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Abstract
Obesity is a risk factor for osteoarthritis(OA). To investigate the roles of increased mechan-

ical loading in the onset of obesity-induced OA, knee joints were histologically analyzed

after applying a tail suspension (TS) model to a high-fat diet (HFD)-induced OA model.

Mice were divided into four groups: normal diet (ND) with normal loading (NL) group; HFD

with NL group; ND with TS group; and HFD with TS group. Whole knee joints were evalu-

ated by immunohistological analysis. The infrapatellar fat pad (IPFP) was excised and

mRNA expression profiles were compared by qPCR analysis. After twelve weeks of the

diet, body weight was increased by HFD in both the NL group and TS group. Upon histolog-

ical analysis, the irregularity of the surface layer of articular cartilage was observed only in

the NL+HFD group. Osteophyte area increased as a result of HFD in both the NL and

TS groups, although osteophyte area in the TS+HFD group was smaller than that of the

NL+HFD group. In the evaluation of the IPFP by qPCR, adipokines and inflammatory cyto-

kines also increased as a result of HFD. While TGF-β increased as a result of HFD, the

trend was slightly lower in the TS group, in parallel with osteophyte area. To detect apopto-

sis of articular chondrocytes, TUNEL staining was employed. TUNEL-positive cells were

abundantly observed in the articular cartilage in the HFD mice regardless of mechanical

loading. IPFP inflammation, enhanced chondrocyte apoptosis, and osteophyte formation

were seen even in the TS group as a result of a HFD. In all, these data demonstrate that

HFD contributed to osteophyte formation through mechanical loading dependent and inde-

pendent mechanisms.

Introduction
Osteoarthritis (OA), a chronic degenerative joint disorder characterized by articular cartilage
destruction and osteophyte formation, is a major cause of disability. Obesity and high body
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mass index are associated with a higher risk of OA [1–4].Obesity introduces increasedweight-
bearing on the knee joints [5]. While mechanical factors are implicated in the cause of OA,
trauma, joint instability, and developmental dysplasias are all recognized as predisposing fac-
tors and have been affirmed in animal models [6]. As these factors alter the extent of mechani-
cal loading to the joints, OA is suggested to be induced by an increase in mechanical loading.

Tail suspension is an animal model of hindlimb unloading. This model is employed to
investigate the biologicalmechanisms involved in skeletal tissue homeostasis during unloading
circumstances, such as space flight and bed rest [7]. The unloading of the hindlimb of C57BL/6
J mice promotes bone resorption, and as a result, the suspended hindlimbs exhibit osteopenia
[7]. Skeletal unloading of F344/N rats increases alkaline phosphatase activity at the deep zone
in association with a decrease in proteoglycan content in the articular cartilage [8].

Several cohort studies have demonstrated that being overweight is an independent risk fac-
tor for hand OA [9, 10]. Since mechanical stress cannot explain such a correlation, the influ-
ence of one or several systemic factors has been proposed. In addition to the association with
obesity and the risk of OA, obesity is also associated with an increased amount of adipose tis-
sue, which expresses and secretes a large number of adipokines in response to metabolic
changes [11].

Various laboratories have established in vivo OA models in order to study the mechanisms
of OA development [6, 12–15] [16–18], providing a HFD has been shown to increase the inci-
dence of OA in male mice of C57Bl6 strain [16, 17]. We previously showed that the infrapatel-
lar fat pad (IPFP) plays a pivotal role in the formation of osteophytes and functions as a
secretory organ using a murine HFD-inducedOA model [19]. The initiation of OA changes,
such as osteophyte formation and articular chondrocyte apoptosis, occurs within three months
of HFD with the adipocyte hypertrophy and increased angiogenesis of the IPFP [19]. The
expression of adipokines and adipocyte hypertrophy markers are correlated with the expres-
sion of TGF-β and inflammatory cytokines in the IPFP [19], suggesting that adipocyte hyper-
trophy is closely linked to osteophyte formation through secretion of inflammatory cytokines.
The IPFP is a unique fat depot that is located between the joint capsule and the synovial tissues,
and is in close contact with articular cartilage. Recently, the endocrine function of the IPFP has
been implicated in the initiation and progression of OA [20–22]. However, it is still unclear
whether the events observed in the IPFP and articular cartilage are directly induced by HFD or
are an indirect response to the destruction of articular cartilage in OA. For instance, it is not
clear whether osteophyte growth and increased chondrocyte apoptosis in HFDmice are caused
by mechanical overload and/or altered IPFP metabolism. Furthermore, it is not clear whether
mechanical overload triggers the IPFP inflammation or if HFD stimulates inflammatory
responses in the IPFP regardless of the loading. To address these issues, we applied a tail sus-
pension (TS) model to a HFD-inducedOA model to exclude the effect of mechanical overload
by HFD, and investigated the roles of IPFP inflammation and mechanical loading in the onset
of obesity-inducedOA.

Materials andMethods
All animal experiments were approved by the Animal Care and Use Committee of Tokyo Med-
ical and Dental University and were carried out in accordance with the approval guidelines.
C57Bl6J mice were fed a diet containing 32% fat for the HFD group or 4.8% fat for the control
group (HFD32 and CE-2; CLEA Japan, Inc. Tokyo, Japan) [23] from the age of seven weeks.
Mice fed a high fat diet and a normal (control) diet were divided into two groups (8 weeks and
12 weeks) based on the duration of the treatment. All animals were housed individually,
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allowed unrestricted activity and were provided food and water ad libitum. None of the mice
died during the experimental period.

Tail suspension model
Mice were divided into four groups: normal loading (NL) with normal diet (ND), NL with
HFD, tail suspension (TS) with ND and TS with HFD. The tail suspensionmodel was carried
out as previously reported [7]. Briefly, a tape was applied to the surface of the tail to set a metal
clip. The end of the clip was fixed to an overhead bar and the height of the bar was adjusted to
maintain the mice at *30° head down tilt with the hind limbs elevated above the floor of the
cage. Mice in the TS+HFD group were subjected to tail suspension and HFD from 7 weeks of
age. Mice in the TS+ND group and TS+HFDwere housed individually under the same
condition.

Assessment of OA severity
Mice were sacrificed at 8 weeks or 12 weeks after starting the diet (10 mice/group at each time
point). Whole knee joints were removed by dissection, fixed in 4% paraformaldehyde, and
decalcified in EDTA. After dehydration and paraffin embedding, serial 5-μm-thick sagittal sec-
tions were made from the whole medial compartment of the joint, as reported previously [19].

The sections were stained with Safranin O–fast green or HE. OA severity in the tibial pla-
teau was evaluated according to a cartilage destruction score. Quantitative osteophyte determi-
nation was made using Image-Pro Plus 4.1 software (Media Cybernetics,Carlsbad, CA). The
protruded region, which stained green by Safranin-O staining, was defined as bony osteophyte
and quantified as reported previously [19]. For the evaluation of OA severity, representative
sections were selected from the medial tibial plateau and medial femoral plateau, and scored
with osteoarthritis research society international (OARSI) scoring [24]. Two representative sec-
tions from each mouse were blindly evaluated by three different readers.

Micro-computed tomography (CT) analysis
CT scanning was performedwith a ScanXmate-A090S Scanner (Comscantecno, Co., Ltd.,
Kanagawa, Japan). Three-dimensionalmicrostructural image data were reconstructed and
structural indices were calculated using TRI/3D-BON software (RATOC System Engineering,
Kyoto, Japan). Bonemorphometric analyses were performed at a region 0.3 to 0.5 mm above
the distal growth plates of the femora. Picutures were acquired in vitro at 59kV in tube voltage,
62μA in tube current and 3.7W in tube electric energy.

RNA extraction and real-time RT-PCR
The IPFP tissue was excised using a surgical microscope and microsurgical technique at sacri-
fice as reported elsewhere [19]. Total RNA isolated using TRIzol reagent (Invitrogen) was
quantified by spectrophotometric readings at 260/280 nm. Total RNA (1 μg) was reverse-tran-
scribed (Super Script VILO cDNA Synthesis Kit; Invitrogen) and used for determining the
expression of Nicotinamide phosphoribosyltransferase (Nampt), Leptin, Vascular endothelial
growth factor (Vegf), Tumor necrosis factor alpha (TNF-alpha), Interleukin-6 (Il-6), and Trans-
forming growth factor beta 1 (TGF-beta1). Mouse-specific primers (Sigma-Aldrich)were
designed using the Primer Express software, version 3.0 (Applied Biosystems). Polymerase
chain reaction (PCR) was performed on a Stratagene Mx3000p System (Agilent Technologies
Japan, Ltd.) by using the Kapa Sybr Fast qPCR Kit (Kapa Biosystems, Inc.; Boston,MA, USA).
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The expression of mRNAs was normalized to that of β-actin, and fold differences were calcu-
lated using the ΔΔCt method.

TUNEL assay
The TUNEL assay was performed using a TUNEL detection kit according to the manufactur-
er’s instructions (Takara Shuzo, Kyoto, Japan) and the previous report [19]. Briefly, two repre-
sentative sections were picked from each knee sample, and the number of TUNEL positive cells
was averaged between them.

Statistical analysis
Data are expressed as means ± SD. Statistical analysis was performedwith non-parametric
Steel's many-one rank test. P values less than 0.05 were considered significant.

Results

Unloading and HFD coordinately reduced lower limb bone volume
To clarify the role of mechanical stress in the histological alterations of the knee joints in HFD
mice, the TS model was applied to ND and HFDmice. Under normal loading, HFDmice
weighed 25%more than NDmice by 8 weeks and 48% more by 12 weeks (Fig 1A, p<0.05).
TS+HFDmice weighed 18% more by 8 weeks and 31%more by 12 weeks when compared with
TS+NDmice, although they weighed 20% less by 8 weeks and 18% less by 12 weeks when com-
pared with NL+HFDmice.

As previously reported (22–24), femoral cancellous bone was decreased as a result of HFD
and TS (Fig 1B). Bone volume to total volume (BV/TV), which decreased as a result of TS,
decreased furtherwith the addition of HFD (Fig 1B).

The effects of the loading and the diets on the histological features of the
articular cartilage
A histological analysis was conducted next (Fig 2). The stainability of the surface layer of articu-
lar cartilage with Safranin O decreased as a result of HFD in NL+HFD, while the stainability of
deep layers decreased as a result of TS both in HFD and NDmice (Fig 2A). In HFD groups,
fibrillation of the joint cartilage surface was observed in the NL+HFD group, but not in the
TS+HFDgroup. The OA severity based on OARSI score indicated NL+HFDmice scored signif-
icantly higher compared to any other groups (Fig 2B). This result reflected an increase in sur-
face irregularity and a decrease in proteoglycans at the surface of the articular cartilage in
NL+HFDmice.

The effects of the loading and the diets on osteophyte formation
Osteophyte formation is among the characteristic features of OA. In NL groups, HFD was asso-
ciated with enhanced osteophyte formation in the NL+HFD group compared to the NL+ND
group at the anterior edge of the sagittal section of the tibial plateau from eight weeks of the diet
(Fig 3A and 3B). In TS groups, osteophyte area was also increased in the TS+HFD group com-
pared to the TS+ND group after 12 weeks of the diet. Notably, in HFD groups, osteophyte area
in the TS+HFD group decreased compared to the NL+HFD group. In ND groups, osteophyte
area was also decreased in the TS+ND group when compared to the NL+ND group (Fig 3A and
3B). These results suggest that HFD contributed to osteophyte formation in both a mechanical
loading dependent and independentmanner.
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Fig 1. Body weight and μCT analysis.A, Body weights of NL+ND, NL+HFD, TS+ND, and TS+HFD mice at the indicated lengths of
the diets. B, Three-dimensional micro-CT analysis and BV/TV of the femoral bones from the mice of indicated diets and loadings. NL,
normal loading; ND, normal diet; HFD, high-fat diet; TS, tail suspension. *,† = P < 0.05 using non-parametric Steel's many-one rank
test.

doi:10.1371/journal.pone.0162794.g001
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Fig 2. Histological analysis of the knee joints ofmice fed HFD and normal diet with the indicated loadings. A, Sections of
articular cartilage from the mice at 12 weeks after the onset of the diets stained with Safranin O to detect proteoglycan
expression. The arrows indicate aberrant stainability at the surface of articular cartilage in the NL+HFD group. B, OA severity of
medial tibial plateau based on OARSI scoring for mice. * = P < 0.05 using non-parametric Steel's many-one rank test.

doi:10.1371/journal.pone.0162794.g002
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Fig 3. Highmagnification of the anterior edge of the tibial plateau.A, Representative Safranin O stained sections from mice fed indicated
diets and loadings at 8 weeks and 12 weeks. Ossified osteophytes grew from 8 weeks of HFD (arrows). B, Mean osteophyte volume in
indicated diets and loadings for 8 weeks or 12 weeks after the onset of the diet. NL, normal loading; ND, normal diet; HFD, high-fat diet; TS, tail
suspension. Values represent the mean and SD. *,† = P < 0.05 using non-parametric Steel's many-one rank test.

doi:10.1371/journal.pone.0162794.g003
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Chondrocyte apoptosis was increased by HFD independent of
mechanical loading
Chondrocyte apoptosis is increased in OA cartilage and is anatomically linked to proteoglycan
depletion [25] [26]. These observations prompted us to investigate the effect of the HFD on
chondrocyte apoptosis (Fig 4). TUNEL staining was performed at week eight and twelve of the
diet. TUNEL-positive cells were abundantly observed in the superficial layer of the articular
cartilage (Fig 4A and 4B) in the HFDmice regardless of loading. TS itself had no effect on apo-
ptosis of the articular chondrocytes. The number of TUNEL-positive cells in the articular carti-
lage was significantly increased in the HFD group (Fig 4C and 4D). These results showed that
chondrocyte apoptosis was induced by HFD independent of mechanical loading.

mRNA profiles in the IPFP
The expression levels of inflammatory cytokines in the IPFP were evaluated, since the IPFP has
recently been implicated in the pathology of osteoarthritis [27, 28]. The IPFP was excised using
a surgical microscope and microsurgical technique at 12 weeks after starting the diet (Fig 5).
Both Nampt and leptin increased as a result of HFD regardless of loading. Expressions of TNF-
α, VEGF, and IL-6 similarly increased as a result of HFD. TNF-α and IL-6 were also highly
expressed in TS+NDmice compared to NL+NDmice.While TGF-β expression was increased
in HFD groups when compared to ND groups, its expression was lower in TS+HFDmice com-
pared to NL+HFDmice.

Discussion
In this study, it was found that HFD inducedOA changes, including proteoglycan loss, chon-
drocyte apoptosis, and osteophyte formation, in association with IPFP inflammation by 3
months of exposure to high fat diet in both a normal loading and tail suspensionmouse model.
The histological findings of NL+ND, NL+HFD, TS+ND and TS+HFD are summarized in
Fig 6.

Reduced Safranin O stainability of the cartilage surface occurred in the NL+HFD group, but
not in the TS+HFD group. This was considered the result of a large contribution of mechanical
loading. Superficial zone protein (SZP) has been demonstrated to contribute to the boundary
lubrication in synovial joints. The expression levels of the SZP of articular cartilage are
enhanced by optimal mechanical stimuli, but decreased by excessive loading partly through the
signaling of TGF-β1 and IL-1β [29]. The increase in obesity-relatedmechanical loading on the
surface of articular cartilage in the present study may have contributed to a decrease in SZP.
The stainability of deep layers decreased in TS groups regardless of the diets. These findings
were not observed in NL+ND nor NL+HFD groups. This is consistent with a report stating
that skeletal unloading increased ALP activity at the deep zone and temporarily accelerated
tidemark advancement associated with a decrease in proteoglycan content [8].

Osteophyte formation was evaluated at the anterior edge of the tibial plateau. Both in ND
groups and HFD groups, osteophyte area in the TS group decreased compared to the NL group.
These results suggest that mechanical loading plays a role in osteophyte growth. On the other
hand, HFDwas associatedwith enhanced osteophyte formation in both NL groups and TS
groups. These findings suggestedHFD also contributed to osteophyte formation through load-
ing-independentmechanisms. There is significant overlap in the location of TGF-β-induced and
experimentalOA-induced osteophyte formation [30]. These observations confirm that TGF-β
plays a role in osteophyte development during experimentalOA [31]. To date, we have demon-
strated that expression of TGF-β is enhanced in the IPFP as a result of HFD [19]. We also
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Fig 4. Analysis of apoptosis in TUNEL-stained sections of the knee joint. (A, B) Representative TUNEL-stained sections from mice fed the
indicated diets and loadings for 8 weeks (A) and 12 weeks (B). The number of TUNEL-positive cells per section of superficial layer of artificial cartilage
was determined by fluorescence microscopy (C, D). The number of TUNEL-positive cells increased in the knee joint cartilage from HFD mice both at 8
(C) and 12 weeks (D). Values are the mean and SD of ten mice per group. NL, normal loading; ND, normal diet; HFD, high-fat diet; TS, tail suspension.
*,† = P < 0.05 using non-parametric Steel's many-one rank test.

doi:10.1371/journal.pone.0162794.g004
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Fig 5. Real-timeRT-PCR analysis of IPFP. The mRNA expression of Nampt, leptin, VEGF, TNF-α, IL-6 and TGF-β1in the IPFP was evaluated by
real-time RT-PCR analysis in the indicated mice. Values are the means ± 1 SD of ten mice per group. NL, normal loading; ND, normal diet; HFD, high-
fat diet; TS, tail suspension. * = P < 0.05 using non-parametric Steel's many-one rank test.

doi:10.1371/journal.pone.0162794.g005
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revealed TGF-βmRNA expression is positively correlated with Leptin expression in the IPFP
[19]. Leptin stimulates chondrocyte synthesis of TGF-β in animal experiments [32]. Thus, Lep-
tin may act as a trigger to stimulate TGF-β expression from the IPFP. We previously displayed
Nampt is densely expressed around osteophytes [19]. Here, we disclosedNampt expression in
the IPFP was increased by HFD. Nampt is also expressed at high levels during osteogenic differ-
entiation of the multipotent mouse fibroblast cell line C3H10T1/2 and the pre-osteoblast cell
lineMC3T3-E1, and influences osteogenic differentiation of these cells via Sirt1 activation [33].
These findings suggest Nampt may play a role in osteophyte formation, as well as TGF-β.

We have disclosed that chondrocyte apoptosis was induced by HFD independent of
mechanical loading. Among the adipokines and cytokines evaluated, the expression pattern of
Nampt correlated with the pattern of the apoptotic cells among the groups. Nampt expression
was induced by HFD independent of mechanical loading. Nampt production is increased by
IL-1β in chondrocytes [34], and triggers the synthesis and release of MMP-3, MMP-13,
ADAMTS-4, and ADAMTS-5 by chondrocytes [34]. Recently, NAMPT was shown to play an
essential catabolic role in OA pathogenesis downstream of HIF-2α [35]. Nampt enhancesMT2
expression and then stimulates chondrocyte apoptosis [36]. Thus, upregulated Nampt may
augment chondrocyte apoptosis in NL+HFD and TS+HFDmice.

We observed that TNF-α and IL-6 in the IPFP were highly expressed in not only TS+HFD
but also TS+NDmice. The expression of TNF-α and IL-6 is enhanced in unloadedmuscle [37,
38] and bone [39]. These findings suggest unloaded synovial tissues or adipocytes express IL-6
and TNF-α through a mechanical stress sensing pathway such as the MyD88 signal [38]. The
molecularmechanisms underlying this phenomenon have yet to be elucidated.

In conclusion, the present study showed that IPFP metabolism and mechanical loading
associated with weight gain each serve a unique function in the pathology of knee OA induced
by HFD. This provides an opportunity to investigate articular cartilage responses to metabolic
stress and the mechanisms involved in the progression of OA.
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