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Abstract: Neocortical maturation is a dynamic process that proceeds in a hierarchical manner; 
however, the spatiotemporal organization of cortical microstructure with diffusion MRI has yet to 
be fully defined. This study characterized cortical microstructural maturation using diffusion MRI 
(fwe-DTI and NODDI multi-compartment modeling) in a cohort of 637 children and adolescents 
between 8 and 21 years of age. We found spatially heterogeneous developmental patterns 
broadly demarcated into functional domains where NODDI metrics increased and fwe-DTI 
metrics decreased with age. Using non-negative matrix factorization, we found cortical regions 
that correspond to lower-order sensory regions mature earlier than higher-order association 
regions. Our findings corroborate previous histological and neuroimaging studies that show 
spatially-varying patterns of cortical maturation that may reflect unique developmental 
processes of cytoarchitectonically-determined regional patterns of change.  
 
Keywords: microstructure, cortical maturation, child development, diffusion MRI, NODDI  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.534636doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.534636
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 
 
Childhood and adolescence is a crucial period of extensive brain maturation, leading to major 
biological, cognitive and socioemotional transitions that have massive implications for health 
outcomes across the lifespan (1, 2). The neocortex constitutes the computational building 
blocks of the brain and is composed of structurally and functionally distinct cytoarchitectonic 
regions organized along broad functional gradients. Neocortical maturation is a protracted and 
asynchronous process that continues throughout childhood and adolescence and proceeds in a 
hierarchical manner, such that primary unimodal regions involved in sensorimotor processing 
develop earlier than higher-order association regions that subserve complex cognitive abilities 
(3). Therefore, understanding the microstructural trajectory of cortical maturation during this 
period can provide insight into not only the structural reorganization of the cortex during periods 
of heightened plasticity, but also the underlying mechanisms that contribute to cognitive and 
behavioral development. 
 
Consistent with established histological timelines (4, 5), previous neuroimaging studies have 
found heterogeneous patterns of cortical maturation in vivo using MRI. Using morphological and 
volumetric analyses, earlier research efforts have uncovered asynchronous patterns of cortical 
thinning over the course of childhood and adolescence that is believed to reflect synaptic 
pruning (6, 7). More recently, others have characterized cortical microstructural maturation 
throughout development using more specific measures of intra-cortical myelination, including 
the ratio of T1w to T2w (T1w/T2w) contrasts (8, 9) and macromolecular proton fraction (10). In 
particular, Grydeland and colleagues assessed cortical T1w/T2w measures using growth 
modeling across the lifespan and found cortical myelination proceeds in successive waves that 
comprise a pre-pubertal wave of sensorimotor maturation and a post-pubertal wave of 
association and limbic maturation (9). While these studies provide insight into the important 
developmental process of cortical myelination, they lack sensitivity to the wide variety of cellular 
features that occupy the cortex, such as cell bodies, dendritic arborization and fiber orientations 
and there is a need to explore the developmental dynamics of cortical maturation using 
complementary measures of microstructure. 
 
Diffusion MRI (dMRI) is an imaging technique that describes tissue properties by measuring 
water displacement patterns in the brain (11) Unlike semi-quantitative measures, such as 
T1w/T2w signal intensity differences, dMRI models yields biophysical quantitative values that 
correspond to histologically validated cellular features (12, 13). In particular, multi-compartment 
dMRI models provide enhanced specificity compared to more traditional diffusion imaging 
methods. This technique acquires diffusion-weighted images at multiple gradient strengths in 
order to probe tissue compartments with different diffusion profiles (14, 15). Neurite orientation 
dispersion and density imaging (NODDI) is one such model that characterizes restricted, 
hindered and free diffusion to model the intracellular, extracellular and CSF compartments 
separately to quantify neurite morphology (16). Additionally, free water-eliminated diffusion 
tensor imaging (fwe-DTI) (17) is an extension of the traditional DTI that models the tissue signal 
with an anisotropic tensor, but with an additional free water compartment to overcome partial 
volume effects with cerebrospinal fluid (CSF) along the pial border (18) and in perivascular 
spaces (19). Both NODDI and fwe-DTI provide complementary insight into brain microstructure 
as they model distinct aspects of molecular water diffusion. While DTI provide sensitive, but 
non-specific, insight into overall water diffusivity, NODDI is a biophysical model that quantifies 
parameters representative of known cellular phenomena (20). 
 
dMRI is commonly used to study the maturation of white matter microstructure, due to the 
sensitivity of dMRI to the prominent orientational quality of myelinated fibers, and researchers 
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have repeatedly shown heterochronous patterns of major white matter tract maturation that 
continue into the third decade of life (21–23). However, high-resolution diffusion-weighted 
images can also provide insight into cortical cytoarchitectonic properties (24). Previous studies 
have characterized the spatial gradients of high-resolution dMRI neurite metrics in the adult 
cortex, where they have found transitional boundaries in the dMRI cortical maps co-localize with 
areal boundaries of cytoarchitectonic regions derived from multi-modal segmentation and post-
mortem methods (24–26). Additionally, known structural phenomena outlined in histological 
studies, such has hemispheric lateralization of cortical cell density, has been replicated in adults 
using NODDI (27). Age-related alterations to cortical dMRI metrics have been described in 
neonates and children as well. Significant decreases in DTI measures and increased NODDI 
measures have been described in neonates during the third trimester, and these developmental 
trends correlate with cortical thickness, cortical volume and associated white matter maturation 
(28, 29). Collectively, these rapid developmental alterations in the cortex in utero are believed to 
reflect increased cell density and dendritic arborization (28). Rapid alterations to cortical NODDI 
and DTI measures have also been reported postnatally across infancy and childhood (30). 
However, the developmental trajectory of cortical microstructure in children and adolescents has 
yet to be elucidated. It would be informative to explore how spatial patterns of cortical 
microstructure evolve in concert with periods of enhanced plasticity and rapid behavioral 
changes during this dynamic period of life, and possibly to help detect aberrations associated 
neurodevelopmental disorders. 
 
The goal of the present study is to characterize the spatiotemporal development of cortical 
microstructural maturation in a large cohort of 621 typically developing children and adolescents 
between 8 and 21 years of age from high quality diffusion MRI dataset collected from the 
Human Connectome Project Development study. Cortical microstructural metrics derived from 
fwe-DTI and NODDI were sampled along mid-cortical surface vertices to assess local 
developmental alterations. We determined the main effect of age on regional cortical 
microstructure using a voxel-wise approach. We also characterized the magnitude and timing of 
age-related changes in microstructural parameters within distinct cortical regions using growth 
models and then clustered cortical vertices using non-negative matrix factorization (NMF) to 
understand how microstructure across regions co-vary with age. 
 
Materials and Methods 
 
Subjects 
 
Neuroimaging data used in the preparation of this study were obtained from a cross-sectional 
sample of 621 (N F) healthy children and adolescents between the ages of 8 and 21 years 
(M±SD=14.36±3.77 years) recruited through the Lifespan Human Connectome Project in 
Development (31). The Lifespan Human Connectome Project in Development is an extension of 
the Human Connectome Project with the goal to characterize the structural and functional 
attributes of the normal developing brain. Subjects were recruited and scanned in Boston, Los 
Angeles, Minneapolis and St. Louis. Participants were excluded if they were born premature, 
require special educational services, had MRI contraindications, or had a history of serious 
medical problems, head injury, endocrine disorders, psychiatric disorders, or 
neurodevelopmental disorders. Because there is little consensus surrounding the term “typical 
development,” participant inclusionary criteria encompassed a wide variety of traits and 
behaviors, and subjects were excluded if they could not complete the study or was diagnosed 
with a disorder that may alter the course of brain development. 
 
MRI acquisition 
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Subjects were scanned on a Siemens 3T Prisma with an 80 mT gradient coil and a Siemens 32-
channel Prisma head coil (32). T1w multi-echo MP-RAGE scans were acquired with the 
following acquisition parameters: voxel size=.8 mm isotropic, 4 echoes per line of k-space, FOV 
= 256 x 240 x 166 mm, matrix = 320 x 300 x 208 slices, 7.7% slice oversampling, GRAPPA = 2, 
pixel bandwidth = 744 Hz/pixel, TR = 2500 ms, TI = 1000 ms, TE = 1.8/3.6/5.4/7.2 ms, FA = 8 
degrees. Motion-induced re-acquisition were allowed for up to 30 TRs. Multi-shell diffusion MRI 
(dMRI) scans were acquired with the following acquisition parameters: 1.5 mm isotropic voxel, 
TR=3.23 s, MB factor=4. dMRI data was collected using 185 diffusion-encoding directions split 
into two runs (92-93 directions per scan) and acquired twice with opposite phase-encoding 
directions (AP and PA), resulting in a total of 4 runs. Two shells (b=1500 s/mm2, 3000 s/mm2) 
were interleaved within each dMRI run with 28 b=0 s/mm2 volumes equally interspersed across 
all the scans.  
 
MRI data processing 
 
dMRI data was processed using the HCP dMRI processing pipeline (Sotiropoulos et al., 2013). 
Motion-induced, eddy-current and susceptibility-induced artifacts were corrected using FSL 
EDDY (Andersson & Sotiropoulos, 2016). This method harnesses the complementary information 
provided by pairs of b=0 volumes with reversed phase-encoding directions to calculate the 
susceptibility-induced off-resonance field, which is then fed into a Gaussian Process predictor to 
correct for these distortions.  
  
T1w data was processed with the HCP minimal preprocessing pipeline (Glasser et al 2013). 
Triangulated meshes of the pial and white matter cortical surfaces were extracted using 
Freesurfer 6 (http://surfer.nmr.mgh.harvard.edu/) and the cortex was parcellated into 74 bilateral 
regions according to gyral and sulcal boundaries defined by the Destrieux atlas (35). To project 
microstructural measures onto the cortical surface, the T1w and average dMRI b=0 images 
were aligned in native space using a rigid body transformation implemented with the ANTs 
software (36) and dMRI microstructural features were spatially normalized to the high resolution 
T1w space. We created population-averaged templates of the DTI and NODDI parameter maps 
and T1w images from our dataset using a high-dimensional spatial normalization workflow 
implemented in DTI-TK (37) and these templates were aligned to the IIT template (38). Then, 
MRI data from study participants were spatially normalized to the template to derive a 
population-average cortical brain surface that allows for one-to-one correspondence in the 
surface-based mapping analysis.   
 
Diffusion MRI models 
 
The dMRI data was first denoised using a non-local means filter and microstructural dMRI 
parameters for two multi-compartment diffusion models were calculated using the Quantitative 
Imaging Toolbox (QIT) (39). The diffusion tensor imaging (DTI) parameters (40) axial diffusivity 
(AD), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA) were derived 
from free water-eliminated diffusion tensor imaging (fwe-DTI) (17) using iterative least squares 
optimization (18) – fwe-DTI is a bitensor model that separately estimates the free water 
compartment using an isotropic tensor and the tissue compartment using an anisotropic tensor. 
This approach can reduce partial volume effects due to CSF contamination, which is particularly 
important in the gray matter tissue adjacent to the pial surface. The NODDI parameters neurite 
density index (NDI), isotropic volume fraction (FISO) and orientation dispersion index (ODI) (16) 
were calculated using the spherical mean technique implemented with the QIT (41). We utilized 
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models that separately model contributions of the free water and tissue water to reduce partial 
volume effects, which is particularly important in tissue boundaries, such as the pial surface.   
 
Surface-based mapping procedure 
 
Our surface-based mapping procedure is similar to that used by (26) with an additional 
statistical refinement procedure to reduce the influence of outlier values due to mis-aligned 
tissue boundaries. For each subject, we computed to cortical microstructural parameters on the 
mesh vertices using a two-step procedure outlined in (42). First, at each vertex, we sample the 
diffusion parameters at 15 equally spaced points between the inner and outer cortical surfaces 
and calculated a weighted average using a Gaussian function centered at the midpoint of the 
path and scaled by the cortical thickness, i.e. where the weighting at the midpoint was 1 and the 
inner and outer cortical boundaries had a weighting of .05. By using a weighted average, this 
scheme is designed to isolate gray matter voxels by reducing the influence of voxels that are 
closer to tissue boundaries. Then, we employed robust averaging using the M estimator 
approach to exclude outlier values with a z-score threshold of 3 standard deviations from the 
weighted average calculation. In the resulting cortical microstructural maps, Laplacian 
smoothing was carried out with 30 iterations of lambda=1.2 subsequent to parameter mapping 
to accommodate possible misalignment of the cortical registration algorithm. Microstructural 
features were also averaged within the pre-defined cortical regions and visualized on the 
population-average cortical surface.  
 
Statistical analysis 
 
The main effect of age on diffusion parameters after controlling for the effects of scanner site 
and sex was carried out at each vertex using a general linear model to test the linear and 
quadratic age effects with random field theory (RFT) cluster-wise thresholding using SurfStat 
implemented in Matlab (www.math.mcgill.ca/keith/surfstat). A height threshold of p<.001 and a 
spatial extent threshold of p<.05 were used to assess significance.  Across all vertices, 
Bayesian information criteria (BIC) was used to determine the best fit model among linear, 
quadratic and growth models.  
 
To quantify the magnitude and timing of cortical microstructural maturation, we fit the three-
parameter Brody growth model using nonlinear least squares regression implemented in R 
version 4.1.3 to each of the 76 bilateral cortical regions of the form: Metric = b+a*exp(-k*age). 
We then defined peak maturational age as the age at 90% of the asymptotic value, as described 
previously in (21). Nonparametric bootstrap resampling with replacement (N=10,000) was 
implemented to obtain standard error and confidence intervals for the growth model coefficients 
and peak age estimates. 
 
In an effort to identify patterns of age-related microstructural covariation, we used non-negative 
matrix factorization (NMF) to cluster the cortical vertices using the dMRI metrics. NMF is an 
unsupervised, multi-variate statistical learning technique that has been used previously to 
analyze structural neuroimaging data (Sotiras et al., 2015). The goal of NMF Is dimensionality 
reduction and feature extraction through decomposition of a data matrix into two smaller 
matrices with k factors, such that the linear combination of these smaller matrices reproduces 
the original matrix. In accordance with previous studies (29), we performed NMF with k=4 using 
a matrix constructed from all the fwe-DTI and NODDI parameters on the cortical sheet vertices 
as features in the model. We then averaged the dMRI metrics in each cluster and fit Brody 
growth curves and calculated the age at terminal maturation to identify the developmental timing 
of each group of regions. 
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Results 
 
Here, we explored age-related differences in quantitative markers of cortical microstructure 
using multi-parametric diffusion mapping that provides insight into diverse tissue properties. 
Furthermore, we used growth models to capture the developmental timing of regional cortical 
maturation from childhood through late adolescence. To develop a more precise understanding 
of inter-regional cortical developmental gradients, we employed an unsupervised clustering 
approach to identify regions that co-vary with age.  
 
Mean cortical parameter maps 
 
Cortical microstructure was non-uniformly distributed throughout the cortex with varying spatial 
patterns among DTI and NODDI metrics (Figure 1). Cortical NDI was highest in the primary 
somatosensory and motor regions around the central sulcus, primary auditory regions around 
the posterior segment of the lateral sulcus and early visual regions in the medial occipital lobe, 
posterior cingulate, parahippocampal cortex and medial orbitofrontal cortex. Elsewhere, NDI 
values were generally low in other cortical regions, including many higher order association 
cortices. Cortical FISO had similar spatial patterns as NDI, though the regions with elevated 
FISO were far more restricted compared to NDI. 
 
Cortical ODI generally showed an inverse trend compared to NDI and FISO, where ODI was 
high throughout the cortex; however, similar to NDI and FISO, ODI was highest in the primary 
visual regions, primary auditory regions and medial orbitofrontal cortex. Unlike NDI and FISO, 
ODI was high in inferior temporal regions and was moderately elevated in precentral and 
postcentral gyri, but not the central sulcus. The distribution of cortical ODI generally aligned with 
the contours of the cortex, with elevated ODI in the gyri and lowest ODI in the sulci. 
 
In general, DTI metrics showed similar spatial distributions throughout the cortex. Across all 
parameters, DTI metrics were highest in the parahippocampal region and early somatosensory 
regions adjacent to the central sulcus, and lowest in the early auditory regions around the lateral 
sulcus, medial occipito-temporal sulcus and paracentral lobule. Additionally, cortical FA, MD and 
AD was high in the insula. Some striking differences were also observed among DTI metrics. 
Cortical FA and AD was low in early visual areas of the cuneus and calcarine sulcus, while RD 
was high in corresponding regions. Cortical RD and MD was low, while cortical FA was high, in 
the posterior cingulate. Additionally, the superior parietal lobule had high RD and low FA, while 
the precentral gyrus had low RD and MD. Across all measures, the highest standard deviation 
in diffusion metric distributions was observed in the primary somatosensory regions near the 
central sulcus and medial orbitofrontal cortex (Supplementary Figure 1). 
 
Influence of age on diffusion metrics 
 
Across the entire cortex, age was significantly associated with reduced mean AD (r(619)=-.63, 
p<.001), RD (r(619)=-.49, p<.001), MD (r(619)=-.55, p<.001) and FA (r(619)=-.45, p<.001). In 
order to explore the regional development of cortical tissue microstructure, we identified the 
main effect of age on DTI and NODDI measures, after controlling for the effects of sex and 
scanner type, using a vertex-wise approach with random field correction on the cortical sheet 
(Figure 2). Age was linearly correlated with reduced DTI metrics throughout the majority of 
cortical vertices, except for the superior parietal lobule and early visual areas around the cuneus 
and calcarine fissure. Additionally, age was not significantly associated with RD and MD within 
vertices of the somatosensory cortex, nor FA within primary motor and superior frontal regions. 
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When testing for the quadratic effect of age on cortical microstructure, we found widespread 
nonlinear effects of age on cortical AD, RD and MD. Age-related alterations to cortical FA were 
best described with a linear model.   
 
Age was significantly associated with increased mean cortical FISO (r(619)=.48, p<.001), ODI 
(r(619)=.70, p<.001) and NDI (r(619)=.85, p<.001). Using the vertex-wise analysis after 
controlling for covariates, we found the influence of age on cortical microstructure varied across 
NODDI metrics (Figure 3). Age was linearly and nonlinearly associated with NDI throughout all 
cortical vertices. Cortical ODI was linearly associated with age throughout the majority of the 
cortex, with the exception of early visual regions that correspond to the calcarine sulcus and 
cuneus.  Additionally, the lingual gyrus, isthmus of the cingulate gyrus, somatosensory cortex 
and medial orbitofrontal cortex showed significant nonlinear increases in ODI with age. While 
nonlinear associations between age and cortical FISO were not observed, FISO was linearly 
associated with age across large swathes of the cortex; however, age was not significantly 
associated with FISO in the temporal pole, superior temporal sulcus, anterior cingulate gyrus, 
superior frontal gyrus, medial orbitofrontal cortex and precentral gyrus.  
 
Time course of cortical microstructural maturation 
 
In order to characterize the developmental timing of cortical microstructural maturation, 
nonlinear growth models were fit to diffusion parameters on the cortical surface and the peak 
age was defined as the age at 90% of the estimated asymptote. Overall, mean cortical NDI has 
a peak age of 15.63 [CI-95%: 10.37, 22.10]. The terminal maturational age for mean cortical 
AD, MD and RD is slightly younger, with estimated peak ages at 12.86 [9.59, 18.59] years, 
10.58 [7.74, 15.56] years and 9.87 [6.90, 15.39] years, respectively. The growth curve produced 
unreliable estimates for the peak age of mean cortical ODI outside the sampled age range 
(25.58 [14.52, 61.89] years). Because nonlinear age effects were also not observed for FA and 
FISO cortical vertices, growth curves were not fit to FA, FISO and ODI in parcellated cortical 
regions. 
 
The age at peak maturation for AD, RD, MD and NDI estimated within pre-defined cortical ROIs 
are shown in Figure 4. Across metrics, a general posterior-to-anterior pattern of maturation is 
observed, where occipital and parietal regions mature earlier than temporal and frontal regions. 
Individual cortical regions reach peak NDI between 9.62 and 25.57 years of age. AD, RD and 
MD mature across a broader age range, with individual ROIs reaching peak maturation between 
2.89 and 30.41 years. Cortical microstructure for primary sensory regions tended to reach peak 
maturation earlier than other regions. The calcarine sulcus and cuneus, which includes the 
primary visual cortex, were among the earliest regions to mature for AD, RD, MD and NDI. 
Additionally, RD, MD and FA reached peak maturation earlier than surrounding regions within 
the primary auditory regions in the anterior transverse temporal gyrus. A striking demarcation is 
observed at the level of the central sulcus, where the postcentral gyrus reaches peak maturation 
earlier across microstructural metrics, including AD, RD and MD, compared to the precentral 
gyrus. Regions with protracted developmental timing across diffusion metrics include the 
anterior cingulate, superior frontal cortices, and the parahippocampal cortex.  
 
The correlation between age and microstructure as defined with FA, FISO and ODI also varies 
across the cortex (Supplementary Figure 2). FA and ODI showed the strongest correlations 
with age in regions that correspond to the middle temporal gyrus, posterior cingulate and 
precuneus. The strongest associations between FISO and age occurred in posterior regions, 
including the precuneus, superior parietal cortex, and postcentral gyrus. Interestingly, both ODI 
and FA showed the weakest correlation with age within the postcentral and precentral gyrus.  
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Patterns of developmental covariation in cortical microstructure 
 
To identify regions that demonstrate distinct patterns of developmental covariation, we used 
NMF to cluster cortical vertices according to their microstructural profiles across all subjects 
(Figure 5). This data-driven approach uncovered 4 clusters with common dMRI metric 
distributions: (1) A primary sensory cluster that includes the postcentral gyrus that corresponds 
to the somatosensory cortex, as well as the cuneus and pericalcarine cortices that correspond 
to primary visual cortex, (2) An occipito-parietal cluster that occupies the remainder of the 
occipital and parietal cortices, as well as the posterior superior temporal gyrus and precentral 
cortex, (3) A fronto-temporal cluster that consists of the frontal and temporal lobes, as well as 
portions of the supramarginal and inferior parietal cortex, and (4) a limbic cluster that consists of 
the parahippocampal cortex and the rostral anterior cingulate cortex.  
 
To better understand the developmental characteristics of the cortical clusters, the relationship 
between age and each diffusion metric was assessed with a Brody growth curve or linear model 
using Bayesian information criteria to determine the best fit line. Age-related alterations to FA 
and FISO within cortical clusters were best described with a linear model. FA was not 
significantly associated with age within the primary sensory cluster (p=.97). Age was associated 
with increased FA in the limbic cluster (F(1,619)=16.93, p<.001, R2=.03) and decreased FA in 
the frontotemporal (F(1,619)=166.5, p<.001, R2=.21) and occipitoparietal clusters (F(1,619)=-
229.5, p<.001, R2=.27). Age was associated with increased FISO in the frontotemporal 
(F(1,619)=64.46, p<.001, R2=.09) and limbic clusters (F(1,619)=70.71, p<.001, R2=.10), and 
accounted for the most age-related variance in occipitoparietal (F(1,619)=223.9, p<.001, 
R2=.26) and primary sensory FISO (F(1,619)=225.6, p<.001, R2=.27). The developmental timing 
of NDI maturation was relatively consistent across cortical clusters, where NDI reached terminal 
maturation in late adolescence for the primary sensory (20.96 years), occipitoparietal (18.21 
years), frontotemporal (23.95 years) and limbic (19.36 years) clusters. Across the remaining 
diffusion metrics, the primary sensory cluster reached peak maturation earliest. MD reached 
peak maturation by 3.23 years and ODI reached peak maturation by 9.55 years. Age was not 
significantly associated with AD (F(1,619)=1.76, p=19)  or RD (F(1,619)=2.31, p=.13)  in the 
primary sensory cluster. For AD, RD and MD, the occipitoparietal cluster reached terminal 
maturation by early childhood (AD: 9.12 years, RD: 6.06 years, MD: 6.92 years), followed by the 
frontotemporal cluster in mid-childhood (AD: 16.67 years, RD: 12.05 years, MD: 13.34 years), 
and then the limbic cluster by late adolescence (AD: 16.32 years, RD: 17.06 years, MD: 16.78 
years). The pattern of maturation in ODI differed from the DTI metrics. ODI in the limbic cluster 
reached peak maturation by 12.61 years, followed by the occipitoparietal cluster at 20.96 years. 
Age was linearly associated with increased ODI in the frontotemporal cluster (F(1,619)=547.6, 
p<.001, R2=.47), where ODI was estimated to increase by .004 (SE=.0001) annually. 
 
Discussion 
 
We have utilized developmental growth modeling and cortical region clustering to characterize 
the spatiotemporal pattern of cortical microstructural maturation from 8 to 21 years of age with 
multicompartment diffusion MRI models. We observed widespread and spatially-varying 
increases in fwe-DTI measures and decreases in NODDI measures throughout the cortex; 
however, different parameters yielded distinct developmental trajectories that may reflect unique 
neuroanatomical processes.  
 
We observed a maturational gradient that proceeds in a posterior-to-anterior direction, such that 
occipital and parietal regions mature earlier than those in frontal and temporal regions across 
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microstructural metrics.  Our findings are in agreement with earlier studies on cortical gray 
matter development that have discerned a large-scale caudal to rostral direction of cortical 
maturation using measures derived from cortical morphology (6), T1w/T2w contrast (8, 9) and 
magnetization transfer imaging (10). Furthermore, this pattern of maturation extends beyond the 
cortex, as white matter exhibits similar developmental gradients where sensory pathways that 
project from occipital and parietal regions mature early in infancy (44), while maturation of 
frontotemporal tracts persist over the course of adolescence (45, 46). Architectonic cortical 
regions map to functional specialization in the cortex, and the posterior-to-anterior direction of 
cortical maturation corresponds to the spatial organization of the sensorimotor-association axis, 
as described by converging anatomical, functional and evolutionary data (3). Additionally, 
cortical maturation proceeds along the sensorimotor-association axis, such that lower order 
sensorimotor regions develop earlier than higher order association regions. Overall, our findings 
agree with this hierarchical model of maturation, as we observed occipitoparietal primary 
sensory regions mature by early childhood across diffusion metrics, while measures in 
frontotemporal transmodal regions reach adult-like levels by late adolescence and early 
adulthood.  
 
Our findings of global increases in NODDI parameters over the course of development are in 
agreement with previous studies that found NDI and ODI in cortical parcels increased with age, 
though in a much younger sample of subjects between 0 and 14 years of age (30). The 
distribution of DTI and NODDI parameters on the cortex across participants was also largely in 
agreement with mean cortical parameter maps observed in adults (26). The spatial organization 
of NODDI metrics closely resembles the distribution of cytoarchitecture and myeloarchitecture 
from post-mortem brain samples (13), which suggests these diffusion metrics may reflect 
biological features. While the interpretation of diffusion contrast in white matter is relatively 
straightforward, diffusion contrasts in the cortex can be derived from several sources including 
axons, dendrites and cell bodies (47–49). Below, we attempt to disentangle the contributions of 
various cellular features to the diffusion metrics.  
 
In the ex vivo rodent brain, cortical NDI was more strongly correlated with optical staining 
intensity of myelinated axons compared to non-myelinated axons (Jespersen et al 2010), which 
may be because myelinated axons restrict water molecule diffusion more strongly than non-
myelinated axons (11). Additionally, the distribution of NDI is similar to histological myelin 
density in the spinal cord (20) and T1w/T2w contrast in the cortex (26). Together, these findings 
suggest cortical NDI is most sensitive to myelinated axons. However, since myelin content 
covaries with axon density (50) and neuron density (51–53), it is possible that variation in 
cortical NDI may be attributed to these other microscopic characteristics as well. ODI is 
sensitive to fiber heterogeneity, as shown in histology (20). Because axons preferentially align 
with radial or tangential axes in the cortex (12), variation in cortical fiber orientation dispersion 
may be influenced by the proportions of these fiber types.  Additionally, dendritic arborization 
may contribute to orientational heterogeneity and neurite density in the cortex, though to a 
lesser extent than myelinated fibers.  
 
Neuronal fibers also provide a source of anisotropic cortical diffusion contrast. Globally, we 
observed pronounced decreases in cortical AD, RD and MD and modest reductions in FA, 
which together suggests overall reduced rate of water diffusion due to the presence of 
molecular obstacles. In addition to molecular barriers introduced by neuronal axons, somata 
and dendrites (54), microglia and astrocytes may also obstruct water movement and influence 
the diffusion signal. Recently, researchers have demonstrated a correlation between microglial 
density and diffusion measures in in vivo and ex vivo animal models (55, 56). As systemic 
inflammation has been proposed to influence cognitive outcomes over the course of child 
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development, this use of diffusion MRI as a proxy for cortical microglial infiltration may provide 
additional insight into health outcomes throughout childhood and adolescence. In another study 
carried out by Blumenfeld-Katzir and colleagues (2011), DTI was used to study the 
microstructural correlates of neuroplasticity in rats induced by spatial learning tasks. Authors 
found selective reductions in cortical MD in cortical tissue that were accompanied by enhanced 
immunohistochemical staining of synapses and astrocytes, but not myelin (57). While the effects 
observed in the study were transient, it is possible that the age-related MD reductions in the 
present study reflects long-lasting alterations in neuroplasticity due to astrocytic recruitment and 
synaptogenesis. 
 
Regional variability in microstructural aging trends may provide insight into different cellular 
processes that govern cortical development in these regions. In particular, we observed a 
striking dissimilarity between the maturational trajectories of the primary sensory cortices and 
the primary motor cortex, particularly at the boundary between the postcentral gyrus (area 3b) 
and postcentral gyrus (area 4). Our clustering approach using NMF shows the postcentral gyrus 
and striate cortex develop earliest across all metrics. DTI measures were not significantly 
associated with age in these regions, which suggests that maturation of primary sensory regions 
is complete prior to 8 years of age. In contrast, the primary motor cortex showed significant age-
related decreases in DTI metrics, but not NODDI metrics. The observed discrepancy in 
developmental patterns between sensory and motor regions may be attributed to the unique 
cytoarchitectural organization of these regions. Primary sensory cortex contain highly developed 
granule cell layers that consist of densely packed, small pyramidal and stellate neurons. Motor 
cortex, however, lacks clear granule layers and are defined by prominent large pyramidal cells. 
Age-related reductions to the overall ellipsoid value accompanied by increased intraneurite 
volume fraction in primary motor cortex may be due to increased pyramidal cell size over the 
course of childhood and adolescence. This conjecture is consistent with previous work that has 
found a protracted period of pyramidal soma enlargement in the cortex over the course of 
childhood and adolescence (58). The lack of DTI metric changes with age in primary sensory 
regions suggest the granule cell layer may be highly developed by late childhood, which is 
consistent with previous work that have found no developmental changes in granule layer 
morphology from young to adult mice cortex (59). 
 
Developmental differences in the spatial distribution of cortical diffusion metrics may also be 
attributed to varying degrees of fiber organization and myelination in the cortex. Radial axonal 
processes from pyramidal cells constitute the dominant diffusion orientation in the cortex, 
particularly within the primary motor cortex (47, 60). Within the precentral gyrus, we observed 
significant age-related alterations in water diffusivity, but not orientation dispersion. Therefore, 
we hypothesize that maturation of the primary motor cortex during childhood is attributed to 
increased myelination of radial fibers in the cortex. Interestingly, we found the developmental 
trends in the precentral gyrus were in opposition to the postcentral gyrus, where orientation 
dispersion increased significantly with age, while water diffusivity remained constant over the 
course of development. The altered fiber orientation complexity in the postcentral gyrus may be 
due to increased myelination of tangential fibers with age. The inner and outer bands of 
Baillarger are dense tangential fiber bundles that traverse the internal granular layer and internal 
pyramidal layers, respectively, and is present in all cortical regions to varying degrees. The 
inner bands of Baillarger are enlarged in primary sensory cortical areas that receive extensive 
thalamic input and contributes to the prominent tangential diffusion observed in these regions 
(60). However, altered cortical ODI may also be due to technical limitations in our image 
acquisitions. Previous studies have shown that ODI is associated with reduced cortical 
thickness (26), potentially due to partial volume effects in the neighboring white matter and CSF 
compartments. Because the postcentral gyrus has overall thinner cortex compared to the 
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precentral gyrus (61), it is possible that the increased ODI with age in the postcentral gyrus may 
be due, in part, to partial voluming in thin cortex with respect to the dMRI voxel size. However, 
we do not have sufficient resolution to distinguish the unique contributions of radial and 
tangential fiber types to the age-related diffusion signal alterations. 
 
While the present study uses multiple diffusion metrics to provide complementary insight into 
diffusion properties across a large developmental age range, several limitations should be 
addressed. First, our voxel size cannot sufficiently distinguish cortical layers. Different layers are 
composed of distinct cytoarchitectonic populations that may differentially contribute to the 
diffusion signal. Furthermore, some diffusion metrics in thinner cortical regions may be obscured 
by partial volume effects, as described previously. Additionally, our youngest participants in the 
study are 8 years of age and we are therefore unable to track developmental timing in young 
childhood, where many cell populations undergo the most rapid growth. Lastly, the present 
study is cross-sectional and we are unable to make specific inferences about how diffusion 
properties change within children over time.  
 
We used multiple diffusion metrics as surrogate markers for cortical microstructural maturation 
to quantify the spatiotemporal time course of the cortical sheet during typical development. Our 
findings support previous neuroimaging and histological work that demonstrates primary 
sensory regions mature earlier than higher order association regions. Additionally, we found 
differing developmental trajectories across NODDI and DTI metrics indicative of region-specific 
cytoarchitectonic patterns. The neurodevelopmental gradient maps developed in this study 
provides insight into neurotypical maturation and can be compared against patients with 
developmental disabilities to uncover alterations to the magnitude and timing of cortical 
maturation. The results from this study sheds new light on the maturation of cortical 
microstructure and demonstrates the utility of diffusion metrics to study the cytoarchitectural 
organization of the cortex. Future studies will aim to corroborate our findings with histologically 
matched templates to better understand how microstructural metrics derived from non-invasive 
neuroimaging techniques reflect the developmental processes that give rise to the emergence 
of cognitive functions and complex behaviors.  
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Tables and Figures 

 
Figure 1. Group-averaged cortical surface maps for (A-D) DTI and (E-F) NODDI metrics. 
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Figure 2. Main effect of age on cortical DTI parameters. (Left) The relationship between age 
and diffusion metrics averaged across all cortical vertices bilaterally is shown for AD, RD, MD 
and FA. Surface renderings represent t-statistics for the linear (center) and nonlinear (right) 
effects of age on DTI metrics after controlling for sex and scanner type. T-values are 
thresholded according to the significance level derived from random field theory. Overall DTI 
metrics decreased with age in the cortex. Using a vertex-wise analysis with significance 
threshold derived from random field theory, vertices that show significant linear (age) and non-
linear (age2) effects of age on DTI metrics are shown after adjusting for sex and scanner type. 
Age is linearly associated with DTI metrics across the majority of the cortex, while non-linear 
age effects were broadly observed with cortical AD, RD and MD, but not FA. 
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Figure 3. Main effect of age on cortical NODDI parameters. (Left) The relationship between age 
and diffusion metrics averaged across all cortical vertices bilaterally is shown for FISO, ODI and 
FICVF. Overall NODDI metrics increased with age in the cortex. Using a vertex-wise analysis 
with significance threshold derived from random field theory, vertices that show significant linear 
(age) and non-linear (age2) effects of age on NODDI metrics are shown after adjusting for sex 
and scanner type. Age is linearly associated with NODDI metrics across the majority of the 
cortex, whereas non-linear age effects were broadly observed with cortical FICVF. 
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Figure 4: Developmental timing of cortical diffusion microstructure. The age at peak maturation, 
defined as the estimated age at 95% of the growth model asymptote, is shown within predefined 
cortical regions for diffusion metrics that underwent nonlinear age effects. The estimated age at 
peak maturation is shown for (A) AD, (B) RD, (D) MD, (E) NDI and (F) ODI. Regions where the 
growth model failed to converge and non-cortical surface points (e.g., subcortical midline) are 
shown in gray.  
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Figure 5: Cortical microstructural clusters derived from NMF. (A) Four clusters were identified 
using all diffusion parameters as features in the cortical mesh that correspond to primary 
sensory (cluster 1), occipito-parietal (cluster 2), fronto-temporal (cluster 3) and limbic cortices 
(cluster 4). (B) The relationship between age and each diffusion metric was assessed within 
each cluster and the line of best fit (solid line) and peak age estimate (dashed line) are shown 
for data best fit with a growth curve. Linear fits were found for cluster 1 (AD, RD, FA and FISO), 
cluster 2 (FA and FISO), cluster 3 (FA, FISO) and cluster 4 (FISO). Some terminal age 
estimates were observed outside the sampled age range and are not shown. 
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