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Energy affects every single individual and entity in the world. Therefore, it is crucial to

precisely quantify the “price of energy” and study how it evolves through time, through major

political and social events, and through changes in energy and monetary policies. Here, we

develop a predictive framework, an index to calculate the average price of energy in the

United States. The complex energy landscape is thoroughly analysed to accurately determine

the two key factors of this framework: the total demand of the energy products directed to

the end-use sectors, and the corresponding price of each product. A rolling horizon predictive

methodology is introduced to estimate future energy demands, with excellent predictive

capability, shown over a period of 174 months. The effectiveness of the framework is

demonstrated by addressing two policy questions of significant public interest.
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Energy markets are sensitive and volatile to technological
breakthroughs and innovations, changes in monetary and
fiscal policies, major global events, and consumer trend

changes1–3. Various governmental agencies, and political and
commercial organizations think tanks, as well as researchers and
academics worldwide, consider various energy policies and their
effects when dealing with the increasing concerns in energy
independence, energy scarcity, energy sustainability, and pollu-
tion caused by the utilization of energy4–9. Furthermore, with
strategic political and commercial decisions, and policies being
assessed in economic terms, it is of utmost importance to accu-
rately determine the price of energy so as to evaluate their
effectiveness. Undoubtedly, energy affects every person and
entity. Therefore, it is essential to accurately quantify “the price of
energy” and grasp how it is affected by major breakthroughs,
political events, as well as energy and monetary policies.

Given the absence of such a pre-existing tool, we introduce a
predictive framework, the Energy Price Index (EPIC), which can
be used as a benchmark to calculate the average price of energy to
the end-use consumers in the United States. The complex energy
landscape of the United States is carefully analyzed to determine
the products that are directed to the end-use sectors of the US
economy. The total energy demand of these products, together
with their prices, serve as the backbone of EPIC. We also intro-
duce a rolling horizon model that uses data from the past so as to
estimate the weights of the energy demand in the future based on
which various policy rules and questions can be assessed,
designed, and optimized through the use of EPIC. The predict-
ability of the proposed methodology is rigorously tested over a
long period of 174 months, demonstrating remarkable accuracy.

The novelty of the proposed index (EPIC) lies on its unique
features. First, it represents the average price of energy in the
United States over the entire energy landscape covering all the
different energy sources and feedstocks (non-renewables and
renewables), as well as the end-use sectors. As such, it is not just a
representative price of a sub-section of the energy landscape such
as the price of electricity in the residential sector or the price of oil
products in the industrial sector, which is common in the existing
literature10–13. Second, the proposed formulation collectively
captures the two key attributes of energy, the supply and demand
mechanisms along with the prices of the energy feedstocks and
products across the entire energy landscape. This is another
unique feature, as the methodologies in the literature generally
focus on specific energy sectors14–16. Third, the excellent fore-
casting ability of the proposed mathematical framework allows
the estimation of the current value of EPIC and thus the current
price of energy, overcoming the issue of the non-availability of
actual data, while it can also be used to forecast future values of
the energy demand accurately. In contrast, the forecasting fra-
meworks in the literature focus on specific energy sectors17 such
as electricity18–20, natural gas21, crude oil22, and petroleum pro-
ducts23, with generally much shorter forecasting horizon17–23.
Finally, it is a quantitative approach to evaluate, design, and
optimize different policy questions of significant public interest
such as a policy case study for the renewable energy and a policy
case study for the crude oil tax.

The EPIC framework demonstrates novel features not only for
the existing academic literature but also for the financial tools in
the energy sector. The various energy indices are primarily
capitalization weighted indices, capped market capitalization
indices, price-weighted indices, and world production-weighted
indices24 with some of the most representative examples being
S&P 500 Energy Index25, MSCI US IMI Energy 25/50 Index26,
and S&P GSCI Energy27. S&P 500 Energy Index tracks the
market capitalization of energy companies and their stock price,
whereas MSCI US IMI Energy 25/50 Index captures the large,

mid, and small cap segments of the US equity universe, but
neither of them reflects to the actual energy products. The S&P
GSCI Energy includes only the futures contracts on physical
commodities with the weights being calculated based on the
world production of these commodities; however, it focuses
exclusively on oil and gas products, without capturing other
energy feedstocks such as electricity, or renewables. More details
about these financial indices, their constituents, and their weights
are shown in the Supplementary Table 1. On the contrary, EPIC
captures the prices of all energy feedstocks, while the weights are
calculated from the actual demands of these energy feedstocks
(Supplementary Tables 2 and 3).

Two key applications of the proposed index in addressing
contemporary policy questions are presented here. In particular,
the effects of a crude oil tax on EPIC are investigated para-
metrically for a range of taxes from $2.5 per barrel up to $25 per
barrel so as to estimate the expected change in the price of energy
under different scenarios both for the past, i.e., what would have
happened, as well as for the future, i.e., what will happen. Also,
the generated revenue from the implementation of each scenario
is calculated. Moreover, the effects of renewable energy produc-
tion targets and subsidies on energy consumers are examined
parametrically over a wide range of different weights of the
energy feedstocks, as well as for tax credits ranging from 0 to 9
$/MMBtu. Similar to the previous policy case study, different
scenarios are presented retrospectively and prospectively, along
with the budget required for the implementation of each scenario,
taking advantage of the powerful predictive ability and flexibility
of the proposed methodology.

Results and discussion
The US energy landscape is a complex and extensive network of
energy feedstocks and products across multiple sectors. This
complexity is due to the fact that the various energy feedstocks
can be utilized in many different ways. More specifically, they can
be directed straight to the end-use sectors, or converted and
refined to be directed to the end-use sectors and/or to the
intermediate energy-consuming sector, or directed to the inter-
mediate energy-consuming sector. Over the years, we have
extensively worked in the development of process super-
structures, energy supply chain analyses, and strategic planning
frameworks28–62, which utilize single and hybrid energy feed-
stocks (biomass, coal, natural gas, and municipal solid waste) to
produce liquid fuels and chemicals, as well as in reviewing and
assessing63–67 the current state of energy technologies, so that we
obtain the required familiarity and comprehension of such a
complex energy landscape.

The requirement for energy as an input to provide products
and/or services is defined as energy demand68. As some of the
energy feedstocks can be directed to the end-use sectors, the term
products in this context refers to the components sent to the end-
use sectors, including the primary energy sources, e.g., natural
gas, coal etc. The components that are directed to the end-use
sectors should be delineated, ensuring that all energy demand is
accounted for and avoiding any double counting of any energy
demand. It is of utmost importance to maintain a holistic and
concrete approach in defining and counting the various energy
products so as to be precise and consistent throughout this
context. This is essential, as the total demand of the energy
products directed to the end-use sectors along with their
respective prices constitute the cornerstone of EPIC.

The US Energy Information Administration (EIA)68,69 defines
the energy-consuming end-use sectors as the residential, com-
mercial, industrial, and transportation sectors of the economy,
because they purchase or produce energy for their own
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consumption and not for resale. The electric power sector is
defined as an intermediate energy-consuming sector, which
provides electricity to the four major energy sectors, i.e., resi-
dential, commercial, industrial, and transportation68,69. The
definitions of each of the end-use sectors can be found in Sup-
plementary Note 1.

Figure 1 illustrates in detail the complete US energy landscape
for the different energy feedstocks by source and end-use sector.
Moreover, the energy landscape of each energy feedstock is
shown in Supplementary Fig. 1a–e. As mentioned above, to avoid
double counting, the feedstocks directed into the electric power
sector do not directly enter into the EPIC calculation, because
electricity is sold from the electric power sector as a product to
the four end-use sectors. Therefore, the arrows going into the
electric power sector are not counted, whereas the arrows leaving
the electric power sector are counted.

EPIC framework. The two key factors comprising EPIC are the
total demand of the energy products that are directed to the end-
use sectors in the United States along with their respective prices.

Energy products consumed by the US economy originate from
crude oil, natural gas, coal, nuclear, solar, wind, hydroelectric,
geothermal, and several types of biomass. The exact determina-
tion of these products, their consumption, and their monthly
prices is crucial. The full list of these energy products is presented
in the Supplementary Table 2. The monthly consumption (in
energy units) along with the monthly price (in $ per energy unit)
for each of these energy products is obtained from the EIA and
from other sources. Our data sources are presented in
Supplementary Table 4. Please note that the proposed framework
is generic and can be applied to (a) the United States on a
national level, (b) to United States on a state-by-state basis, (c)
regional level of multi-states, and (d) other countries, provided
that a thorough analysis of the specific energy landscape has been
conducted, the particular energy feedstocks and products have
been identified, and data for their prices and demands are
available.

EPIC represents the average price of energy in a given month
and as such is defined as the summation of the price (in

$/MMBtu) of each product multiplied by the weight fraction of
the demand of each product. The unit of EPIC is $/MMBtu. The
mathematical formulation is presented in detail in the “Methods”
section, whereas the necessary steps for calculating EPIC are
shown in the next sections.

Figure 2 illuminates the values of EPIC from January 2003 to
June 2020 in $/MMBtu.

Rolling horizon methodology. The weights of the demand of the
various energy products become available with a lag of two to
three months. In addition, the future weights of these energy
products are also necessary for the evaluation, design, and opti-
mization of policy decisions. Therefore, a predictive framework is
required to estimate the present and future weights of the
underlying energy products that enter into the EPIC calculation.
Consequently, we propose a rolling horizon methodology as a
forecasting framework to predict the values of the required data
for the time period of interest, the actual values of which will not
be known until a few months later. The proposed methodology is
using information from the previous three time periods, so as to
predict the values for the time period of interest.

Figure 3 illustrates the general concept of the rolling horizon
methodology, along with its application over two stages in the
future. Data from the three previous periods (T− 3, T− 2, and T
− 1) are used to predict the data of interest in the current stage T.
Subsequently, data from the periods T− 2, T− 1, and T are used
for predicting the data of interest in stage T+ 1, and so on.
Additional details, along with the mathematical optimization
model employed, are presented in the “Methods” section.

Prediction of energy products’ demand weights. The rolling
horizon methodology presented in the previous section is used to
predict the weights of the demand of energy products for the time
of interest. As the data of the energy demand lags 2–3 months, as
of October 2020 we have available actual data until June 2020. To
estimate the weights of energy products for July 2020, we use the
data of July 2017, July 2018, and July 2019. Similarly, for August
2020, we use the data of August 2017, August 2018, and August
2019. This methodology can be extended to predict future data:
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Fig. 1 US energy landscape by source and end-use sector. Each energy feedstock (source) has a unique color for easy visualization of the different
pathways. Arrows connect energy feedstocks with the sectors that are consumed in. A gray arrow represents indirect use of an energy feedstock in an
intermediate energy sector. A colored arrow (other than gray), represents direct use, matches with the color of its corresponding energy feedstock, and
directs to the end-use sector that this energy feedstock is consumed in. Source: EIA69.
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● 2nd year predictions require the deterministic data from the
last 2 years along with the predicted data of the first year;

● 3rd year predictions require the deterministic data from the
last 1 year along with the predicted data of the first and
second years;

● 4th year predictions require the predicted data of the first,
second, and third years.

Supplementary Fig. 2 illustrates the rolling horizon framework
for the first-, second-, third-, and fourth-year prediction of the
weights using September 2020 as an example.

Weight prediction results. The validity of our proposed meth-
odology is tested over a period of 174 months from January 2006
to June 2020, by comparing the predicted value of the monthly

weight of each product’s demand with its actual, known value.
For this comparison, the sum of the squared prediction error for
each month is computed over the testing period (see “Methods”)
and the results in the form of an average sum of squared error,
minimum sum of squared error, and maximum sum of squared
error are summarized in Table 1. It should be noted that the
number of months to be compared decreases as the year of
prediction increases. For example, the predictions of the second
year require the predicted weights of the first year, so there are
less actual monthly values to compare.

As shown in Table 1, the predictive ability of our proposed
methodology is quite remarkable since the reported error values
are extremely low. This is true even if we consider the square root
of the average sum of the squared errors which is 1.8808%,
2.0874%, 2.2329%, and 2.3641% for the first, second, third, and
fourth year, respectively. The very low predictive error (2.3641%)
in the case of the fourth year, where only unknown (predicted)
values have been used, is of significant importance. As expected,
the average sum of the squared error increases, as the year of
prediction increases due to the decreasing number of months
with known values. The accuracy of the proposed methodology is
also verified from the fact that even the maximum sum of squared
error over the tested period is rather low, i.e., 0.006685 or
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Fig. 2 Energy Price Index - EPIC in $/MMBtu from January 2003 to June 2020 with monthly indexing. EPIC represents the average price of energy in a
given month across the United States, considering the demands and prices of all the energy feedstocks. Source data are provided as a Source Data file.

Fig. 3 Rolling horizon methodology with application over two stages in
the future. At stage T, data from the three previous periods (T− 3, T− 2,
T− 1) (blue color) are used to predict the data of interest at the current
stage T (orange color). At stage T+ 1, data from the periods T− 2, T− 1, T
(blue color) are used for predicting the data of interest at the new present
stage T+ 1 (orange color). At stage T+ 2, data from the periods T− 1, T,
T+ 1 (blue color) are used for predicting the data of interest at the new
present stage T+ 2 (orange color).

Table 1 Weight prediction results up to 4 years from
January 2006 to June 2020.

Year
prediction

Months
to
compare

Average sum
of
squares error

Minimum
sum of
squares error

Maximum
sum of
squares error

1st year 174 0.000354 0.000050 0.005387
2nd year 162 0.000436 0.000075 0.005242
3rd year 150 0.000499 0.000123 0.006685
4th year 138 0.000559 0.000172 0.006036
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8.1764% when we consider the square root of the sum of the
squared errors.

This excellent predictive ability along with the unique inherent
characteristics of EPIC that captures both the demands and the
prices of the products over the entire energy landscape in the
United States justifies our opinion that EPIC is the ideal tool for
designing, assessing, and optimizing various policy decisions of
public interest. Two prime, representative policy case studies are
presented in the next sections.

Policy case study 1: crude oil. The proposed framework can be
used for a wide range of policy questions and analyses, and a
potential tax in crude oil is investigated here as an alternative
policy for mitigating climate change and concurrently generating
substantial revenue that is required for climate finance. Such a
policy of $10.25 per barrel tax on crude oil was also proposed by
US President Barack Obama back in 2016, to support new
transportation systems designed to reduce carbon emissions and
congestion70.

Here we examine parametrically the effects of a crude oil tax
ranging from $2.5 per barrel up to $25 per barrel in EPIC, and
calculate the amount of revenue that could be generated by such a
policy from January 2003 until June 2020. Taking advantage of
the excellent predictive ability of the proposed EPIC framework,
we estimate the changes in EPIC in the next 4 years along with
the future revenue that will be generated by such a policy. We
assume that crude oil has a heating content of 5.721 MMBtu per
barrel69 and a petroleum refinery efficiency of 90%. Moreover, the
amount of petroleum and petroleum products being sent for
electricity generation is assumed to be negligible (≈0.57% over the
last year). Crude oil demand is considered as inelastic in the short
run, with long-run values of elasticity being generally higher in
absolute values but still well below 171–74.

The average monthly difference (in $/MMBtu) and the average
monthly percentage increase of EPIC in comparison to its
reference values from January 2003 to June 2020 are presented in
Table 2 for the different values of crude oil tax. As crude oil is
inelastic, the investigated crude oil tax has not affected the
historical values of crude oil consumption. As can be seen, a
$10.25 per barrel of crude oil tax increases EPIC by $1.019 per
MMBtu or 5.60%, whereas a $25 per barrel of crude oil tax rises
EPIC by $2.484 per MMBtu or 13.66%. Table 2 also summarizes
the amount of revenue generated from the investigated crude oil
tax scenario over the same period (January 2003–June 2020). The

average annual revenue from a $10.25 per barrel of crude oil tax is
estimated to be $70.962 billion or $17.308 billion for every $2.5
per barrel rise of crude oil tax. Supplementary Fig. 4 illustrates the
recalculated EPIC for the above-mentioned values of crude oil tax
along with the reference value of EPIC without tax for easy
comparison, over the same period (January 2003 to June 2020).

We can also calculate the average increase in energy-related
expenses per household as a result of the proposed increase in
crude oil tax using data from the relevant survey published by
EIA75 in conjunction with the EPIC findings from our previous
analysis. According to the 2015 survey data, the annual energy
consumption per household is 77.1 MMBtu, while in 2015 the
average value of EPIC is $18.01/MMBtu. Using this information,
we estimate the average annual energy-related expenses per
household for 2015 to be $1389.06. Taking into consideration the
effects on EPIC from the increase in the crude oil taxation, a $2.5
per barrel increase in crude oil tax would have led to an average
rise of $0.2432/MMBtu or 1.35% in EPIC for 2015. Therefore, the
projected average annual energy related expenses per household
would have increased by $18.76, up to a total of $1407.82.
Similarly, an increase of $10.25 per barrel in crude oil tax would
have burdened the average energy related expenses per household
by $76.90 or 5.54%, up to a total of $1465.95.

The effects on EPIC from the investigated policy during the
next 4 years are demonstrated in Fig. 4, using the predictive
weights of demand of the energy products for this period.
Similarly, with the results for the past period, the increase of EPIC
in the future is investigated parametrically for different values of
the crude oil tax.

According to Fig. 4, a $10.25 per barrel of crude oil tax raises
EPIC over the next four years by $0.977/MMBtu on average,
whereas a $25 per barrel of crude oil tax surges EPIC by $2.384/
MMBtu on average in the same period. Using the weights of the
demand of the petroleum energy products that have been
estimated from the EPIC framework along with the projections
for the total annual energy demand from the EIA Annual Energy
Outlook 2020–Reference case3, the future revenue that will be
generated by the crude oil taxation policy over the next 4 years
can be estimated. As a result, a total of $ 147.882 billion revenue
is generated for every $5 per barrel increase in the crude oil tax
over the next four years.

Policy case study 2: renewable energy. The electric power sector
is heavily dominated (67%) by fossil fuels (coal, natural gas,
petroleum, and other gases), whereas nuclear and renewable
energy sources contribute about 17% and 16% of the remaining
electricity generation, respectively10 (see Supplementary Table 6).
As a result, the electric power sector emits about 31.5% of the
total US energy-related CO2 emissions69. Thus, coordinated
efforts for new policies and technologies are required so as to
lessen the dependence on fossil fuels and subsequently reduce
CO2 emissions. To accomplish such reduction, the share of
renewable energy within the electric power sector should be
increased. This can be achieved either by setting a target renew-
able energy share for each power feedstock (analogous to the State
based Renewable Portfolio Standards (RPS)) and/or by providing
subsidies to the renewable energy generation (analogous to the
Public Benefits Funds for Renewable Energy).

As of 2020, 30 US states, Washington D.C., and 3 US territories
have adopted an RPS, whereas 7 US states and 1 US territory have
set renewable energy goals for electricity generation76. The
National Renewable Energy Laboratory indicates that these
standards are most successful drivers of renewable energy projects
when combined with tax credits77. However, the impact of these
standards on the ratepayer are not clear and should be carefully

Table 2 Average monthly difference ($/MMBtu),
percentage increase (%), and revenue generated ($ billion)
from January 2003 to June 2020.

Crude oil Average
monthly EPIC
difference

Average
monthly EPIC
percentage
increase

Total
revenue

Average
annual
revenue

($/barrel) ($/MMBtu) (%) ($ billion) ($ billion)

2.5 0.248 1.37% 302.886 17.308
5.0 0.497 2.73% 605.772 34.616
7.5 0.745 4.10% 908.658 51.923
10.0 0.994 5.46% 1211.545 69.231
10.25 1.019 5.60% 1241.833 70.962
12.5 1.242 6.83% 1514.431 86.539
15.0 1.491 8.19% 1817.317 103.847
17.5 1.739 9.56% 2120.203 121.154
20.0 1.987 10.92% 2423.089 138.462
22.5 2.236 12.29% 2725.975 155.770.
25.0 2.484 13.66% 3028.862 173.078
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evaluated. Although some reports claim that the benefits
outweigh the costs of these standards78,79, EPIC is an excellent
tool to quantitatively analyze the costs of different renewable
standards to the government and to the end-use consumers.

Therefore, in this policy case study, six non-fossil fuel
feedstocks that are used in the electric power sector (nuclear,
hydroelectric power, biomass, geothermal, solar, and wind) are
investigated over a range of different target weights with tax
credits/subsidies ranging from 0 to $9/MMBtu. The main
assumptions, as well as the details for the calculations, are
provided in the “Methods” section. Table 3 illustrates the grid of
investigated target weights for each of the non-fossil feedstocks
based on their nominal weights within the electric power sector.

Table 4 summarizes the results of this policy case study in terms
of percentage change in EPIC at the maximum weight target for
each non-fossil fuel feedstock in the past period (January 2003 to
June 2020). It can be observed that nuclear energy causes a minor
increase to EPIC at no tax credit, but as the tax credit increases,
EPIC decreases significantly, for a maximum decline of −2.549%

corresponding to a tax credit of $9/MMBtu. Also, solar energy
requires a subsidy of at least $6/MMBtu in order to lower the value
of EPIC. It is also worth noting that increases either in the weights
or in the tax credits of wind, hydroelectric, biomass, and geothermal
energy always lead to a reduction in EPIC. This is also true even
without a tax credit. For example, wind energy decreases EPIC from
0.177% up to 0.929% as the weight target increases with no tax
credit, and from 0.621% up to 2.085% depending on the targeted
weight with $9/MMBtu tax credit.

In Table 4, the average annual budget ($ million) required to
provide subsidies at the maximum weight target for each non-
fossil fuel feedstock in the same period (January 2003 to June
2020) is also presented. Clearly, the target weight and the tax
credit are the key factors, affecting the annual budget. As either
the target weight of each feedstock or the tax credit rises, the
annual budget required to provide the relevant subsidy rises.
Nuclear energy requires the highest subsidy budget (due to its
maximum weight of 30%), but the corresponding decline in EPIC
is also substantial (−2.549%) at the maximum level of tax credit.

Taking advantage of the excellent predictive ability of EPIC, the
previous analysis can be extended to the future. As such, Fig. 5
demonstrates the effect on EPIC of various levels of tax credit
applied to wind energy, for various weight levels of wind. The
results for the remaining non-fossil feedstocks at different target
weights and tax credits are presented in Supplementary Figs. 5–9.

At the lower end of tax credit (0 or 1$/MMBtu), the weight of
the wind energy needs to be at least 11% so as to decrease the
EPIC value, whereas at the higher end of tax credit (8 or 9
$/MMBtu), the EPIC value decreases even when weight
contribution of wind energy is minimum (5%). Interestingly, as
the percentage weight of wind energy increases within the electric
power sector, EPIC decreases as the levelized cost of wind energy
is rather low. As an example, even without any tax credit, EPIC
decreases by 0.143% when wind energy provides 13% of the
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Fig. 4 Change in EPIC with parametric crude oil tax over the next 4 years (July 2020 to June 2024). A $10.25 per barrel of crude oil tax raises EPIC on
average by $0.977/MMBtu over this 4-year period. A $25 per barrel of crude oil tax surges EPIC on average by $2.384/MMBtu in the same period. Source
data are provided as a Source Data file.

Table 3 Investigated weights for the non-fossil fuel
feedstocks within the electric power sector.

Feedstock Minimum
weight

Increment
increase

Maximum
weight

(%) (%) (%)

Nuclear 18.0 3.0 30.0
Hydroelectric power 8.0 2.0 16.0
Wind 5.0 2.0 13.0
Biomass 0.5 0.25 1.5
Solar 1.0 1.0 5.0
Geothermal 0.3 0.1 0.7
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electric power. Moreover, at the higher end of tax credit, the
average decrease in EPIC exceeds $0.23/MMBtu.

Table 5 summarizes the average percentage change in EPIC
and the average annual budget ($ million) required to provide the
relevant subsidies in the future period from July 2020 to June
2024. The results are analogous with those from past period.
More specifically, hydroelectric, wind, solar and geothermal
power cause a drop of 0.198%, 0.143%, 0.090%, and 0.019%,
respectively, in EPIC prices even with no tax credit. On the
contrary, nuclear and biomass require a tax credit of at least $3/
MMBtu and $4/MMBtu, respectively, so as reduce the value of
EPIC. The most significant declines in EPIC are associated with
potential subsidies of $9/MMBtu in the nuclear, hydroelectric,
and wind power, resulting in a decline of 2.107%, 1.672%, and
1.341%, respectively. Nuclear energy is again expected to need the
highest budget to provide the required subsidy, due to its
maximum weight of 30%.

What is the price of energy to the end-users in the United
States? The response is the EPIC. In this study, we introduce
EPIC as the benchmark to calculate the average price of energy to
the end-use consumers in the United States, in units of dollars per
million Btu ($/MMBtu).

Can we estimate the impact of different policies in energy to
the end-users? Yes, by using EPIC, a comprehensive, reliable, and
easily interpretable instrument for policymakers to determine the
quantitative effects of various policies.

EPIC is a novel predictive framework and its unique character-
istics have been presented here. Its excellent predictive ability that
enables the users to accurately determine the quantitative effects of
these policies on the overall price of energy in the future has been
also demonstrated. Two key policy case studies have been
illustrated: the effects of a crude oil tax, and the implementation
of subsidies for renewable energy. The scenarios have been
investigated parametrically and the total revenue and budget/

Table 4 Average % change in the EPIC and average annual budget ($ million) at the maximum weight target from January 2003
to June 2020.

Tax credit Nuclear Hydroelectric Biomass Geothermal Solar Wind

(0.30) (0.16) (0.015) (0.007) (0.05) (0.13)

($/MMBtu) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil)

0 0.118% 0 −0.602% 0 −0.026% 0 −0.032% 0 0.257% 0 −0.929% 0
1 −0.178% 3787 −0.760% 2020 −0.041% 189 −0.039% 88 0.208% 631 −1.058% 1641
2 −0.475% 7573 −0.918% 4039 −0.056% 379 −0.046% 177 0.158% 1262 −1.186% 3282
3 −0.771% 11,360 −1.076% 6059 −0.071% 568 −0.053% 265 0.109% 1893 −1.315% 4923
4 −1.067% 15,147 −1.234% 8078 −0.086% 757 −0.060% 353 0.059% 2524 −1.443% 6564
5 −1.364% 18,933 −1.392% 10,098 −0.100% 947 −0.067% 442 0.010% 3156 −1.572% 8204
6 −1.660% 22,720 −1.550% 12,117 −0.115% 1136 −0.073% 530 −0.039% 3787 −1.700% 9845
7 −1.956% 26,507 −1.708% 14,137 −0.130% 1325 −0.080% 618 −0.089% 4418 −1.828% 11,486
8 −2.253% 30,293 −1.866% 16,156 −0.145% 1515 −0.087% 707 −0.138% 5049 −1.957% 13,127
9 −2.549% 34,080 −2.024% 18,176 −0.160% 1704 −0.094% 795 −0.187% 5680 −2.085% 14,768
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Fig. 5 Wind power at different target weights (size of the bubble) and tax credits (x-axis), 2020–2024. At maximum weight (13%) and without tax
credit, EPIC decreases by 0.143% with no budget required, whereas at maximum weight (13%) and maximum tax credit ($9/MMBtu), EPIC decreases by
1.341% requiring around $16.5 billion annually from the government’s budget. Source data are provided as a Source Data file.
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subsidies required have been calculated. An increase of $10.25 per
barrel in crude oil tax would have burdened the average energy
related expenses per household by 5.54% in 2015, whereas $10.25
per barrel of crude oil tax will raise EPIC over the next 4 years by
$0.997/MMBtu on average and will generate more than $300 billion
over the same period. Increasing the percentage share of nuclear
and renewable energy in the electric power sector will also assist
towards tackling policy issues related to climate change. Moreover,
the design of the policy case study using the EPIC framework has
proved the unique ability of EPIC to determine the trade-offs
among different energy sources within the electric power sector.
Our results have shown that hydroelectric, wind, solar, and
geothermal power will cause a drop in energy prices even with
no tax credit. Hydroelectric and wind power should be the main
areas of interest due to their higher impact in reducing the cost of
electrical energy without requiring any subsidies.

For this study, the complete energy landscape of the Unites
States, the four end-use sectors and the intermediate electric
power sector have been thoroughly analyzed so as to identify the
energy demand and the relevant prices of the energy products
that serve as the backbone of EPIC. The introduction of a rolling
horizon methodology has enabled us to overcome the problem
associated with the three months lag of data availability for the
weights of the feedstocks. This methodology also provides the
necessary tools to accurately estimate these weights in the future.
The predictive ability of this framework has been validated over a
period of 174 months revealing a considerably low error between
the actual values and the predictive values of the weights.

Future work can address different policy questions, such as how
EPIC would respond to financial or monetary shocks, or to
technological advancements. To address such questions, a simulta-
neous evaluation of multiple energy sources within the same
framework across different production targets and subsidies would
be implemented, taking into consideration potential limitations on
the weights of each renewable energy source. Moreover, modeling
of the up-to-date technological solutions for accurate representation
of the levelized cost would be incorporated. Artificial intelli-
gence (AI) methods could also be developed and implemented in
different aspects of this framework such as forecasting the future
prices of energy products for various forecasting horizons. The goal
remains EPIC to be used for the design and optimization of a
federal renewable energy policy for mitigating climate change, while
ensuring that the price of energy remains affordable so as to not
have a negative impact on short-term economic activity.

Methods
Rolling horizon methodology. The proposed rolling horizon methodology uses
data from the three previous periods in order to predict the data of interest in the

current and future stages. The lookback period and the parameter estimation were
selected considering the forecasting errors for different schemes and lookback
periods.

Energy demand is highly seasonal69 (see Supplementary Fig. 3 and
Supplementary Table 5), so each month needs to be trained separately. Thus, all the
schemes involve the parameter estimation for each month individually, so as to
capture the seasonality effects that are crucial for accurate forecasting. Four
different approaches for minimizing the sum of the squared error were tested over
four different lookback periods (24, 36, 48, and 60 months), with each month being
trained separately. Approaches 1 and 2 are “weight-based,” whereas approaches 3
and 4 are “demand-based.” The mathematical formulations are shown below for
the lookback period of 36 months. Table 6 summarizes the results for the four
approaches and four lookback periods.

Approach 1 - (weight-based)

min
X

m

Errm

Errm ¼
X

m0
EPICm0 � dEPICm0

� �2

dEPICm0 ¼
X

p

ðCm0 ;p � bwm;pÞ

EPICm ¼
X

p

ðCm;p � wm;pÞ
X

p

bwm;p ¼ 1

bwm;p ≥ 0

8m0 jðm0 �mÞ ¼ ð�36Þ or ð�24Þ or ð�12Þ

Approach 2 - (weight-based)

min
X

m

Errm

Errm ¼
X

m0 ;p

wm0 ;p � bwm;p

� �2

X

p

bwm;p ¼ 1

bwm;p ≥ 0

8m0jðm0 �mÞ ¼ ð�36Þ or ð�24Þ or ð�12Þ

where bwm;p represents the predicted weight of product p in month m.
Approach 3 - (demand-based)

min
X

m

Errm

Errm ¼
X

m0 ;p

Dm0 ;p � am;p �m0 þ bm;p

� �2

am;p �mþ bm;p ≥ 0

bwm;p ¼
am;p �mþ bm;pP
p0 am;p0 �mþ bm;p0

8m0jðm0 �mÞ ¼ ð�36Þ or ð�24Þ or ð�12Þ

Table 5 Average % change in the EPIC and Average Annual Budget ($ million) at the maximum weight target from July 2020 to
June 2024.

Tax credit Nuclear Hydroelectric Biomass Geothermal Solar Wind

(0.30) (0.16) (0.015) (0.007) (0.05) (0.13)

($/MMBtu) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil)

0 0.657% 0 −0.198% 0 0.054% 0 −0.019% 0 −0.090% 0 −0.143% 0
1 0.350% 4223 −0.362% 2252 0.039% 211 −0.026% 99 −0.141% 704 −0.276% 1830
2 0.043% 8445 −0.525% 4504 0.023% 422 −0.033% 197 −0.192% 1408 −0.409% 3660
3 −0.265% 12,668 −0.689% 6756 0.008% 633 −0.040% 296 −0.244% 2111 −0.542% 5489
4 −0.572% 16,891 −0.853% 9008 −0.007% 845 −0.047% 394 −0.295% 2815 −0.675% 7319
5 −0.879% 21,113 −1.017% 11,260 −0.023% 1056 −0.055% 493 −0.346% 3519 −0.808% 9149
6 −1.186% 25,336 −1.181% 13,513 −0.038% 1267 −0.062% 591 −0.397% 4223 −0.941% 10,979
7 −1.493% 29,559 −1.344% 15,765 −0.053% 1478 −0.069% 690 −0.448% 4926 −1.075% 12,809
8 −1.800% 33,781 −1.508% 18,017 −0.069% 1689 −0.076% 788 −0.500% 5630 −1.208% 14,639
9 −2.107% 38,004 −1.672% 20,269 −0.084% 1900 −0.083% 887 −0.551% 6334 −1.341% 16,468
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Approach 4 - (demand-based)

min
X

m

Errm

Errm ¼
X

p

Dm�12;p � ðam;p � Dm�24;p þ bm;p � Dm�36;pÞ
� �2

am;p � Dm�12;p þ bm;p � Dm�24;p ≥ 0

bwm;p ¼
am;p � Dm�12;p þ bm;p � Dm�24;pP
p0 am;p0 � Dm�12;p0 þ bm;p0 � Dm�24;p0

where Dm,p represents the demand of product p in month m, and am,p and bm,p

represent the fitted parameter 1 and 2 of product p in month m, respectively.
As it can be seen, approaches 1 and 2 outperform approaches 3 and 4,

regardless of the lookback period. Between the weight-based approaches, approach
2 is the one with the lowest errors regardless of the lookback period, so it is the one
selected. With regards to the lookback periods, the cases for 24 and 36 months
produce the lowest errors in comparison to the 48 and 60 months. As the results
for the 24 and 36 months are comparable, the longer lookback period is selected,
which will capture better the increasing volatility of the energy demand in the
future. Therefore, the methodology selected is Approach 2 with 36 months
lookback period.

EPIC framework. The two key factors comprising EPIC are the total demand of the
energy products that are directed to the end-use sectors in the United States along
with their respective prices.

The sectors of the US economy consume products originating from crude oil,
natural gas, coal, nuclear, solar, wind, hydroelectric, geothermal, and several types
of biomass. The exact determination of these products, their consumption levels,
and their monthly prices is critical to the construction of EPIC. The full list of these
products and the corresponding sector they are consumed in are presented in the
Supplementary Table 2. The monthly consumption (in energy units) along with the
monthly price (in $ per energy unit) for each of the energy products is extracted
from the data provided by the EIA and other sources, and are shown in the
Supplementary Table 4.

The real weight fraction based on the demand of each of the selected 56 energy
products is calculated using Equation 1:

wm;p ¼
Dm;pP
p Dm;p

8ðm; pÞ ð1Þ

where wm,p is the weight fraction of product p in month m and Dm,p is the demand
of product p in month m.

EPIC is formulated as the summation of the price (in $/MMBtu) of each
product multiplied by the weight fraction of each product. The unit of EPIC is
$/MMBtu. EPIC represents the average price of energy in a given month and its
formulation is presented in Equation 2:

EPICm ¼
X

p

wm;p � Cm;p 8m ð2Þ

where EPICm represents the value of EPIC in month m, Cm,p represents the price of
product p in month m, and wm,p is the weight fraction of product p in month m.

Due to the time lag in data availability and the need for future forecasts for our
policy applications as well, a rolling horizon based model is developed to predict
the weights of the demand of each energy product at a present or future stage of
interest using the data from the previous 3 years. It is worth mentioning that each
month is trained separately since the energy demand is highly seasonal69 (see
Supplementary Fig. 3 and Supplementary Table 5).

The weights of the energy products are predicted using a weight-based objective
function, which minimizes the squared difference between the real value of a
product’s weight in the past horizon and the predicted value of the product’s
weight for the month of interest. The optimization model takes into account the

data from the previous 3 years and is stated as:

min
X

m

Errm

Errm ¼
X

m0 ;p

wm0 ;p � bwm;p

� �2

X

p

bwm;p ¼ 1

bwm;p ≥ 0

8m0jðm0 �mÞ ¼ ð�36Þ or ð�24Þ or ð�12Þ

ð3Þ

where bwm;p represents the predicted weight of product p in month m.
The predictive ability of this framework is assessed using the squared prediction

error for each month over a period of 174 months from January 2006 to June 2020
and the results are presented in the relevant section. The following formula is used:

PredErrm ¼
X

p

wm;p � bwm;p

� �2

ð4Þ

Policy case study 1: crude oil. The main assumptions for this policy case study
are:

● Crude oil has a heating content of 5.721 MMBtu per barrel69.
● The petroleum refinery efficiency is 90%.
● The amount of petroleum and petroleum products being sent for electricity

generation is assumed to be negligible (≈0.57% over the last year).
● Crude oil demand is considered as inelastic in the short run, with long-run

values of elasticity being generally higher in absolute values but still well below
171–74. As crude oil is inelastic, the investigated crude oil tax has not affected
the historical values of crude oil consumption.

● The future effects (up to 2024) are assessed using the predicted values for the
weights of the petroleum products applying the methodology that is described
in the relevant section.

● The future annual demand as well as the future nominal weights within the
petroleum sector are estimated using data from the EIA Annual Energy
Outlook 2020–Reference case3.

The revised EPIC from the subject policy case study is estimated for the past
and for the future as follows:

Past : EPICpolicy ¼ EPICwithoutTax
þ Taxcrude �

1
HeatContentcrude

� 1
RefEff crude

�
X

p2Pn0petprod0
wm;0petprod0

ð5Þ

Future : ΔEPICpolicy ¼ Taxcrude �
1

HeatContentcrude
� 1
RefEff crude

�
X

p2Pn0petprod0
wm;0petprod0

ð6Þ

where Taxcrude stands for the parametric crude oil tax in $/barrel, HeatContentcrude
stands for the heating content of crude oil, RefEffcrude stands for the petroleum
refinery efficiency, and wm;0petprod0 stands for the weight of petroleum products
“petprod” in month m.

Policy case study 2: renewable energy. The main assumptions for this policy
case study are:

● The effect of the policy is investigated independently for each feedstock.
● The production targets/subsidies affect only the electric power sector, so only

the relative weights within the electric power sector change.

Table 6 Results on prediction of weights (different lookback periods).

lookback_24 lookback_36

App1 App2 App3 App4 App1 App2 App3 App4

Min error 0.052% 0.049% 0.064% 0.067% 0.058% 0.053% 0.051% 0.127%
Max error 0.263% 0.221% 0.410% 0.351% 0.292% 0.228% 0.290% 0.624%
Average error 0.106% 0.099% 0.147% 0.154% 0.121% 0.104% 0.127% 0.336%

lookback_48 lookback_60
App1 App2 App3 App4 App1 App2 App3 App4

Min error 0.064% 0.057% 0.052% 0.233% 0.064% 0.065% 0.054% 0.394%
Max error 0.265% 0.209% 0.289% 0.776% 0.261% 0.196% 0.255% 0.839%
Average error 0.137% 0.107% 0.120% 0.454% 0.158% 0.113% 0.115% 0.536%
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● The target weights are attainable with the existing resources and at the current
production costs.

● When a specific target weight is enforced on an electricity energy feedstock,
the remaining feedstock weights are normalized to add up to 1.

● The levelized cost of the energy feedstocks is taken from Lazard’s Levelized
Cost of Energy Analysis report for the period 2008 to 201380–85 and the EIA
Annual Energy Outlook for period 2014 to 202086–92, with the exception of
data for the petroleum liquids, which are also taken from Lazard’s Levelized
Cost of Energy Analysis reports. The data from 2008 are used for the period
from 2003 to 2007 (Supplementary Table 6).

● The future effects (up to 2024) are assessed using the predicted values for the
weights of the electricity products applying the methodology that is described
in the relevant section.

● The future annual demand and the future nominal weights within the electric
power sector are estimated using data from the EIA Annual Energy Outlook
2020–Reference case3.

Once a target weight for a renewable feedstock has been set, all other weights
within the electric power sector are re-normalized as follows:

wnorm;f ¼ wold
f �

1� wtarget
f 0

1� wold
f 0

ð7Þ

where f’ represents the feedstock investigated and f represents all other feedstocks.
The change in EPIC due to the new target weight is then calculated as follows:

ΔEPIC1 ¼ welec �
X

f

Costf � ðwnorm;f � wold
f Þ þ Costf 0 � ðwtarget

f 0 � wold
f 0 Þ ð8Þ

where welec stands for the aggregate weight of electricity (i.e., products 50–53),
whereas Costf 0 and Costf stand for the levelized cost of electricity production from
feedstock f’ and f, respectively. When this delta term becomes positive, meaning
that the value of EPIC increases, the cost of the targeted feedstock is higher than
the average cost of the displaced feedstocks. On the contrary, when this delta term
becomes negative, the cost of the targeted feedstock is lower than the average cost
of the displaced feedstocks and so the value of EPIC decreases.

The change in EPIC due to subsidies is calculated as follows:

ΔEPIC2 ¼ welec � wtarget
f 0 � Taxcred ð9Þ

where Taxcred represents the subsidy in $/MMBtu.
The revised EPIC from the subject policy case study is estimated for the past as

well as for the future as follows:

Past : EPICpolicy ¼ EPICþ ΔEPIC1 þ ΔEPIC2 ð10Þ

Future : ΔEPICpolicy ¼ ΔEPIC1 þ ΔEPIC2 ð11Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Figures 1 and 3, and Supplementary Figs. 1 and 2 do not have associated data. All data
used for this analysis are available from cited publicly available sources or from the
corresponding author upon reasonable request. Source data are provided with this paper.

Code availability
The optimization code in GAMS that supports the analysis within this paper and other
findings of this study are available from the corresponding author upon reasonable
request.
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