenchymal stem
cells (MSCs) and share some functions with MSCs, includ-
ing phenotypic plasticity governed at the genetic level (52).
It is known that Fibroblast can phenotypically convert to
myofibroblasts in response to pro-fibrotic proteins such as
TGF� and CXC-type chemokines, secreted by the aging
and/or inflammatory cells (35,53,54). Phenotypic conver-
sion can occur through two independent cellular signaling
mechanisms: one that depends upon TGF�/TGF�R axis
activation and Smad singling, and another that depends
upon CXCL12/CXCR4-axis activation, EGFR transacti-
vation and downstream signaling through MEK/ERK and
PI3K/Akt pathways––all of which converge in the nu-
cleus to promote the expression of multiple collagen genes
(53,54).

We previously reported that TGF� and CXCL12 induced
or repressed a transcriptional molecular signature that was
75% similar and 25% dissimilar (35). There is evidence that
both TGF� and CXCL12 may be acting upon the same set
of bHLH (basic Helix-Loop-Helix) E-box and Egr-1/Egr-
2 TFs that bind to consensus sequences in the promoters
of the COL1A1 and COL1A2 and other genes (55,56). To
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Figure 5. CIE output on differentiation of pancreatic beta cell. (A) Inferred regulatory network corresponding to top five predicted regulators and their
target genes. (B) Table of top five predicted active regulators. (C) Reactome pathways corresponding to the top five predicted regulators by CIE.

test this hypothesis we utilized the DGE profiles from the
RNA-seq experiments for both TGF� and CXCL12 treat-
ment (35) and performed a CIE analysis using TS statistic
and merged tissue corrected ChIP-network.

The algorithm predicts many active regulators. No-
tably, AHR, BHLHE40, TCF4, TCF12, ARNT, ARNTL,
MYC and NEUROG2 bHLH TFs, and Egr-1, Egr-2 TFs
are predicted by the algorithm as top putative regulators.
We also examined the promoter of COL1A1 and COL1A2
and identified multiple binding sites for several of these TFs,
including AHR, Egr-1, BHLHE40, ARNT, TCF4. In par-
ticular, Egr-1 has multiple binding sites in the promoters
of these genes. Taken together, these results support the hy-
pothesis that Egr- bHHL-family TFs can drive the expres-
sion of collagen genes in response to TGF� and CXCL12.

CONCLUSION AND DISCUSSION

In this work, we present CIE, an integrated platform for
identification and interpretation of active regulators of tran-
scriptional response. The platform offers visualization tools
and pathway enrichment analysis to map predicted regu-
lators to Reactome pathways. We provide a parallelized R-
package for fast and flexible directional enrichment anal-
ysis that can run the inference on any user provided cus-
tom regulatory network. Multiple inference algorithms are
provided within the CIE platform along with regulatory
networks from curated sources TRRUST and TRED as
well as a causal protein–gene interactions derived from the
STRINGdb. Importantly we provide a high-confidence an-
notated causal transcriptional regulatory network by com-
bining publicly available ChIP-seq data with tissue-specific
gene expression data. Using a novel regularized gaussian
graphical model, we softly enforce the TF–gene interac-
tion identified by ChIP-seq experiments in estimating the
precision and partial correlation matrices form tissue gene-
expression data, from which we drive tissue-specific anno-
tated transcriptional regulatory networks. Further by merg-

ing the networks, we obtained a set of consistent TF–
gene interactions that are universally applicable indepen-
dent of the context. Benchmarks against the gold stan-
dard TRRUST database demonstrate that our approach
is well able to recover mode of regulation with high accu-
racy. We demonstrated the utility of our approach in dis-
covering known and novel biology using controlled in vitro
over-expression studies as well as stem cell differentiation.
Moreover, we demonstrated how our platform can be uti-
lized to investigate specific biological hypotheses of tran-
scriptional regulatory mechanisms in the context of fibrob-
last phenotypic plasticity in response to signaling events.
Our approach and platform can be adopted for other set-
tings, such as identifying candidate co-activators of specific
TFs and reconstructing regulatory networks from single cell
gene expression data. We hope that this platform provides
the scientific community an open source alternative tool to
interpret DGE and to generate new biological insights. In
the future, we plan to integrate additional networks and
pathway inference methods in our platform. We also plan
to pursue biological validation of our results on fibroblast
phenotypic plasticity using ChIP-seq methodologies.
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4. Krämer,A., Green,J., Pollard,J. and Tugendreich,S. (2014) Causal
analysis approaches in Ingenuity Pathway Analysis. Bioinformatics,
30, 523–530.

5. Zarringhalam,K., Enayetallah,A., Gutteridge,A., Sidders,B. and
Ziemek,D. (2013) Molecular causes of transcriptional response: a
Bayesian prior knowledge approach. Bioinformatics, 29, 3167–3173.

6. Fakhry,C.T., Choudhary,P., Gutteridge,A., Sidders,B., Chen,P.,
Ziemek,D. and Zarringhalam,K. (2016) Interpreting transcriptional
changes using causal graphs: new methods and their practical utility
on public networks. BMC Bioinformatics, 17, 318–333.

7. Chindelevitch,L., Ziemek,D., Enayetallah,A., Randhawa,R.,
Sidders,B., Brockel,C. and Huang,E.S. (2012) Causal reasoning on
biological networks: interpreting transcriptional changes.
Bioinformatics, 28, 1114–1121.

8. Szklarczyk,D., Franceschini,A., Wyder,S., Forslund,K., Heller,D.,
Huerta-Cepas,J., Simonovic,M., Roth,A., Santos,A., Tsafou,K.P.
et al. (2015) STRING v10: protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res., 43, D447–D452.

9. Cerami,E.G., Gross,B.E., Demir,E., Rodchenkov,I., Babur,Ö.,
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