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A B S T R A C T

Despite the increasing presence of computational thinking (CT) in the mathematics context, the connection be-
tween CT and mathematics in a practical classroom context is an important area for further research. This study
intends to investigate the impact of CT activities in the topic of number patterns on the learning performance of
secondary students in Singapore. The Rasch model analysis was employed to assess differences of ability between
students from the experimental group and control group. 106 Secondary One students (age 13 years old) from a
secondary school in Singapore took part in this study. A quasi-experimental non-equivalent groups design was
utilized where 70 students were assigned into the experimental group, and 36 students were assigned into the
control group. The experimental group was given intervention with CT-infused activities both on- and off-
computer, while the control group received no such intervention. Both groups were administered the pretest
before the intervention and the posttest after the intervention. The data gathered were analyzed using the partial
credit version of the Rasch model. Analysis of pretest and posttest results revealed that the performance of the
experimental group was similar to the control group. The findings did not support the hypothesis that integrating
CT in lessons can result in improved mathematics learning. However, the drastic improvement was observed in
individual students from the experimental group, while there is no obvious or extreme improvement for the
students from the control group. This study provides some new empirical evidence and practical contributions to
the infusion of CT practices in the mathematics classroom.
1. Introduction

In recent years, computational thinking (CT) has become a topic of
high interest in mathematics education (Broley et al., 2017) because
some, such as English (2018), have considered CT and mathematics to be
natural companions. In a similar vein, Gadanidis et al. (2017) argued that
a natural connection existed between CT and mathematics in terms of
logical structure and in the capability to explore and model mathematical
relationships. Kallia et al. (2021) claimed that both CT and mathematical
thinking approach thinking by adopting concepts of cognition, meta-
cognition, and dispositions central to problem-solving. In addition, they
also recognize and foster socio-cultural learning opportunities that shape
ways of thinking and practicing that reflect the real world.

The key motivation for introducing CT practice into mathematics
classrooms is the fast-changing nature of mathematics in professional
field practice (Bailey and Borwein, 2011). The infusion of CT into
mathematics lessons can deepen and enrich the learning of mathematics,
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and vice versa (Weintrop et al., 2016; Ho et al., 2017). It can also
acquaint learners with the practice of mathematics in the real world
(Weintrop et al., 2016) and cultivate students' ability to acquire knowl-
edge and apply it to new situations (Kallia et al., 2021). Taking into ac-
count these advantages, many researchers and educators began to
integrate CT in the mathematics classroom. Thus, there is a growing body
of literature on CT and mathematics education, and this includes review
studies conducted by Barcelos et al. (2018), Hickmott et al. (2018), and
Kallia et al. (2021).

While acknowledging that coding or digital making activities are the
most prevalent means of learning CT, the authors of this paper have
joined a growing set of researchers and educators who are stretching the
boundaries of how CT can be learned or used to enrich existing school
subjects. In this project, CT is defined as the thought process involved in
formulating problems and developing approaches to solving them in a
manner that can be implemented with a computer (human or machine)
(Wing, 2011). This process involves several problem-solving skills,
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including abstraction, decomposition, pattern recognition, and algo-
rithmic thinking. The term Math þ C refers to the integration of CT and
mathematics in the design and enactment of lessons (Ho et al., 2021).

Some of the Singapore secondary schools have started to teach CT in
the mathematics curriculum. For instance, a recent study was conducted
by Lee et al. (2021) with secondary students in the School of Science and
Technology, Singapore (SST). Descriptive qualitative research was per-
formed with 51 Secondary 2 students of mixed to high ability in the
study. Students were asked to solve a mathematical problem about
quadratic functions by writing a program using Python programming
language. The students also had to complete the individual student's
reflections and worksheets that had a series of questions involving the
four components of CT, i.e., decomposition, pattern recognition,
abstraction, and algorithm design. The results showed that CT can assist
students to strengthen the learning of mathematics process and synthe-
size their mathematical concepts. In addition, student responses to CT
questions and survey questions also appear to strongly indicate that math
questions support students to apply CT skills.

Nevertheless, there are some challenges when infusing CT into the
mathematics classroom. One of the challenges is the insufficiency of CT
expertise. Most of the teachers do not have computing or computer sci-
ence backgrounds as they do not take computer science courses during
their studies. They even do not receive any training or are exposed to the
pedagogies on how to teach CT effectively, so they lack confidence in
teaching CT in math class. Besides, students from backgrounds with little
experience in computers and students with learning difficulties found it
difficult to keep up with the course (Choon and Sim, 2021).

This study provides an initial exploration of the link between CT and
mathematics at the secondary level. It aims to determine the effect of
Math þ C lessons on students’ performance on typical test problems in
the lower secondary mathematics topic of number patterns. Based on the
findings from the previous studies, it is hypothesized that the CT research
done in this study would have a positive impact on the math learning
performance of secondary students in Singapore. This can be examined
from the comparison of the ability between the experimental students
and the control students. By using the Rasch model analysis, we can
analyze the results as a pattern among the scores of individual students,
not only aggregated data. Specifically, this study was guided by one
overarching research question: What are the differences of ability be-
tween the students from the experimental group and the control group?

2. Literature review

2.1. Computational thinking and mathematics

The earliest mention of the phrase ‘CT’ appeared in Mindstorm:
Children, computers, and powerful ideas, in which Papert (1980) briefly
used the term to describe a kind of thinking that might be integrated into
everyday life. The term CT was recently refreshed by Wing (2006), in
which she argued that everyone should learn CT, that CT involves
“thinking like a computer scientist”, and that computer science should
not be reduced to programming. CT was further defined by Wing (2011)
as “the thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that can be
effectively carried out by an information-processing agent” (p. 1).

A popular breakdown of CT into identifiable practices is Hoyles and
Noss (2015)'s and Tabesh (2017)'s description of CT as including pattern
recognition (seeing a new problem as related to previous problems),
abstraction (seeing a problem at diverse detail levels), decomposition
(solving a problem comprises solving a set of smaller problems), and
algorithm design (seeing tasks as to smaller associated discrete steps). To
operationalize the definition of CT in this project, Ho et al. (2021)
adapted these four processes in the mathematics context. Decomposition
referred to the procedure by which the mathematical problem was
broken down into smaller sub-problems. Through decomposition, the
complicated or complex problem became more manageable as smaller
2

sub-problems can be solved easily. Meanwhile, pattern recognition was
the action of finding common patterns, features, trends, or regularities in
data. It was common in mathematical practice to find out the patterns
from the disordered data. Besides, abstraction was the procedure of
formulating the general principles that create these identified patterns. It
happened when a problem in the real-world setting was expressed in
mathematical terms. Algorithm design was the development of accurate
step-by-step instructions or recipes to solve the problem at hand or
similar problems. The solution to the problem can be computed by using
a computer program.

Many efforts and initiatives have been conducted to bring CT into the
mathematics curriculum and cover various mathematical topics, such as
geometry and measurement (Sinclair and Patterson, 2018; Pei et al.,
2018), algebra (Sanford, 2018), number and operations (Sung et al.,
2017), calculus (Benakli et al., 2017), and statistics and probability
(Fidelis Costa et al., 2017). Weintrop et al.’s (2016) taxonomy of CT
practices for science and mathematics, which included data practices,
modeling & simulation practices, computational problem-solving prac-
tices, and systems thinking practices, has provided comprehensive de-
scriptions of how CT was applied across science, technology,
engineering, and math (STEM) subjects. Engineers and scientists use CT
and mathematics to construct accurate and predictive models, to analyze
data, as well as to execute investigations in new ways (Wilkerson and
Fenwick, 2016).

2.2. Earlier studies of the impact of CT on mathematics performance

A recent quasi-experiment was performed by Rodriguez-Martínez
et al. (2020) to investigate the impact of Scratch on the development of
CT and the acquisition of mathematical concepts of sixth-grade students.
47 students from a primary school in Spain were divided into an exper-
imental group (24 students) and a control group (23 students). There
were two phases in this experiment, namely the programming phase and
the mathematics phase. The programming phase was associated with the
instructions in Scratch and emphasized acquiring the basic concepts of
CT such as conditionals, iterations, events-handling, and sequences.
Meanwhile, the mathematics phase stressed instruction on calculating
the least common multiple (LCM) and the greatest common divisor
(GCD) and solving problems involving these concepts. The experimental
group employed Scratch as a pedagogical tool, while the control group
worked in a traditional paper-and-pencil environment. The pretest and
posttest were administered before and after the instruction. The findings
seem to demonstrate that Scratch can be employed to augment both
students’ CT and mathematical concepts.

Fidelis Costa et al. (2017) implemented a quasi-experiment to explore
the influence of CT on the math problem-solving ability of 8th-grade
students. The students were selected randomly into the experimental
group with CT and the control group without CT. The experimental group
was trained using the mathematics questions that were prepared to be
more aligned with CT, while the control group was given traditional
questions prepared by mathematics teachers. The findings were statisti-
cally significant, indicating that the integration of CT and mathematics
through appropriate adjustments of classroom practice can have a posi-
tive impact on students' problem-solving abilities.

Another quasi-experiment was conducted by Calao et al. (2015) to
test whether the usage of coding in mathematics classes could have a
positive effect on 42 sixth-graders’ mathematical skills. The sample
included 24 students from the experimental group and 18 students from
the control group. The experimental group students received the inter-
vention which comprised three months of Scratch programming training,
while the control group received no such intervention. Both the experi-
mental group and the control group performed pre-intervention and
post-intervention tests. A rubric had been developed to assess students’
skills and performance in the mathematical processes including
reasoning, modeling, exercising, and formulation, and problem-solving.
The findings demonstrated that the experimental group trained in
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Scratch has a statistically significant improvement in the understanding
of mathematical knowledge.

3. Materials and methods

3.1. Instructional design of CT activities

Singapore students learn to find patterns in number sequences since
primary year one. In the secondary year one topic of Numbers and
Algebra, students are expected to learn how to recognize and represent
patterns or relationships by finding an algebraic expression for the nth
term.

3.1.1. Instructional design of plugged Math þ C activities using a spreadsheet
The instructional design of plugged Math þ C activities using a

spreadsheet was demonstrated in Table 1. There were four-lesson design
principles for integrating CT into number patterns lessons anchored on
the CT practices, i.e., complexity principle, data principle, mathematics
principle, and computability principle (Ho et al., 2021). The first prin-
ciple was the complexity principle. The task related to the learning of the
Number Patterns topic was sufficiently complex to be decomposed into
sub-tasks. If the task was routine and can be solved easily using a
well-known and simple approach, then the decomposition cannot be
applied well. The second principle was the data principle. The task ought
to include the quantifiable and observable data which could be utilized,
transformed, treated, and stored. Besides, the mathematics principle was
regarded as the third principle. We needed to identify whether the task
gave rise to a problem or situation that could be mathematized. Mathe-
matization was the construction of the problem using mathematical
terms. It involved changing a real-world problem setting accurately and
abstractly to a mathematical problem. The task should be formulated
abstractly so that it could be reasoned, described, and represented
meticulously. The last principle was the computability principle where
we were required to ensure that the solution to the task could be executed
on a computer via a finite process (Ho et al., 2021).

In this lesson, we believe that CT can help students deepen their
understanding of number patterns in two ways. First, recursive re-
lationships can be easily coded in any programming language. This al-
gorithm method always provides an accurate (numerical) solution to the
problem, even if there is no closed formula—the power of the numerical
method. Secondly, the graphical features in the spreadsheet are
employed to analyze the relationship between n and Tn (Ho et al., 2021).

The computational tool used in the plugged Math þ C activities was a
spreadsheet. A spreadsheet was chosen as it was readily accessible and
available in most of the schools. It has been widely applied in education
as a computational tool to promote CT skills (Sanford, 2018). In this
study, it was utilized to teach number sequences which enabled the
learners to make sense of recursive and explicit formulas. The spread-
sheet served as the valuable element to visualize the Left-Hand-Side
(LHS) and Right-Hand-Side (RHS) of “sum ¼ product” characteristics
in a synchronized way, to comprehend and differentiate between the
explicit forms and recursion forms of LHS ¼ RHS characteristics, as well
as to link the visualizations which lead to the understanding of formal
proof and mathematical induction (Caglayan, 2017).

3.1.2. Instructional design of unplugged Math þ C activities
Unplugged Math þ C activities played a transitional role in that

teachers and students who have never used computers in learning
mathematics can still acquire or use some aspects of CT without the use of
the computer. Math þ C worksheets were created to be used in the un-
pluggedMathþ C activities. The CT practices were utilized in the Mathþ
C worksheets, namely pattern recognition, decomposition, algorithm
design, and abstraction. The sample items of Math þ C worksheets were
demonstrated in Table 2. Through guided questions, the students were
required to use pattern recognition to recognize the common difference
of the number sequence. For the decomposition, the students had to
3

analyze the parts of a number sequence. Regarding algorithm design, the
students were led to understand the steps or processes to obtain a solu-
tion for number sequence. The students ought to generate the general
formula of the number sequence for the abstraction.

The lesson objectives for the unplugged Math þ C activities were: (a)
recognizing simple patterns from various number sequences, and (b)
determining the next few terms and find the general formula of a number
sequence. During the unplugged Math þ C lesson, the students were
asked to guess the next two terms for the sequence “2, 5, 8,11, 14,…,…”.
The term “number sequence” and “terms” were introduced. These
numbers followed specific rules or patterns, e.g., start with 2 and add 3 to
each term to get the next term. Next, the students did the exercises in the
textbook. The teacher highlighted the rules governing number sequences
need not an addition but can be subtraction, multiplication, and division
and can involve negative numbers. The students completed the ‘Practice
Now 1’ in the textbook to write down the next two terms. Upon
completion, the students were called one by one to answer the questions.

Then, the students were given the Math þ C worksheets and had to
complete pages 1 and 2 to find the general formula for number patterns.
The teacher stressed the patterns in the last column titled “further
breakdown the numbers”, namely, what does the nth term mean with
regards to the position of the number and the relationship between the
position and the numbers that changed in the last column. The students
had to find the general formula based on the worksheet and simplify the
expression. Next, the students completed the questions on pages 3 and 4
in the Mathþ C worksheets. The teacher discussed the solutions with the
students. Lastly, the teacher recapped the lesson and assigned homework
to the students.

3.2. Lesson in the control group

In the lessons for the control group, the students were not given Math
þ C intervention. They were taught the topic of number patterns using
the two worksheets as demonstrated in Table 3. In the worksheet, the
students were required to find the next two terms for the number se-
quences. The teacher asked the students to come to the front to show
their answers on the whiteboard. Next, the students were given the
general term of a number sequence and they had to find the terms of the
sequence. The students were guided on how to obtain the 1001st term for
the sequence of 2, 4, 6, 8,… For this question, the general term is Tn¼ 2n,
T1001¼ 2 (1001)¼ 2002. Then, the students were taught how to generate
the general term from the number sequences in the worksheet. The stu-
dents had to complete the questions in the worksheets. After that, the
teacher discussed the solutions with the students and gave them home-
work. Further, the teacher also gave worksheet 2 to the students and
discussed it with them.

3.3. Participants

In this study, a quasi-experimental non-equivalent groups design was
employed where the students were non-randomly chosen to be in the
experimental group or the control group (Lochmiller, 2018). There were
106 Secondary One students (who have the age of 13 years old) from a
Singapore secondary school who participated in this study. These stu-
dents were chosen as this was the first year they entered secondary school
which would have provided us with the longest track for students' CT
skills development. Three intact classes were involved: two classes were
assigned to the experimental group and one class was assigned to the
control group. These three classes were taught by three different teachers
as the teachers who taught mathematics subjects were different. There
were 70 students in the experimental group and 36 students in the
control group. In the experimental group, there were 37 males and 33
females. Meanwhile, there were 20 males and 16 females in the control
group. The sample size of both groups was large enough to ascertain that
the results of the results were well established and justified as Gall et al.
(1996) claimed that there should be at least 15 participants in



Table 1. Instructional design for plugged Math þ C activities using a spreadsheet.

Teaching Move CT Practices Description of Instructional Design

Induction Pattern
recognition

The students worked in pairs and set up driver-navigator roles. The navigator was the one who handles the computer part, and the driver was the
one who gave instructions. The students were given hands-on worksheets to complete the tasks. The students were shown a video about patterns.
Then, the students recalled prior knowledge about number patterns.

Development I Algorithm Design The students were taught the concepts of CT, a way of thinking about and solving problems so that we can make use of the computers to help us. The
students were informed about the lesson objectives, i.e., (a) learn how to generate number patterns using computers, and (b) construct the general
term of a given number pattern.

Pattern
Recognition

The teacher demonstrated how to use the spreadsheet software. The teacher introduced the spreadsheet as a large array of boxes that we called
‘cells’ and each cell was a place to store a piece of datum. Each cell was named by its coordinates, which we learned in mathematics. For example,
the default position of the cursor rested in the cell named A1. After that, the teacher provided guidance to the students to enter the word
‘Figure Number (n)’ in cell A1. A cell can be populated with English words which were data called ‘Strings’. The teacher showed how to enter the
number ‘1’ in A2 and a cell can be populated with numerical data called ‘Numbers’. Then, the teacher demonstrated how to enter the formula ¼ A2
þ 1.

Algorithm Design The teacher hovered the cursor near the corner of cell A3, and the Fill Handle appeared with a small cross. The students dragged the Fill Handle
downwards till it reached cell A11, i.e., cell range A2:A11 as displayed in the figure below. The students were taught about the recursion method for
number patterns.

Development
II

Algorithm Design The students created the algorithm that calculates the nth term of the number pattern based on the questions in the hands-on worksheet as exhibited
in the figure below.

Then, the students produced the final product in the spreadsheet as shown in the figure below.

Decomposition The students broke down the problem into two smaller problems: Problem 1: What is the starting number? Where to key in?; Problem 2: How do I
use the recursive method to generate the number pattern? The students used the spreadsheet to find T10 and T100.

(continued on next page)
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Table 1 (continued )

Teaching Move CT Practices Description of Instructional Design

Development
III

Pattern
Recognition

When the number n gets larger, the recursive method is troublesome to use, even though we have a computer. If we have a formula in terms of n,
such a direct method will be faster. To find the direct relationship between n and Tn, the students drew a scatter plot as a graphical representation to
show the patterns as exhibited in the figure below.

Pattern
Recognition

The students were shown a ‘staircase’ structure in the scatter plot as illustrated in the figure below.

After that, the students filled in the blanks based on the ‘staircase’ scatter plot as displayed in the figure below.

Abstraction The students generated the general formula using abstraction skills as shown in the figure below. The nth term of the arithmetic sequence was given
by Tn ¼ T1 þ ðn�1Þd; where T1is the first term of the sequence and d is the common difference. Finally, the student constructed the general
formula of 4n þ 2.

Algorithm Design The students checked the abstracted formula using the spreadsheet as revealed in the figure below. It was found that the answer to the direct
method was the same as the recursive method.

(continued on next page)
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Table 1 (continued )

Teaching Move CT Practices Description of Instructional Design

Consolidation Algorithm Design The students did the hands-on exercise in the worksheets. Lastly, the teacher recapped the lesson.

Table 2. Sample items of Math þ C worksheets.

CT Practices Sample Items

Pattern recognition 13, 17, 21, 25, …

What is the difference between each term in the sequence?

Decomposition

Algorithm design Let's further investigate.

1. What do you notice about the highlighted numbers in the last column?

2. What is the relationship between the position number and the highlighted number?

Abstraction What is the general formula that we can use to find any number in the sequence that you see in the previous page?
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experimental and control groups for comparison. Following Institutional
Review Board (IRB) regulations, students’ consent to participate in this
study was requested. Their data were kept confidential and anonymous,
for instance, A in A15 referred to the experimental group, 15 represented
the student ID, B in B23 referred to the control group, 23 represented the
student ID.
3.4. Instrumentation

The pretest and posttest were designed and constructed based on the
topic of Number Patterns in the Singapore Secondary Mathematics syl-
labus. They were validated by the experts who were two authors of this
paper to make sure that the items were appropriate to the targeted
construct and assessment objectives. The scope covered in the pretest and
posttest included recognizing simple patterns from various number se-
quences, determining the next few terms and finding a formula for the
general term of a number sequence, and solving problems involving
number sequences and number patterns. The pretest and posttest
comprised short answer items including fill-in-the-blank questions. Both
tests had eight items respectively and were labeled as Q1, Q2, Q3, Q4A,
Q4B, Q4C, Q5A, and Q5B. The majority of the question types for both
6

tests was an arithmetic sequence, and there was only one question of
quadratic sequence and geometric sequence. In this study, all the items
were under the numeral category, except for Q4A (figural). The skills
tested and the sample items in the number patterns were demonstrated in
Table 4. There was only one item (Q4A) with a dichotomous response
which had two values of 0 and 1. The other items were the polytomous
responses which had more than two values such as 0, 1, 2; 0, 1, 2, 3, and
so on (Bond and Fox, 2015).

The construct validity of the pretest and posttest were identified
through assessing unidimensionality. The unidimensionality assumption
was investigated using the Principal Components Analysis of Rasch
measures and residuals. It can be asserted that the data is fundamentally
one-dimensional if the Raschmeasurement indicates a relatively elevated
percentage of explained variance (at least 40 percent) and the first re-
sidual components of the unexplained variances are less than 2 eigen-
values (Linacre, 2012). All the unexplained values are less than 15%,
showing supporting unidimensionality (Bond and Fox, 2015). The values
of raw variance explained by measures were 55.6% and 59.9% for pretest
and posttest respectively. They were viewed as strongly measured vari-
ances as they were greater than 40%. It means that the construct validity
was good for both tests.



Table 3. Sample items of two worksheets.

Worksheet Sample Items

1 Write down the next two terms in the following number sequence.
(a) 1, 3, 5, 7, ___, ___
(b) 6, 10, 14, 18, ___, ___
(c) 8, -3, -2, ___, ___

(a) If the nth term of a sequence is Tn ¼ 5n þ 4, find the first 5 terms of the sequence.
(b) If the nth term of a sequence is Tn ¼ n̂2–3, find the first 4 terms of the sequence.
(c) If the nth term of a sequence is Tn ¼ - 4nþ9, find the 35th and 50th of the sequence.

Find the general term, Tn.
1, 3, 5, 7, … Tn ¼ ?

Write down the nth term in the following number sequence.
(a) 5, 9, 13, 17, 21, …
(b) 7, 12, 17, 22, 27, …
(c) 2, 4, 14, 20, 26

2 The diagram shows the first three patterns of dots in a sequence.

(a) Draw the 4th pattern of dots.
(b) How many dots are there in the 5th pattern?

Table 4. Test items.

Type Skill Tested Sample Items

Arithmetic sequence (Numeral) Identify terms of simple number sequences when given the
initial terms

Q1. Fill in the missing terms in the following sequence:
41, ___, 29, 23, ___, 11

Quadratic sequence (Numeral) Identify terms of quadratic sequences when given the rule Q2. Find the 8th term of the sequence: 1, 4, 9, 16, …

Geometric sequence (Numeral) Identify terms of geometric sequences when given the rule Q3. Write down the next two terms of the number sequence:
4, 16, 64, 256, ____,____

Arithmetic sequence (Figural task with
successive configurations)

(a) Use visual cues established directly from the structure
of configurations to illustrate the pattern.
(b) Identify terms of arithmetic sequences when given the
rule
(c) Generate the rule of a pattern
(d) Obtain an unknown input value when given the
formula and an output value

Q4. The diagram indicates a sequence of identical square cards.

(a) Draw Figure 4.
(b) Complete the following table.

Figure Number Number of squares 

1 5

2 8 

3 11 

4  

5  

6  
(c) Calculate the number of squares in the 130thfigure. Explain or show how you
figured out.

Arithmetic sequence (Numeral) (a) Use only cues established from any pattern when listed
as a sequence of numbers or tabulated in a table.
(b) Generate the rule of a pattern

Q5. Consider the following number pattern:
4 ¼ 2 � 3 - 2
10 ¼ 3 � 4 - 2
18 ¼ 4 � 5 - 2
28 ¼ 5 � 6 - 2
⋮
208 ¼ n � ðn þ 1Þ� 2
(a) Write down the equation in the 6th line of the pattern.
(b) Deduce the value of n. Explain or show how you figured out.
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The reliability of the pretest and posttest were determined using item
reliability and separation indices. The item reliability showed the repli-
cability of item placements along the trait continuum (Bond and Fox,
2015). It was noticed that the item reliability for pretest and posttest
were 0.94 and 0.95, which were regarded as high (>0.90) (Qiao et al.,
7

2013). Item separation was an estimate of the separation or spread of
items along with the measured variable (Bond and Fox, 2015). The item
separation of 4.06 for the pretest and 4.20 for the posttest indicated the
items were well separated by the students who took the test (Chow,
2013) as it was greater than 2 as suggested by Bond and Fox (2015). The
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Outfit mean-square (MNSQ) of pretest and posttest item mean was 1.29
and 1.01 were within the acceptance ranges of 0.5–1.5 (Boone et al.,
2014). This implied that the items were productive and acceptable for a
good measurement.

3.5. Procedure

This study utilized five days to complete the data collection as
revealed in Table 5. The first day and last day were used for testing, while
another three days were used for instruction. The data collection was
implemented during the mathematics period in the school. At the
beginning of this study, the researcher administered the 15-minutes
pretest to the students of the experimental group and control group.
Then, the experiment group was given the intervention by involving the
unplugged Math þ C activities and plugged Math þ C activities using a
spreadsheet. For the unplugged activities, the students were required to
solve the problems in the Math þ C worksheets. During the computer
lesson, the students worked in pairs using laptops. The control group
received no intervention and was given mathematics instruction the
usual way by the teacher. After the instruction, both groups were
administered the 15-minute posttest.

The difference between the experimental group and the control group
can be examined from two aspects. The first aspect was that the teachers
in the experimental group taught the students by using Math þ C
worksheets in the unpluggedMathþ C activities where the mathematical
problems were specially designed to align with CT practices, i.e., pattern
recognition, abstraction, algorithm design, and decomposition. But for
the control group, the teacher utilized the routine mathematical prob-
lems to teach the students without the use of CT practices. The second
aspect was that the students from the experimental group were instructed
using a computational tool which was a spreadsheet, but the students
from the control group were taught without any computational tool.
Table 5. The procedure of data collection.

Day Time Activities Remark

1 10:40am–12:00pm - Administer pretest
- Conduct unplugged
Math þ C lesson

30 students from
experimental group involved

1:30pm–1:45pm Administer pretest 40 students from
experimental group involved

2 10:40am–12:00pm - Administer pretest
- Conduct traditional
lesson

36 students from control
group involved

3 12:00pm–12:50pm Conduct unplugged
Math þ C lesson

30 students from
experimental group involved

12:00pm–12:50pm Conduct traditional
lesson

36 students from control
group involved

12:50pm–2:15pm Conduct plugged Math þ
C computer lesson using
spreadsheet

40 students from
experimental group involved
and they work in pairs using
laptops

4 8:40am–10:00am Conduct unplugged
Math þ C lesson

40 students from
experimental group involved

9:20am–10:40am Conduct plugged Math þ
C computer lesson using
spreadsheet

30 students from
experimental group involved
and they work in pairs using
laptops

9:20am–10:40am Conduct traditional
lesson

36 students from control
group involved

5 9:20am–9:35am Administer posttest 36 students from control
group involved

11:20am–11:35am Administer posttest 40 students from
experimental group involved

12:00pm–12:15pm Administer posttest 30 students from
experimental group involved
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3.6. Rasch model analysis

In this study, the pretest and posttest results were analyzed using the
partial credit version of the Rasch model. The partial credit model (PCM)
was used as it enables the likelihood of having different numbers of
response levels for different items on the same test (Bond and Fox, 2015).
It was a “unidimensional model for ratings in two or more ordered cat-
egories” (Engelhard, 2013, p. 50). The software used for PCM was
Winsteps version 3.73. To conduct the PCM analysis, a scoring rubric for
pretest and posttest was created as shown in Table 6. There were four
categories of code for PCM, i.e., code A for a maximum score of 2, code B
for a maximum score of 1, code C for a maximum score of 3, and code D
for a maximum score of 4.

There were some missing data in the pretest and posttest as some of
the students skipped one or more items without giving any answer. Such
a situation may due to the item was difficult to understand or may not be
printed on the test paper. However, the Rasch model was rarely influ-
enced by any missing data and did not require to have all the items to be
answered as it involved a single trait where the response measures can be
calculated based on the items completed (Boone et al., 2014).

To determine the differences of abilities between the students from
the experimental group and the control group, the average person mea-
sure for all the students was computed. As Winsteps was employed to run
a Rasch analysis of data, all persons were represented on the same linear
scale. The logit units of Rasch measurement express where each person
was positioned on that same variable. Therefore, the person can be
compared to other persons, for example, Mary has a higher ability than
Julia (Boone et al., 2014). The logit value person (LVP) was conducted to
compare the level of students' abilities from the experimental group and
control group in the pretest and posttest. In other words, students'
mathematical knowledge in number patterns from both groups was
measured and compared. TheWright map was also utilized to present the
students’ abilities and item difficulties comprehensively. Three criteria,
i.e., Outfit mean-square (MNSQ), Outfit z-standardized (ZSTD), and
Point-measure correlation (Pt-Measure Corr) were used for person-fit
analysis (Bond and Fox, 2015).

4. Findings and discussion

The Rasch analysis demonstrated that the average mean of pretest for
the experimental group and the control group was 1.22. In the posttest,
the average mean of the posttest for the experimental group was 1.49,
and the control group is 1.48. The experimental group had only 0.01 logit
higher than the control group. This means that the abilities between the
experimental group and control were similar and not much different. The
results of this study were not consistent with the results of previous
studies with a positive impact of CT on students’ understanding of
mathematical knowledge such as Calao et al. (2015), Fidelis Costa et al.
(2017).

The possible reason for this occurrence may be due to the students in
the experimental group being involved in CT activities for a short
intervention time. The plugged Math þ C activities using a spreadsheet
had only one session and the duration was less than one and a half hours,
while the unplugged Math þ C activities were less than two hours in
duration. Experimental students might have only participated in certain
features of the problem-solving process in CT activities, but these features
are not enough to reveal significant differences with control students.
This was supported by the statement from Wright and Sabin (2007) who
said that learning may not happen if sessions were too short. The warrant
to suggest that CT elements of the Math þ C treatment influenced stu-
dents’ learning needs to be further investigated through interviews.

Another possible reason was that the students might not so familiar
with the operations in the spreadsheet required for the plugged Mathþ C
activities. Such a situation might hinder the effects of the intervention in
the experimental group. According to cognitive load theory, the design of
teaching materials needs to follow some principles in order to effectively



Table 6. Scoring rubric for pretest and posttest.

Question Code Score Description Examples of Answers in Pretest Examples of Answers in Posttest

Q1 A 2 Complete or correct response 35, 17 1, -17

1 Only correctly answer one of
the solutions

35, 16 1, 17

0 Incorrect response 30, 16 3, 6

Q2 A 2 Complete or correct response 64 45

1 Provide evidence of correct
way to find the number
sequences, but obtain
incorrect solution

þ3, þ5, þ7, þ9… 26 (þ2, þ3, þ4…)

0 Incorrect response 40 T0 ¼ -1
Tn ¼ -1þ2n
T9 ¼ -1 þ 2 (9) ¼ 17

Q3 A 2 Complete or correct response 1024, 4096 729, 2187

1 Only correctly answer one of
the solutions

1024, 6020 -

0 Incorrect response 556, 664 17496, 3779136

Q4(a) B 1 Complete or correct drawing

3

4

0 Incorrect drawing

5

6

Q4(b) C 3 Complete or correct response 14, 17, 20 14, 17, 20

2 Only correctly answer two of
the solutions

14, 17, 21 14, 17, 21

1 Only correctly answer one of
the solutions

14, 18, 22 14, 18, 21

0 Incorrect response 15, 18, 21 16, 22, 29

Q4(c) D 4 Complete or correct response
and justification

124 � 3 ¼ 372, 372 þ 20 ¼ 392, The pattern was
plus three all the way so I subtract the figure
number that had been shown on the table with
figure number 130 and I get 124 then I multiply it
by the pattern, 3

No. The general equation is 2þ3n. So, 136-2 ¼ 134. 134�3 ¼ 44
2
3
. The result to that equation is a decimal hence there is no figure

number in the sequence that contains 136 bricks.

3 Obtain correct response, but
partially correct justification

- No. 131 divided by 3 is a decimal.

2 Obtain correct response, but
incorrect justification

392. 130 � 2 ¼ 260, 260 þ 132 ¼ 392 No. 5 þ 3 (95-1) ¼ 137
5 þ 3 (44-1) ¼ 134

1 Provide evidence of correct
way to find the solution, but
obtain incorrect solution

130 � 3 ¼ 390, 390 þ 5 ¼ 395 -

0 Incorrect response and
justification

394. I calculated with my calculator and I got this Yes. Seeing that the number of bricks increases by 3, 136-3 ¼ 133.
So, 136 bricks can be possible.

Q5(a) A 2 Complete or correct response 54 ¼ 7 � 8 - 2 96 ¼ 3 � 62–2 � 6

1 Partially correct response 7 � 8–2 or 54 96

0 Incorrect response 6 x (6 þ 1) – 2 ¼ 40 3 � 62–2 � 5

Q5(b) D 4 Complete or correct response
and justification

n ¼ 14. Guess and check method
14 x (14 þ 1) -2 ¼ 208

n¼ 11. I used guess and check on my calculator. I started with 3�
8 � 8–2 � 8 until I got 3 � 11 � 11–2 � 11 ¼ 341

3 Obtain correct response, but
partially correct justification

14. I guessed the answer 11. I used guess and check to figure it out

2 Obtain correct response or
justification, but incorrect
response or justification

208 ¼ 14 � 15-2 11. I used algebra.

1 Provide evidence of correct
way to find the solution, but
obtain incorrect solution

- -

0 Incorrect response and
justification

208–4 ¼ 204, 204 � 2 ¼ 408 3 x n2 – 2 x n ¼ 341
3n2 – 2n ¼ 341 n2 ¼ 341
n ¼ 18.466
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Table 8. Logit value person (LVP) analysis for control group.

Group Very High
LVP > þ1.62

High
þ 1:62 � LVP � þ
1:13

Moderate
þ 1:13 � LVP � þ
0:64

Low
LVP � þ
0:64

Pretest 6 14 8 8

Posttest 10 14 8 4
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utilize spreadsheet to learn mathematics. If you need to learn specific
spreadsheet skills first to be useful in learning mathematics, then the
sequencing order is critical. The interactivity and intrinsic cognitive load
of the elements of spreadsheets and math tasks are high. If two learning
tasks are performed at the same time, the cognitive load is likely to in-
crease. Therefore, the learning of these two tasks may be constrained;
hence, in order to maximize the learning of mathematics, you should first
master and consolidate spreadsheet skills (Clarke et al., 2005). When the
students were not competent enough in the use of the spreadsheet, the
students had to learn some about the spreadsheet in addition to number
sequences. This would cause them not to assign all their cognitive load to
the learning contents and consequently inhibit the intervention.

The logit value person (LVP) analysis for the experimental group can
be seen in Table 7. The students were classified into four levels of abil-
ities, namely very high level, high level, moderate level, and low level.
The grouping of students’ abilities was based on the mean (1.17) and
standard deviation (0.54) of all LVPs. For instance, the LVP value for a
very high-level group was gained from the sum of the mean and standard
deviation, i.e. 1.71. It was noticed that there were 13 out of 70 students
(19%) from the experimental group had a very high of CT in the pretest.
Meanwhile, 22 of them (31%) possessed a high ability of CT. 26 of them
(37%) had a moderate ability and 9 of them (13%) had a low ability. For
the posttest, the high ability was achieved by the 31 students from the
experimental group, i.e. 44%. This followed by 17 of them (24%) had a
very high ability, 15 of them (21%) had a moderate ability and 7 of them
(10%) had a low ability.

Table 8 demonstrates the logit value person (LVP) analysis for the
control group. Each group's level of abilities was computed based on the
mean value of 1.13 and standard deviation value of 0.49. For example,
the value of LVP for the low-level group was obtained from the difference
between the mean and standard deviation, which was 0.64. 6 out of 36
students (17%) from the control group had a very high ability of CT in the
pretest, while 14 out of 36 students (39%) had a high ability of CT. 8 of
them (11%) had a moderate ability and 8 of them (11%) had a low
ability. There were 10 students from the control group who had very high
ability in the posttest, which was 28%. Students with high ability were 14
(39%), students with moderate ability were 8 (22%) and students with
low ability were 4 (11%). From Tables 7 and 8, it can be said that some
students from both groups have improved their abilities from low and
moderate ability to high and very high ability. The percentage for
experimental group students with high and very high ability increased by
13% and 5% respectively. Meanwhile, the percentage for control group
students with very high ability enhanced by 11%, but the percentage for
high ability remained the same.

Figure 1 and Figure 2 display the Wright map which visually pre-
senting the distribution of items and person-measures in an equal logit
scale (Bond and Fox, 2015). The left side of the Wright map showed the
difficulty of items, while the right side showed the ability of the students.
Logit 0 was the average of the test items. The items with higher difficulty
levels were at the top left of the logit scale, while the items with lower
difficulty levels were at the bottom left of the logit scale. By comparing
Figure 1 and Figure 2, it can be seen that the logit scale increase from
þ2.0 to þ3.0. Meanwhile, the person average for the pretest was þ1.22
logits and the person average for the posttest was þ1.49 logits. The
increment was þ0.27 logits. This indicated that the performance of the
students from both groups became greater and a number of them were
able to solve the difficult items. In Figure 2, we can see that all the
Table 7. Logit value person (LVP) analysis for experimental group.

Group Very High
LVP > þ1.71

High
þ 1:71 � LVP � þ
1:17

Moderate
þ 1:17 � LVP � þ
0:63

Low
LVP � þ
0:63

Pretest 13 22 26 9

Posttest 17 31 15 7
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students from both groups also were found to be above the item logit
average (0.00), except for one student (A30) from the experimental
group. It can be said that the overall performance of the students from
both groups was over the expected performance.

In Figure 1 and Figure 2, item Q5B was the most difficult item to be
solved by the students from the experimental group and control group as
the item difficulty was above the person measure average. This means
that the probability for the students to solve this item accurately was less
than 50%. Item Q5B asked the students to explain how to deduce the
value of n. Hence, it can be asserted that the students always faced dif-
ficulties in generating algebraic rules from patterns as argued by Stacey
and MacGregor (2001). The easiest item in both tests was item Q4A as it
was positioned below the item logit average and at the lowest part of the
logit scale. It was categorized as an arithmetic sequence (Figural task
with successive configurations). Students were required to draw the
fourth identical square card in item Q4A. All the students from both
groups were able to solve this type of item easily. This finding was
contrasted with the study of Becker and Rivera (2006) that claimed that
students fail to recognize the figural patterns.

From Figure 1, item Q1 and item Q4B in the pretest were located
below the item logit average. This implied that these two items were easy
for the students to solve. Item Q1 asked the students to fill in the missing
terms in the arithmetic sequence. This item involves operations on a
single specific number in order to find the next term in the sequence. 69
out of 70 experimental group students (99%) were able to solve item Q1,
while all the control group students were able to solve this item correctly.
Meanwhile, item Q4B required the students to identify terms of arith-
metic sequences when given a rule. Item Q4B was solved correctly by 68
experimental group students (97%) and all the control group students.

Item Q2 asked the students to recognize the eighth term of quadratic
sequences, while itemQ3 required the students to find the next two terms
of geometric sequences. These two items were positioned at the logit 0.00
which indicated that half of the students obtained correct answers and
another half of the students obtained an incorrect answer. Furthermore,
the students were requested to write down the equation in the sixth line
of the pattern based on the number pattern shown for item Q5A. Seven of
the experimental group students (10%) answered this item wrongly,
while one of the control group students (3%) answered it wrongly. For
item Q4C, 30 out of 70 students from the experimental group (43%)
solved it incorrectly and 11 out of 36 students from the control group
(31%) solved it incorrectly. Such a situation was probably due to the
students might not know how to generate the rule of a pattern and obtain
an unknown input value.

Regarding the posttest, three items (Q3, Q1, Q4B) were also situated
below the item logit average as shown in Figure 2. All the students from
the experimental group solved these three items correctly, except for
item Q4B. 69 of them (99%) were able to solve item Q4B. Meanwhile, all
these items were solved successfully by all the students from the control
group. Item Q5A was answered by two students from the experimental
group (3%) and all the students from the control group unsuccessfully.
For item Q2, 5 students from the experimental group and one student
from the control group solved it wrongly. Meanwhile, 18 experimental
group students (26%) and 10 control group students (28%) were unable
to answer item Q4C.

Several students in the experimental group had poor performance in
the pretest as their logits were below the mean item logit 0.00 including
A19 (-0.90 logits), A66 (-0.39 logits), A05 (-0.09 logits), and A49 (-0.08



Figure 1. The Wright map for pretest.
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logits). After they were exposed to the intervention, their performance
was improved significantly and their logits were located above the mean
item logit 0.00 in the posttest, i.e., A19 (þ0.40 logits), A66 (þ0.27 log-
its), A05 (þ1.92 logits), and A49 (þ0.88 logits). There were also students
in the experimental group whose performance augmented drastically, for
instance, students A53 and A59. Their performance in the pretest was
located at þ0.10 and þ0.84 logits respectively. But after they partici-
pated in the CT activities, their performance in the posttest increased
almost three times until maximum logits, i.e., þ3.24. On the other hand,
for the students from the control group, there was only one student B15
who improved byþ2.12 logits. It can be said that there was no obvious or
extreme improvement for the students from the control group compared
to the experimental group.

As seen in Figure 1 and Figure 2, there were some big gaps between
the items of the pretest and posttest, indicating the need for additional
items to fill the gaps. The Wright map also demonstrated the redundancy
of the item or item with the same difficulty level such as items Q2 and Q3
in the pretest. Q4A was the item-free person in the pretest and too easy
for the students to solve it correctly. In the posttest, there was three items
free person which means all the students were able to answer correctly,
i.e. Q1, Q3, and Q4A. Besides, there were no items that cover the top of
the scale where the best-performing students were located. This sug-
gested that the more difficult items are required to assess the full range of
person abilities.

To detect the “misfitting” students, person-fit statistics were
employed including Outfit MNSQ, Outfit ZSTD, and Pt-Measure Corr. The
person-fit indicated how well the responses given by the students
matched with the model used to produce the level of attainment (Walker
and Engelhard, 2016). In the pretest, there were two most “misfitting”
students in the control group, i.e., B18, and B28. There were no
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“misfitting” students from the experimental group. These two students
(B18 and B28) had Outfit MNSQ, Outfit ZSTD, and Pt-Measure Corr that
did not in the range. It means that they had an unusual response pattern
in the pretest. These unusual response patterns can be further scrutinized
by looking at the Guttman Scalogram as exhibited in Figure 3. In other
words, we can examine the causes of these unusual response patterns that
did not fit the model through the Guttman Scalogram.

A Guttman Scalogram comprises a unidimensional set of items that
were ranked in order of difficulty (Bond and Fox, 2015), where item 4
(Q4A) was the easiest item and item 8 (Q5B) was the most difficult item.
It can be observed that student B18 obtained correct for the difficult
items, but did wrongly for the easier item. For student B28, he or she also
managed to solve the difficult items but obtained the wrong answer for
the easiest item in the pretest. It was most probably the student who
made the careless mistake when solving the item.

Regarding the posttest, three students were considered as misfit
persons, i.e., A22, A33, and B09. This was because of their Outfit MNSQ,
Outfit ZSTD, and Pt-Measure Corr that did not fulfill the range. In the
Guttman Scalogram in Figure 4, these three students tended to answer
the difficult items correctly but solved the easy items wrongly. Most
probably they knew how to solve the item, but made a careless mistake
during the test. All these misfit students were considered as the person
under-fits the model (Aghekyan, 2020).

5. Conclusion, implications and recommendations

This study focused on examining the differences in performances
between the students from the experimental group and the control group
in learning the mathematics topic of number sequences. It was found that
the academic performances of the students in the experiment group were



Figure 2. The Wright map for posttest.

Figure 3. Guttman Scalogram of responses for pretest.

Figure 4. Guttman Scalogram of responses for posttest.
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similar to that of the control group. This indicated that the intervention of
pluggedMathþ C activities using a spreadsheet and unpluggedMathþ C
activities did not have much impact on the learning performance of the
students in number patterns. Thus, the CT activities did not influence the
learning of the students in mathematics. The results did not support the
hypothesis that the quasi-experimental done in this study would have a
positive impact on the learning performance of secondary students in
Singapore. This situation might be due to the short intervention time for
the experimental group students who are not so familiar with spreadsheet
operations required in the learning of number sequences. Nevertheless, it
can be observed that the performance of several students from the
experimental group improved from pretest to posttest drastically, while
12
the students in the control group experienced no obvious or extreme
improvement.

Although the results did not meet the expectations, this study still
provides some new empirical evidence and practical contributions to the
integration of CT practices in the mathematics classroom. It also adds to
the literature review on the effectiveness of didactic activities that in-
volves CT in mathematics instruction, especially at the secondary level.
Despite several challenges such as teacher education and institutional
willingness are not fully invested in integration (Pollak and Ebner, 2019),



S.-W. Chan et al. Heliyon 7 (2021) e07922
this research shows the possibilities to bring CT into existing school
subjects. The development of the CT instructions and assessments serve
as resources for the school teachers, curriculum developers, researchers,
administrators, and policymakers. These resources give them a clearer
and concrete set of practices to guide curriculum development and
classroom implementation of CT concepts.

The Rasch analysis performed in this study allows the researchers
and instructors to identify whether the tests work for this pool of par-
ticipants and able to differentiate participants according to their ability
level, as well as uncover outlier responses for person-fit analysis. The
use of the Wright map also provides direction for the researchers to
perform refinement and resolve some negative issues in further studies
such as gaps between the items, and item redundancy. For further
investigation, it is recommended to add more items to reduce the
existing gaps between the items and revise the items that had the same
level of difficulty, as well as create items that can fully assess the
abilities of the students.

This study has developed valid and reliable pretest and posttest for
measuring mathematical knowledge of number patterns, which can be
used for any kind of pedagogical intervention on this topic, including
ones involving CT. This work proposes a path to address the blank spot of
a lack of validated tools in mathematics education, specifically at the
lower secondary level. The report of acceptable validity and reliability
evidence ensure the quality of the research findings. This allows the in-
structors and researchers to utilize these assessments in the classroom
confidently and strengthens the wide distribution of instruments as they
tend to employ valid and reliable tools (Tang et al., 2020).

There were several limitations found in this study. One limitation was
that it was hard to get more time for the intervention due to the tight
timetables in the school. Therefore, a longer duration is needed in future
studies to promote the students’ learning in mathematics, as well as to
obtain additional evidence. Furthermore, there was only a small number
of students involved in this study which could not be representative of
the whole population. Therefore, it is suggested that the number of
participants in future studies can be increased. Further studies need to be
executed in terms of different mathematics topics, grade level, age,
school, computational tools, and so forth.

Another limitation was that this study only involved only a single data
source for the assessment, which was the pretest and posttest. Such a
situation might limit the final verification result (Barcelos et al., 2018). It
is suggested to conduct the triangulation of the method by com-
plementing the quantitative method with the qualitative method such as
interviews and observation to obtain more comprehensive and richer
data in the research (Neuman, 2014).

Additionally, we only developed the instrument to measure stu-
dents' mathematical knowledge in number patterns, but there was no
specific instrument to measure CT. Hence, in future studies, it is rec-
ommended that we develop assessments to measure both CT and
mathematics as the identification of domains assessed by specific
assessment tasks may instrumental for the interplay of integrated
domains in an assessment context, thereby gaining a more compre-
hensive understanding of students ’strengths and weaknesses in
various domains (Bortz et al., 2020).
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