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Nanoscale Kerr Nonlinearity 
Enhancement Using Spontaneously 
Generated Coherence in Plasmonic 
Nanocavity
Hongyi Chen1, Juanjuan Ren1, Ying Gu1,2, Dongxing Zhao1, Junxiang Zhang2,3 & 
Qihuang Gong1,2

The enhancement of the optical nonlinear effects at nanoscale is important in the on-chip optical 
information processing. We theoretically propose the mechanism of the great Kerr nonlinearity 
enhancement by using anisotropic Purcell factors in a double-Λ type four-level system, i.e., if the 
bisector of the two vertical dipole moments lies in the small/large Purcell factor axis in the space, 
the Kerr nonlinearity will be enhanced/decreased due to the spontaneously generated coherence 
accordingly. Besides, when the two dipole moments are parallel, the extremely large Kerr nonlinearity 
increase appears, which comes from the double population trapping. Using the custom-designed 
resonant plasmonic nanostructure which gives an anisotropic Purcell factor environment, we 
demonstrate the effective nanoscale control of the Kerr nonlinearity. Such controllable Kerr nonlinearity 
may be realized by the state-of-the-art nanotechnics and it may have potential applications in on-chip 
photonic nonlinear devices.

Conventional nonlinear effects in bulk materials restricted their applications in realizing on-chip optical infor-
mation processing. Plasmonic nanostructure becomes one of the competitive nanoscale platforms to demonstrate 
nonlinear optical effects1,2. Originating from the free electrons collective oscillation3, the surface plasmons have 
the ability to confine the electromagnetic field into an extremely small mode volume, thus leading to a large 
enhancement of the near field4–10. Based on this property, various nonlinear optical effects have been investigated 
theoretically and experimentally11–21. While, another key advantage of the plasmonic structure is the large sub-
wavelength scale anisotropic Purcell factors22,23, which have been widely used in the linear quantum optical effects, 
such as the enhancement and quenching of molecular fluorescence24–28, double coherent population trapping29, 
and modification of the spontaneous emission spectrum30. Though, the enhanced nonlinear susceptibilities31 and 
nonlinear optical rectification32 due to the suppression of spontaneous emission induced by surface plasmons 
have been reported. However, the study of the nonlinear optical effects with the help of the anisotropic Purcell 
factors is still rare.

The Kerr-type nonlinearity, known as one of the most fundamental coefficients in nonlinear optics, corresponds 
to the refractive part of the third-order susceptibility of optical media. It plays a crucial role in the cross-phase 
modulation for quantum logic operations33, modulation for generation of optical solitons34,35, superposition states 
for quantum information processing36, etc. Various types of the methods using quantum coherence to enhance 
the Kerr nonlinearity have been presented37–42. Based on electromagnetically induced transparency (EIT), the 
Kerr nonlinearity is greatly enhanced near the two-photon resonance in conventional three-level atomic system37. 
Subsequently, for four-level Rubidium atomic system, several orders of magnitude greater than the Kerr nonlinear-
ity of three-level scheme was observed38. Because of the interaction of double dark resonances, giant enhancement 
of the Kerr nonlinearity was proposed39. In addition, the influence of spontaneously generated coherence (SGC)43 
on the enhanced Kerr nonlinearity was also investigated in three-level atomic system40. It is found that the SGC 
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plays a role only when the dipole moments are nonorthogonal in vacuum. However, in natural atoms, the dipole 
moments between the two near-degenerate energy levels are generally vertical, which limited its experimental 
realization of the Kerr nonlinearity enhancement based on the SGC. Here, we use the SGC to modify the Kerr 
nonlinearity of an EIT-like system via plasmonic nanocavity. With even vertical dipole moments, the SGC can still 
take into effect in the anisotropic Purcell factors.

In the following, letting all the transition channels influenced by the well-designed plasmonic nanocavity, we 
first theoretically demonstrate the mechanism of the great Kerr nonlinearity enhancement by using anisotropic 
Purcell factors in a double-Λ type four-level system. If the bisector of the two vertical dipole moments lies in the 
small/large Purcell factor axis, the Kerr nonlinearity will be enhanced/decreased due to the SGC accordingly. What’s 
more, we find that the Kerr nonlinearity could be further increased by adjusting the atomic energy level spacing, 
detuning and Rabi frequency of the coherent field. If the dipole moments are parallel, an extremely large Kerr non-
linearity in the middle peak is achieved under the double trapping condition. Using the custom-designed plasmon 
nanocavity, we can control the Kerr nonlinearity at the subwavelength scale due to the fact that Kerr nonlinearity is 
very sensitive to the positions. This hybrid system may offer the better understanding of the quantum light-matter 
interaction at nanoscale and the potential application in ultra-compact optoelectronic quantum nonlinear devices.

Results
Model Setup.  As shown in Fig. 1, a double-Λ type four-level atomic system is considered, which consists of 
two near-degenerate upper levels ( a1  and )a2  and two lower levels ( b1  and )b2 . Due to the two closely lying 
upper levels, a strong field with the frequency ν1 simultaneously pumps the transitions between a1 , a2  and the 
lower state b1 , and a weak field with the frequency ν2 simultaneously probes the transitions between a1 , a2  and 
the lower state b2 . The optical frequencies corresponding to four levels are ωa1

, ωa2
, ωb1

, and ωb2
, so the optical 

detunings and two upper levels energy spacing are ω ω ν∆ = − −a b11 11 1
, ω ω ν∆ = − −a b21 12 1

, 
ω ω ν∆ = ∆ = − − ,p a b12 21 2

 ω ω ν∆ = − − ,a b22 22 2
 and ω ω ω= −a a12 1 2

. Our model is based on the typical 
EIT structure configuration with all the transition channels are coupled by optical fields. Under the Weisskopf-
Wigner approximation, the spontaneous decay rate from the upper level | 〉ai  to the lower level | 〉bj  is defined as γij, 
i, j =  1, 2. Particularly, because the upper levels are near-degenerate, so their transition channels associated with 
same lower states will interact with the common vacuum mode. Thus the crossing damping between two upper 
levels exists and it is denoted by κ, κ*, where κ κ κ κ( ) = ∑ ( )=

⁎ ⁎
j j j1
2 . Note that κ1 and κ2 are the contribution of the 

two upper levels interacting with b1  and b2 , respectively.
Under the rotating-wave and dipole approximation, we can obtain the Hamitonian of the described system in 

the interaction picture29:

= ∆ + ∆ + (∆ − ∆ )
−( Ω + Ω + Ω + Ω + . .), ( )

ħ ħ ħ
ħ ħ ħ ħ
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where µ εΩ = ⋅ /( )
�� � ħ2ij ij j , for, i, j =  1, 2, is the Rabi frequency of the field pumping the transition between the 

upper level ai  and the lower level | 〉bj . ε j and µ��ij are the corresponding amplitude of the field and transition dipole 
moment. As shown later, the coherent field ε j can be modified by a resonant plasmon structures at the nanoscale. 
Taking the two near-degenerate levels into account, we assume that the Ω 11 =  Ω 21 =  Ω c, Ω 12 =  Ω 22 =  Ω p, and all 
the dipole moments are equal, that is μ11 =  μ21 =  μ12 =  μ22 =  μ.

The master equation of the atomic system in the interaction picture is:

ρ ρ ρ= − , + ( ). ( )ħ
ˆ ˆ ˆ ˆd

dt
i H L[ ] 2I I I I

Figure 1.  The schematic of the double-Λ type four-level atomic system. (a) The schematic of a four-level 
double-Λ  type atomic system with the cross damping κ (κ*) between the two upper near-degenerate levels.  
(b) The dipole moments of all the related channels. Γ xx (Γ zz) denotes the decay rate along the x (z) direction. 
θa b1 1

, θa b1 2
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 are the angles between the dipole moments µa b1 1
, µa b1 2
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The first term is the interaction between the coupling filed and the atomic system. The second term is the dissipation 
term which reflects the effects of the environment to the system. Considering the characteristic in our system, the 
ρ( )ˆL I  is given as ρ ρ ρ( ) = ( ) + ( )ˆ ˆ ˆL L LI

sp
I

cd
I , where ρ( )ˆLsp

I  is the conventional spontaneous decay rates induced 
by the interaction of system with the vacuum modes and ρ( )ˆLcd

I  is the crossing damping rates between two upper 
levels. The expressions of the dissipation term are as follows:
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where σ α β=αβ , α, β =  ai, bj are the dipole transition operators, and γij are the spontaneous decay rates between 
ai  and | 〉bj . The detailed systematic equations of motion of the density matrix in the interaction picture (see 
equation (7) in Methods) gives the whole information about the effects of the interaction with the field and the 
environment to each density matrix element. From the expressions shown in Methods, it is obvious that the crossing 
damping vanishes when the dipole moments are vertical in isotropic vacuum, and the spontaneous decay rates γ 
and cross damping κ are connected to the decay rates along the x and z directions, that is Γ xx, Γ zz. In the following, 
we will see that the x and z directions have different Purcell factors Γ xx/γ0 and Γ zz/γ0, which could be realized in 
plasmonic nanocavity and it will guarantee that the crossing damping exists with the vertical dipole moments.

The response of the atomic medium is dominated by the intensity of polarization P =  ε0(ε2χe−iωt +  c.c.)/2, where 
ε2 is the amplitude of the probe field, and χ is the susceptibility of the atomic medium. The expression of polari-
zation in terms of dipole moment and density matrix can be obtained as µρ µρ= ( + ) + . .ω−P N e c c[ ]a b a b

i t
1 2 2 2

 
by performing a quantum average over the atomic ensemble of N atoms. The perturbation method44 is employed 
to get the steady-state solution of the equations of motion, which is essential for the derivation of the linear and 
nonlinear susceptibi l ity.  Then, the elements of  the density matrix can be expanded as 
ρ ρ ρ ρ ρ= + + + +( ) ( ) ( ) ( )

mn mn mn mn mn
0 1 2 3 . Assuming that the probe field is much weaker than the coupling field, we 

can find that the only nonzero density matrix element for the zeroth order is ρ =( ) 1b b
0

2 2
. Using the perturbation 

method and under weak probe field limit, we obtain the elements of density matrix up to the third-order. With 
above results, the first-order and third-order susceptibilities χ(1) and χ(3) can be expressed as following:
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Mechanism of Enhancing Kerr Nonlinearity in the Anisotropic Purcell Factors Space.  We begin 
by theoretically exploring the underlying mechanism of the anisotropic Purcell factors to modify the Kerr non-
linearity. According to the expressions (4) and (5), the numerical results of the refractive part of the third-order 
susceptibility, linear and nonlinear absorption, and coherence term ρ( )

a a
2

1 2
 originated from SGC as a function of the 

probe detuning are displayed in Fig. 2. We normalize the χ(1) and χ(3) by the factor µ

ε ħ
N 2

0
 and µ

ε ħ

N 4

0
3

, respectively. 
Here, the Purcell factors are set to be Γ xx =  0.6γ0, Γ zz =  1.4γ0, other parameters are ω12 =  1.7γ0, Δ 11 =  0.85γ0, 
Ω c =  0.5γ0, Ω p =  0.001γ0. As shown in Fig. 2(a), if the angle bisector of two perpendicular dipole moments lies 
along the small Purcell factors axis (red curve) or lies on the large Purcell factors axis (blue curve), there is an 
enhancement or decrement of the Kerr nonlinearity occurred when compared with the isotropic vacuum with 
Γ xx =  Γ zz =  γ0 (gray curve). Owing to the anisotropic Purcell factors, the Kerr nonlinearity can be modified more 
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effectively than the isotropic situation42 in double-Λ  system with vertical dipole moments. The imaginary part of 
the third-order susceptibility in Fig. 2(b) is always negative which means a nonlinear gain. From Fig. 2(c), we can 
find that in the three cases, the linear absorption at the EIT point of Δ p/γ0 =  0.85 is vanishing in accord with the 
two-photon resonance Δ p =  Δ 11 and the enhancement of the Kerr nonlinearity can be achieved near the trans-
parent point.

Now we provide a qualitative explanation for the above numerical results. The coherence term ρ( )
a a

2
1 2

 between 
the two upper near-degenerate levels is associated with the SGC and both the first-order term ρ( )

a a
1

1 2
 and third-order 

term ρ( )
a a

3
1 2

 are found to be zero. Obviously, the enhancement (suppression) of the Kerr nonlinearity corresponds 
to the increasing (decreasing) of ρ( )

a a
2

1 2
 (Fig. 2(d)). Hence, we attribute the modification of Kerr nonlinearity to the 

SGC between the two upper near-degenerate levels. By properly choosing the anisotropic Purcell factors, the 
enhancement of the Kerr nonlinearity in our system could be easily realized.

To fully investigate the modification of the Kerr nonlinearity, we numerically calculated the refractive part of 
the third-order susceptibility and the coherence term ρ( )

a a
2

1 2
 with different atomic energy level spacing ω12, the 

coupling field detuning Δ 11 and Rabi frequency Ω c. The two pairs of the dipole moments are orthogonal and their 
bisections all lie along the x axis of decay rate with Γ xx =  0.6γ0 and Γ zz =  1.4γ0. As the energy level spacing ω12 
decreases, the Kerr linearity increases as shown in Fig. 3(a). In this situation, the correspondence of the Kerr 
nonlinearity and the coherence term ρ( )

a a
2

1 2
 shows the origin of the enhanced Kerr nonlinearity can be traced to the 

SGC (Fig. 3(b)). Moreover, when the ω12 decreases from 1.7γ0 to 0 with the fixed detuning ∆ = ω
11 2

12 of the coupling 
field, the spectrum of the Kerr nonlinearity and the coherence term ρ( )

a a
2

1 2
 would shift accordingly with the EIT 

point. Further numerical calculations indicate that, as |∆ − |ω
11 2

12  and the coupling Rabi frequency increase, the 
enhancement of the Kerr nonlinearity is obtained (Fig. 3(c,e)). The reason is also due to the SGC, i.e., the large 
values of the coherence term ρ( )

a a
2

1 2
 in Fig. 3(d,f) correspond to the peaks of Kerr nonlinearity in Fig. 3(c,e). As a 

reference, the parameters of the black curve in all the figures remain the same as in Fig. 2. Therefore, through the 
properly choosen ω12, Δ 11 and Ω c, the Kerr nonlinearity could be further enhanced with the vertical dipole 
moments under anisotropic Purcell factors.

If the two pairs of the dipole moments are neither vertical nor parallel with each other, i.e., the angles between 
the two pairs dipole moments are either larger or smaller than π

2
, the conclusions remain the same. We attribute 

the enhancement of the Kerr nonlinearity to the increment of the ρ( )
a a

2
1 2

 which originates from the SGC.
Next, we focus on the situation that the two pairs of the dipole moments are parallel. We first explore the mech-

anism of the anisotropic Purcell factors to modify the Kerr nonlinearity. In this system, letting the two pairs of the 
parallel dipole moments lie along the x axis, there is a double-EIT phenomenon induced by SGC, namely, one is the 
normal EIT which satisfies the two-photon resonance condition Δ p =  Δ 11, the other is a kind of new transparency 
determined by the SGC29 (Fig. 4(c)). Although, the enhanced Kerr nonlinearity in the double-Λ  system with the 
parallel dipole moments have been investigated42, the influence of the double-EIT to the Kerr nonlinearity is still 
unknown. By diagonalizing the Hamiltonian (equation (1)), the positions of absorption peaks are consistent with 
the prediction of dressed state analysis (Fig. 4(c)).

Figure 2.  The mechanism of enhancing and suppressing the Kerr nonlinearity by anisotropic Purcell 
factors with orthogonal dipole moments. (a) Kerr nonlinearity Re(χ(3)), (b) nonlinear absorption Im(χ(3)),  
(c) linear absorption Im(χ(1)), and (d) coherence term ρ( )

a a
2

1 2
 of the double-Λ  type system as a function of probe 

detuning with different anisotropic Purcell factors and orthogonal dipole moments. Enhancing (red curve) or 
suppressing (blue curve) the Kerr nonlinearity occurs when the bisection of the two pairs of dipole moments 
lies along the axis of the small or large Purcell factor, compared with Kerr nonlinearity for the isotropic Purcell 
factor (grey curve). Parameters are ω12 =  1.7γ0, Δ 11 =  0.85γ0, and Rabi frequencies Ω c =  0.5γ0, Ω p =  0.001γ0.
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Comparing with the isotropic vacuum, the dipole moments lie on the small/large Purcell factors, the enhancing/
decreasing of the Kerr nonlinearity happens (Fig. 4(a)), which is the same as found in the orthogonal dipole 
moments situation (Fig. 2(a)). But, different with the orthogonal situation, a huge enhancement in the central peak 
of the Kerr nonlinearity was found, which corresponds to the ultra narrow central peak in the linear absorption. 
Thus, the remarkably increase of coherence term ρ( )

a a
2

1 2
 indicates that the SGC is the physical origin of the enhancing 

Kerr nonlinearity (Fig. 4(d)).
More numerical calculations indicate that, with the anisotropic Purcell factors, the Kerr nonlinearity would be 

further enhanced as the energy level spacing decreases and the coupling Rabi frequency grows. But when we study 
the effect of the different coupling field detunings on the Kerr nonlinearity, the results show that the closer to the 
ω
2
12  point, the bigger Kerr nonlinearity. Therefore, by properly adjusting the atom intrinsic parameter and the 

coupling field parameters, the Kerr nonlinearity could be further enhanced in the parallel dipole moments.

Figure 3.  The modification of the Kerr nonlinearity by atomic and coupling filed parameters in orthogonal 
dipole moments. The Re(χ(3)) and ρ| |( )

a a
2

1 2
 with varying (a,b) energy level spacing ω12, (c,d) coupling field 

detuning Δ 11, and (e,f) coupling field Rabi frequency Ω c. Other parameters remain the same as in Fig. 2.

Figure 4.  The mechanism of the Kerr nonlinearity enhancement by anisotropic Purcell factors in parallel 
dipole moments. (a) The Kerr nonlinearity Re(χ(3)), (b) nonlinear absorption Im(χ(3)), (c) linear absorption 
Im(χ(1)), and (d) coherence term ρ( )

a a
2

1 2
 of the double-Λ  type system with different anisotropic Purcell factors. 

The inset of (a) is the enlarged scale of the central peak. All the dipole moments lie on the x axis. The decay rates 
of the z direction all are set with Γ zz =  γ0. Other parameters are ω12 =  4γ0, Δ 11 =  0, and Rabi frequencies 
Ω c =  3γ0, Ω p =  0.03γ0.
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The Nanoscale Realization of the Enhanced Kerr Nonlinearity in Plasmonic Structure.  To achieve 
the Kerr nonlinearity enhancement at nanoscale, we propose a custom-designed hybrid system of the quantum 
emitter and the resonant plasmon nanostructure. Plasmonic nanocavity with the anisotropic local optical state 
density, which offers the subwavelength-confined anisotropic Purcell factor and strong near field, is a suitable 
candidate. Here, we use the Cesium atom hyperfine structure to represent the double-Λ  type four-level system 
with orthogonal dipole moments. 6D3/2, F =  3 and 6D3/2, F =  2 correspond to the upper levels a1  and a2 , 6P3/2, 
and 6P1/2 are the two ground levels b1  and b2 , respectively. The upper levels to the lower level 6P3/2 have the 
transition wavelength of 920.85 nm, and the upper levels to the other lower level 6P1/2 have the transition wavelength 
of 876.14 nm. To demonstrate the mechanism mentioned above, we put a quantum system in the near field region 
of the plasmonic nanocavity.

In the following, using Green’s tensor method45,46 with the mesh of 25 nm, we design a gold nanocavity (Fig. 5(a)) 
composed of eight gold nanostrips with 50 nm spacing in both directions to support suitable Purcell factors. The 
two largest gold nanostripes with the size of 175 ×  50 ×  50 nm3 in the middle part of the nanocavity dominate the 
main resonance. Influenced by the other six nanostripes around it (more size details shown in Fig. 5(a)), the res-
onance wavelength of the nanocavity can be modified effectively and the region of the anisotropic Purcell factors 
can also be enlarged for better control of the Kerr nonlinearity. There are three peaks in the absorption spectrum 
of the nanocavity (Fig. 5(b)), among which, the largest one is the dipole resonance with the wavelength of 
λ =  917 nm, which matches the transitions from the upper levels a1  and a2  to the lower level b1 . While, the 
probe field of λ =  876 nm is off resonance with the plasmonic nanocavity. Thus, the near field of the dipole reso-
nance is strongly enhanced (Fig. 5(c,d)), which can make sure that the coupling field is strong enough compared 
with the off resonance probe field. Furthermore, the proposed plasmonic nanocavity structure guarantees the 
subwavelength scale Purcell factors. We then explored the decay rate distributions of the xy plane which is 75 nm 
away from the metallic surface at λ =  920 nm, and found that anisotropy in different positions is large enough for 
our investigation (Fig. 5(e,f)). For matching different transitions of the quantum emitter, the plasmonic nanos-
tructure also can change its resonance wavelength by adjusting its structures, materials or dimensions, etc. As a 
simple example, this proposed design of the plasmonic nanocavity guarantees the suitable resonance wavelength, 
near field enhancement and the anisotropic Purcell factors for the study requirements. It offers the possibility to 
be a novel quantum nonlinear platform to realize controllable Kerr nonlinearity at nanoscale. Crucially, our gold 

Figure 5.  The resonant gold nanocavity with the near field and Purcell factor distributions. (a) Schematic 
of a resonant gold nanocavity to interact with the atom and (b) its absorption. The near field distributions (c) Ex, 
(d) Ez and the distributions of anisotropic Purcell factors (e) Γ xx/γ0, (f) Γ zz/γ0 on the xy-plane 75 nm from the 
metallic surface and at the wavelength of λ =  920 nm (the origin of the coordinate is in the center point of the 
nanocavity).
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nanostructure can be successfully fabricated in the laboratory with the help of the present state-of-the-art nano-
fabrication techniques47,48.

Finally, we put the quantum emitter into the near field region of designed nanostructure. Letting the x axis be 
the bisector of the two pairs of dipole moments, by varying the distance from z =  125 nm to z =  175 nm with the 
fixed x, y coordinates (x =  200 nm, y =  125 nm), it is found that the closer to the nanosturcture the bigger Kerr 
nonlinearity can be obtained due to the larger anisotropic Purcell factors and stronger near field (Fig. 6(a)). Then, 
we choose three positions x =  25 nm, y =  125 nm (black curve), x =  200 nm, y =  25 nm (red curve), x =  200 nm, 
y =  125 nm (blue curve) in the xy plane with the distance of 75 nm away from the surface of plasmonic nanocavity. 
As shown in Fig. 6(b), the Kerr nonlinearity are very sensitive to the location of quantum system relative to the 
custom-designed plasmon structures. It is noticed that, the study of the Kerr nonlinearity influenced by the distance 
between the quantum system and the plasmonic nanostructure also have been discussed before41, but with different 
mechanism. Using the plasmonic nanostructures’ strong subwavelength near field to trap and manipulate the atoms 
has been proposed recently49,50. Although the stability and the accuracy of the atomic position are still need to be 
increased, our plasmonic nanocavity which offers the near field and suitable Purcell factors within hundreds of 
nanometers has the possibility to trap the atoms with the current techniques. In addition to the hyperfine structure 
of the alkali metal atom, the dual CdSe/ZnS/CdSe nanocrystals can be treated as another potential candidate for a 
four-level system51,52. To sum up, the anisotropy of Purcell factors and local field enhancement near the resonant 
plasmonic nanocavity allow for the nanoscale control of enhanced Kerr nonlinearity.

Conclusion
In summary, we have theoretically investigated the enhanced Kerr nonlinearity of the four-level double-Λ  quantum 
system in the resonant plasmon nanocavity. Using the SGC, we have demonstrated the mechanism of the Kerr 
nonlinearity modification via anisotropic purcell factors with both vertical and parallel dipole moments. We have 
also realized the enhanced Kerr nonlinearity at the nanoscale in the combined system composed of the quantum 
system and custom-designed resonant plasmon nanocavity. This research offers the possibility to utilize the plas-
monics nanostructure with the quantum system as a novel quantum nonlinear platform. Such controllable Kerr 
nonlinearity may be realized by the state-of-the-art nanotechnics and it may have potential applications in the 
all-optical switches53, quantum logic gates33, as well as other nanophotonic nonlinear devices.

Methods
Using the Weisskopf-Wigner theory of spontaneous emission, the systematic equations of motion for the density 
matrix in the interaction picture involving the cross damping can be derived as follows29:
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Figure 6.  Modified Kerr nonlinearity in a resonant plasmon nanocavity. Kerr nonlinearity Re(χ(3)) of 
the double-Λ  type system as a function of the probe detuning Δ p for (a) different distances away from the 
nanocavity for z =  125, 150, 175 nm, with x =  200 nm, y =  125 nm and (b) different locations on the xy-plane  
of z =  125 nm. The inset of the (a) indicates the direction of the two pairs vertical dipole moments. The 
Rabi frequency Ω c is normalized by 1/5 of amplitude of the electric fields. Other parameters are ω12 =  1.7γ0, 
Δ 11 =  0.85γ0, and Rabi frequency Ω p =  0.001γ0.
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The above equations are constrained by ρ ρ ρ ρ+ + + = 1a a a a b b b b1 1 2 2 1 1 2 2
 and ρ ρ= ⁎

ij ji . If y axis is allowed to be 
the quantum axis, we use the Γ xx and Γ zz to denote the decay rates along the x and z directions and the θij to be the 
intersection angles between μij and x axis. The dissipation term in the anisotropic vacuum can be described by 
γ θ θ= Γ + Γcos sinij xx ij zz ij

2 2  and κj =  Γ xxcosθ1jcosθ2j +  Γ zzsinθ1jsinθ2j, for i, j =  1, 2, where γ λΓ / = ImG3xx a b xx0 1 1
, 

γ λΓ / = ImG3zz a b zz0 1 1
, and γ ω πε= /( )ħc3a b0

3
0

3
1 1

 is the decay rate in a vacuum. Gββ with β =  x, y, z are represent 
the Green’s tensor coefficients. In particular, the condition that Γ xx =  Γ zz stands for the isotropic vacuum.

The Green’s tensor coefficients and near field in our designed plasmonic nanostructure are obtained by the 
Green’s tensor method, which can be used to deal with the arbitrary shaped subwavelength structure45,46. We 
consider a subwavelength clusters with the dielectric tensor ε(r,ω) embedding in an infinite homogeneous bulk 
material with ε0(ω). With the expression of the Green’s tensor in three-dimensional system:

ω
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where R =  |R| =  |r −  r′| and ε ω= ( )k k0
2 2

0 , the electric field E(r) at any point r can be given by the Lippmann- 
Schwinger equation:

∫ ω ε ω′ ′ ′ ′( ) = ( ) + ( , , ) ( , ) ⋅ ( ), ( )E E k d G Er r r r r r r 9V
s

0 2 0

where V denotes the clusters subspace, εs(r,ω) =  ε(r,ω) −  ε0(ω). The needed Green’s tensor coefficients can be 
derived from ∫ ω ε ω′ ′ ′ ′( ) = ( ) + ( , , ) ( , ) ⋅ ( )G G k d G Gr r r r r r r

V s
0 2 0 .
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