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Tuning the overlap and the cross-layer correlations in two-layer networks: Application to a
susceptible-infectious-recovered model with awareness dissemination
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We study the properties of the potential overlap between two networks A,B sharing the same set of N nodes (a
two-layer network) whose respective degree distributions pA(k),pB (k) are given. Defining the overlap coefficient
α as the Jaccard index, we prove that α is very close to 0 when A and B are random and independently generated.
We derive an upper bound αM for the maximum overlap coefficient permitted in terms of pA(k), pB (k), and N .
Then we present an algorithm based on cross rewiring of links to obtain a two-layer network with any prescribed α

inside the range (0,αM ). A refined version of the algorithm allows us to minimize the cross-layer correlations that
unavoidably appear for values of α beyond a critical overlap αc < αM . Finally, we present a very simple example
of a susceptible-infectious-recovered epidemic model with information dissemination and use the algorithms to
determine the impact of the overlap on the final outbreak size predicted by the model.
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I. INTRODUCTION

Some contagious processes interact with each other during
their propagation, which can occur either through the same
route of transmission or through routes that share the same
set of nodes but use different types of connections. In the
second case, the description of the spread uses the concept
of multilayer or multiplex network, namely, a set of nodes (in-
dividuals, computers, etc.) connected by qualitatively different
types of links corresponding to possible relationships among
them (acquaintanceship, friendship, physical contact, social
networks, etc.), each layer defined by a type of connection.
Competitive viruses spreading simultaneously through differ-
ent routes of transmission over the same host population, or
the spread of a pathogen and awareness during an epidemic
episode are examples of processes that are better described by
means of multilayer networks [1].

In the last years it has been a development of the mathe-
matical formulation of multiplex networks and, also, of more
general interconnected networks for which the set of nodes
does not need to be the same at each layer [2–4]. Moreover,
recent results show the importance of the interrelation between
different layers in determining the fate of competitive epidemic
processes [1,5]. In other cases, however, the importance of such
an interrelation is not so evident from the analytical results of
the epidemic threshold [6,7], or even seems to be not relevant
at all [8].

Only a few papers dealing with competing epidemics over
multilayer networks focus on the impact of layer overlap on
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the epidemic dynamics [5,9,10]. In [5], the authors consider
a sequential propagation of two epidemics using distinct
routes of transmission over a network consisting of two partly
overlapped layers. Using bond percolation, it is determined the
success of a second epidemic through that part of its route of
transmission whose nodes have not been infected by the first
epidemic. In [10], the authors develop an analytical approach to
deal with simultaneous spread of two interacting viral agents on
two-layered networks. In that work, moreover, the respective
effects of overlap and correlation of the degrees of nodes in
each layer on the epidemic dynamics are considered.

Here the overlap α between two (labeled) networks A and
B of N nodes is defined as the fraction of links of the union
network that are common links of A and B or, equivalently,
the probability that a randomly chosen link of the network
A ∪ B is simultaneously a link of both A and B. In fact α is
the Jaccard index, a statistic used for comparing the similarity
of two sample sets, as defined in [11]. Just to illustrate that
this simple statistical parameter can play a critical role in
the qualitative response of a two-layer network model, in
Sec. VIII we present a mean-field model for the spread of
an infectious agent on one layer (contact layer). The model
implicitly assumes an information dissemination on a second
layer (notification layer) about the infection status of the nodes
which causes an increase in awareness and the adoption of
preventive behaviors. As an interesting feature, the overlap
coefficient α between the networks embedding the respective
routes of transmission is a parameter of the model. This allows
us to derive a simple relationship between α and the epidemic
threshold. Provided that one wants to perform simulations to
validate this (or any) model, a systematic procedure to generate
couples of networks of given size and degree distributions
with a prescribed value of α would be a useful tool. We stress
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that this is the main focus of the paper, and that the model in
Sec. VIII is just a simple example to illustrate the convenience
of having such tools.

Our approach is based on the study of the potential overlap
between two networks whose (finite, empirical) degree distri-
butions are previously fixed. More precisely, in Secs. III and IV
we estimate the minimum and maximum values (call them αm

and αM ) for the overlap coefficient between two networks of
size N and degree distributions pA(k) and pB(k). In particular,
we show that αm ≈ 0. The study of the maximum αM is based
on the computation of the potential overlap Opot(DA,DB)
between two fixed degree sequences DA,DB following pA(k),
pB(k). In Sec. V we present the CR algorithm, that takes as
input any two degree sequences DA,DB and a desired overlap
α ∈ (0,Opot(DA,DB)) and generates a couple of networks with
degree sequences DA,DB and overlap coefficient close to α.
When DA,DB are randomly sampled from pA(k),pB(k), the
potential overlap Opot(DA,DB) is called critical overlap. In
Sec. VI we show that the CR algorithm starting with two
random sequences succeeds in constructing pairs of networks
having any overlap below the critical one and exhibiting some
desirable statistical properties, specifically lack of in- and
cross-layer degree-degree correlations. Of course the critical
overlap belongs to the interval (αm,αM ), and is higher than
expected from intuition. In Sec. VII we show that for values
between the critical overlap and αM there is an unavoidable
direct relationship between overlap and cross-layer degree-
degree correlation, and propose a refined version of the cross-
rewiring (CR) algorithm that tries to reach values beyond
the critical overlap while maintaining the cross-layer degree-
degree correlation as small as possible.

With this collection of algorithms, we are given a tool to
test the analytical predictions relating overlap and epidemic
thresholds. In the few previous works dealing with interacting
epidemics on overlay networks [5,9,10], the two-layer network
over which multiple pathogens spread was characterized by
the probability ρ(kA,kB,kc) that a randomly selected node
belongs to kA links unique to layer A, kB links unique to
layer B, and kc common links [note that, using this lan-
guage, what we are assuming here as a natural requirement
is that the marginal distributions pA(kA) and pB(kB), that can
be recovered as pA(kA) = ∑

kB,kc
ρ(kA − kc,kB − kc,kc) and

pB(kB) = ∑
kA,kc

ρ(kA − kc,kB − kc,kc), are given]. Those pa-
pers put the main focus on the influence of the overlap and the
degree correlations on the epidemic dynamics predicted by
the model, rather than on the algorithms used to construct the
two-layer network. So, the simulations to test the validity of
the predictions were performed over particularly simple cases
(rich enough, nevertheless, to extract valid conclusions). As
an example, to test the model response to an arbitrary overlap
α, the authors perform the simulations in the simplest setting
pA(k) = pB(k) ≡ p(k), that obviously admits any overlap
coefficient from 0 to 1, take

ρ(kA,kB,kc) = p(kA + kc)δkA,kB

(
kA+kc

kc

)
αkc (1 − α)kA

(attach independently kA + kc = kB + kc links to a node, with
a probability α for each link to belong to both networks),
and execute a “configuration model”-like algorithm to connect
pairs of stubs sampled from ρ with the obvious restrictions. As
another example, the respective effects of overlap and degree

correlations are isolated by considering again simple (and
extremal) cases: random overlap and no degree correlation;
random overlap and full degree correlation; and full overlap.

In a more general setting (pA �= pB), it is not straight-
forward to extend the configuration model algorithm to get
prescribed intermediate overlaps and/or degree correlations. In
contrast, the algorithm we present here can be used to generate
any permitted value of both parameters in the range forced by
the marginal degree distributions.

II. TERMINOLOGY AND STANDING NOTATION

Throughout this paper, the nodes of any network will be
labeled with the natural numbers {1,2, . . . ,N}. The cardinality
of a finite set X will be denoted by |X|. Let V = {1,2, . . . ,N}
for some N ∈ N. Let E and E′ be two subsets of {{i,j} :
i �= j and i,j ∈ V }. Let G and G′ be the undirected networks
having V as the set of nodes and E and E′ as the respective sets
of links. The union network G ∪ G′ is the undirected network
whose sets of nodes and links are V and E ∪ E′ respectively.
By definition, we will say that G and G′ are different from
each other if and only if E �= E′. In particular, if we have a
network H and we simply permute the labels of the nodes of
H , then we obtain a network that is in general different from
(but isomorphic to) H . Observe that the union operation is not
a topological invariant: the union of two networks does not
depend only on their shapes but also on the way their nodes
are labeled. The overlap between G and G′ is defined as the
fraction

O(G,G′) := |E ∩ E′|
|E ∪ E′| = |E ∩ E′|

|E| + |E′| − |E ∩ E′| ,

which can be thought of as the probability that a randomly
chosen link of G ∪ G′ is simultaneously a link of both G

and G′.
A degree set of cardinality N is a multiset (i.e., multiple

instances of each element are allowed) of N integers that is
realizable as the set of degrees of a network. That is, there
exist a labeling {k1,k2, . . . ,kN } of the elements of the set and
a network G of N nodes such that ki is the degree of the
node i. Equivalently,

∑
ki is even and the integers ki satisfy

the well-known Havel-Hakimi condition [12,13] (a technical
recursive condition that is irrelevant to our purposes). As usual,
the ordered list D = (k1,k2, . . . ,kN ) will be called the degree
sequence of G. Note that rearranging the elements of D by
means of a permutation σ corresponds to relabeling the nodes
of G to get another network G′ isomorphic to G with degree
sequence σ (D) (and the same degree set as G).

A probability distribution p(k) with bounded support will
be called empirical (of N nodes) if it is realizable as the degree
distribution of a network of N nodes. That is, there exists a
network G of N nodes such that, if {k1,k2, . . . ,kN } is the degree
set of G, then Nk := |{i : ki = k}| = p(k)N . Observe that
giving an empirical distribution p(k) of N nodes is completely
equivalent to specify a degree set K of cardinality N . For an
ordered sequence D we will write D ∼ p(k) to indicate that
D is a particular arrangement of the elements of K . For a pair
of ordered sequences (D,D′) and two empirical distributions
p(k),p′(k), we will write (D,D′) ∼ p(k) × p′(k) to indicate
that D ∼ p(k) and D′ ∼ p′(k).
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We use the term empirical for a degree distribution to
distinguish it from a (theoretical, not necessarily with bounded
support) probability distribution p(k). In this case, for any
N ∈ N, one can use several standard algorithms (see Sec. III)
to construct a network GN of N nodes whose empirical degree
distribution pN (k) is close to p(k), in the sense that, for big
enough values of N , pN (k) converges in probability to p(k)
([14], Theorem 2.1).

Assume that we are given two empirical degree distributions
p(k),p′(k) of N nodes, with corresponding degree sets K and
K ′. Let n and n′ be the total number of pairwise different
networks having respectively K and K ′ as degree sets, each
one numbered with an integer in the range [1,n] (respectively,
[1,n′]). Then we can clearly consider a function of two
variables O(x,y) on the grid of all pairs (x,y) of integers
in [1,n] × [1,n′], that gives the value of the overlap of the
networks numbered as x and y. Observe that the function
O(x,y) has a global minimum and maximum. These extremal
values will be denoted by O(N,p,p′) and O(N,p,p′), or
simply by O and O when no confusion seems possible.

III. EXPECTED OVERLAP BETWEEN TWO RANDOM
INDEPENDENT LAYERS

Assume that we are given two empirical degree distributions
p(k),p′(k) of N nodes. In this section we prove that the ex-
pected overlap between two random networks of N nodes and
degree distributions p(k) and p′(k) (generated, for instance, via
the standard configuration model algorithm [15–17]) is very
close to zero when N is big enough, thus showing that O ≈ 0.
Giving estimations for O will be the matter of Sec. IV.

Let us recall the configuration model algorithm to generate a
random network with a given degree sequence (k1,k2, . . . ,kN ).
Take a vector X of length 2L := ∑

ki containing k1 times the
integer 1 in the first k1 entries, k2 times the integer 2 in the
following k2 entries, etc. Each entry v of X represents a single
stub (or semilink) attached at the node labeled as v. Then,
take a random permutation of the entries of X to get a new
array Y . Finally, read the contents of Y in order, interpreting
each pair of consecutive entries v,w as a link between the nodes
v and w. For an example, take N = 6 and consider the degree
distribution p(k) defined by p(1) = p(3) = 1/6, p(2) = 4/6,
and p(k) = 0 for k �= 1,2,3. The corresponding degree set
is {1,2,2,2,2,3}. Take, for instance, (1,2,2,2,2,3) as degree
sequence. Then, X = (1,2,2,3,3,4,4,5,5,6,6,6). Now we per-
mute X at random, obtaining Y = (3,4,5,1,6,3,6,2,4,5,2,6).
The links of the obtained network are {3,4}, {5,1}, {6,3}, {6,2},
{4,5}, {2,6}. Observe that the link {6,2} appears twice. In
general, the configuration model algorithm gives multigraphs
rather than graphs. It is well known, however, that the fraction
of self-loops and multilinks over the total number of links goes
to 0 as N → ∞ when the variance of the degree distribution is
bounded [18]. See [14] for alternative implementations of the
configuration model to get simple graphs.

It seems natural to expect that the overlap between two
networks of respective degree distributions p(k),p′(k) and
size N generated via the configuration model algorithm is
very small. When the respective mean degrees are small with
respect to the total size N this turns out to be true. To prove
this fact, we need to estimate the probability that two given

nodes are connected in a random network generated via the
configuration model algorithm. So, let G be a network of N

nodes, L links, and degree distribution p(k). Assume that G has
been obtained by means of the configuration model algorithm
starting with a degree sequence (k1,k2, . . . ,kN ). Take at random
any pair {i,j} of nodes with ki � kj . Next we estimate the
probability pij that the network G contains the link {i,j}. This
probability is given by the quotient a/b, where b is the total
number of rearrangements Y of the vector X (here we are using
the notation introduced in the definition of the configuration
model) and a is the number of such rearrangements having at
least two consecutive entries i,j (or j,i) in places Yn,Yn+1 for
n = 1,3,5, . . . ,2L − 1. We have that

b = (2L)!

k1!k2! · · · kN !
. (1)

Let us compute a. For l = 1,2, . . . ,L, let Y l be the set of
rearrangements Y containing the entries i,j (or j,i) in places
Y2l−1,Y2l . Then, a = |Y 1 ∪ Y 2 ∪ . . . ∪ YL|. By the inclusion-
exclusion principle, a = a1 − a2 + · · · + (−1)ki−1aki

, where
al is the sum of the cardinalities of all intersections of l sets in
Y 1,Y 2, . . . ,Y L. A simple combinatorial argument yields that,
for l � ki ,

al =
(
L

l

)
2l(2L − 2l)!

k1! . . . ki−1!(ki − l)!ki+1! . . . kj−1!(kj − l)!kj ! . . . kN !
,

while al = 0 for ki < l � L. Using the previous expression
and the inclusion-exclusion principle we get that

a =
∑ki

l=1(−1)l−1
(
L

l

)
2l (2L−2l)!

(ki−l)!(kj −l)!

k1!k2! . . . ki−1!ki+1! . . . kj−1!(kj+1)! . . . kN !
.

Taking it all into account, we get that the probability that G

contains the link {i,j} is

pij = L!ki!kj !

(2L)!

ki∑
l=1

(−1)l−12l(2L − 2l)!

l!(L − l)!(ki − l)!(kj − l)!
. (2)

This exact expression is too complex to be used to estimate
the expected overlap between two random networks. Instead,
if in the previous proof we replace a simply by a1, then it easily
follows that

pij ≈ kikj

2L − 1
, (3)

that is in fact a standard approximation used in the literature
for the probability pij [18,19]. The approximation (3) is good
enough only when ki and kj are small with respect to L, in
particular when we consider networks with bounded mean
degree and large size N , which is the case for most modeling
applications. However, in general (3) can significantly differ
from the exact formula (2).

Now let p(k),p′(k) be two empirical degree distributions
with respective means 〈k〉 and 〈k′〉. Let G,G′ be two networks
of N nodes and degree distributions p(k) and p′(k) generated
via the configuration model algorithm starting with degree
sequences (k1,k2, . . . ,kN ) and (k′

1,k
′
2, . . . ,k

′
N ). Assume that N

is big enough with respect to 〈k〉 and 〈k′〉 in such a way that the
approximation (3) holds. Let L,L′ be the number of links of G

and G′ respectively. Using (3) we can compute the probability
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p that two different nodes chosen at random are neighbors
in G:

p ≈ 1

2L − 1

∑
ki ,kj

kip(ki)kjp(kj ) = 〈k〉2

2L − 1
≈ 〈k〉

N
, (4)

where in the last expression 〈k〉 denotes the expected degree of
a node and we have used that 〈k〉N = 2L. Now the expected
overlap between G and G′ can be computed as the probability
that two different nodes are connected in both G and G′ over
the probability that they are connected in G ∪ G′ which, by
virtue of (4), is

〈k〉〈k′〉/N2

1 − (
1 − 〈k〉

N

)(
1 − 〈k′〉

N

) .

In consequence,

O(G,G′) ≈ 〈k〉〈k′〉
N (〈k〉 + 〈k′〉) − 〈k〉〈k′〉 , (5)

telling us that, given N and any two degree distributions
p(k),p′(k), the minimum overlap O(N,p,p′) is very close to
0, at least when N is big with respect to the expected values
〈k〉 and 〈k′〉. Of course, for small networks this is not true in
general.

IV. AN UPPER BOUND FOR THE MAXIMUM OVERLAP

We start this section by giving a computable upper bound
for O(N,p,p′) in terms of the size N and the empirical
distributions p(k),p′(k). To do it, first we introduce the notion
of potential overlap between two fixed degree sequences.

Let G,G′ be two networks of N nodes and empirical
degree distributions p(k),p′(k), with means 〈k〉 and 〈k′〉
and corresponding degree sequences D = (k1,k2, . . . ,kN ), and
D′ = (k′

1,k
′
2, . . . ,k

′
N ), with

∑
ki = 〈k〉N =: 2L and

∑
k′
i =

〈k′〉N =: 2L′. If E and E′ are the sets of links of G and G′,
then by definition

O(G,G′) = |E ∩ E′|
|E ∪ E′| = |E ∩ E′|

L + L′ − |E ∩ E′|
= x

(〈k〉 + 〈k′〉)N
2 − x

=: F (x), (6)

where x stands for |E ∩ E′|. Now observe that F (x) is
increasing in x. In consequence, an upper bound for the
overlap is obtained when replacing x by the maximum possible
number of links of the intersection network. It is clear that the
intersection network cannot have more than min{ki,k

′
i} links

attached at node i. In consequence, the total number of links
of the intersection network is at most

1

2

N∑
i=1

min{ki,k
′
i}.

So, we define the potential overlap Opot(D,D′) associated
to a pair (D,D′) of degree sequences as

1
2

∑
i min{ki,k

′
i}

1
2

∑
i(ki + k′

i) − 1
2

∑
i min{ki,k

′
i}

, (7)

TABLE I. Critical overlap as defined in Sec. VI (first row) and
the upper bound (9) for the maximum overlap permitted (second row)
between pairs of empirical distributions. In all cases N = 10 000.
For the left column distributions, 〈k〉 = 20 while, for the upper ones,
〈k〉 = 26.

Regular Poisson SF Exponential

0.7693 0.7508 0.6301 0.6654
Regular 0.7693 0.7508 0.6301 0.6654

0.7552 0.7259 0.5969 0.6392
Poisson 0.7552 0.7709 0.7221 0.7739

0.5451 0.5365 0.4903 0.5117
SF 0.5451 0.6000 0.7688 0.7023

0.6330 0.6174 0.5415 0.5683
Exponential 0.6330 0.7077 0.7715 0.7706

that, since ki + k′
i = max{ki,k

′
i} + min{ki,k

′
i}, can be rewritten

as

Opot(D,D′) :=
N∑

i=1

min{ki,k
′
i}

/ N∑
i=1

max{ki,k
′
i}. (8)

Now observe that

O � max
(D,D′)∼p×p′

{Opot(D,D′)}

and recall that the set of possible degree sequences associated
to p(k) coincides essentially with the set of all permutations
of the numbers k1,k2, . . . ,kN . Thus, if (D,D′) ∼ p(k) × p′(k)
and σ,ρ are two permutations of order N , then (σ (D),ρ(D′)) ∼
p(k) × p′(k). Moreover, Opot(σ (D),σ (D′)) = Opot(D,D′). In
consequence, without loss of generality we can assume that D

is increasingly ordered (that is, ki � kj if i < j ). In this case,
it is easy to check that if there is a pair of entries k′

i � k′
j of D′

with i < j , then if we swap both entries the obtained sequence
D′′ satisfies Opot(D,D′) � Opot(D,D′′). So, the maximum in
the previous inequality is attained precisely when both D and
D′ are increasingly ordered. So, we have proved that

O �
∑N

i=1 min{ki,k
′
i}∑N

i=1 max{ki,k
′
i}

, whenever

k1 � k2 � · · · � kN and k′
1 � k′

2 � · · · � k′
N . (9)

Inequality (9) allows us to design an efficient algorithm
to compute an upper bound for the maximum overlap. The
algorithm takes as input the empirical distributions p(k) and
p′(k), sorts increasingly the elements of the respective degree
sets, and finally returns the right-hand side of the inequality in
(9). Table I (second row in each box) shows the output of this al-
gorithm for several pairs of empirical distributions, obtained by
approximating the corresponding pairs of (theoretical) distri-
butions. Here “SF” stands for a scale-free network with p(k) =
Ck−γ with γ = 3, minimum degree m, cutoff kc = mN1/2, and
the normalization constant C = (γ − 1)mγ−1N/(N − 1), for
which 〈k〉 ≈ 2m [20]. “Exponential” corresponds to p(k) =
(1/m)e1−k/m with minimum degree m, for which 〈k〉 = 2m.
“Poisson” corresponds to p(k) = λe−λ/k! with λ = 〈k〉, and
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“Regular” stands for a random network for which all nodes
have the same degree. In all cases, N = 10 000.

V. AN ALGORITHM TO SWEEP THE RANGE OF
POTENTIAL OVERLAPS BETWEEN TWO DEGREE

SEQUENCES

In this section we design an algorithm that takes any pair
of degree sequences D,D′ and a value α between 0 and
Opot(D,D′) and constructs a pair of networks G,G′ with degree
sequences D,D′ whose overlap is as close as possible to α

(values of α very close to Opot(D,D′) are not attainable since
Opot(D,D′) is just an upper bound).

Assume that we have generated two random networks
G(0),G′(0) of N nodes using the configuration model. In view
of (5), O(G(0),G′(0)) ≈ 0. Thus, it seems natural to propose
an algorithm that works as follows. At each time step t � 0,
modify the networks G(t),G′(t) a little bit without modifying
the degree sequences by performing a local operation (an oper-
ation involving few nodes and/or links) to obtain new networks
G(t + 1),G′(t + 1) in such a way that O(G(t + 1),G′(t + 1))
is slightly larger than O(G(t),G′(t)). Repeat until the overlap
is close to α.

The kind of local operation that we will use in the scheme
above is a cross rewiring [21], according to the following
definition. Let G(t),G′(t) be two networks of N nodes. A good
pair in G(t) with respect to G′(t) is a pair of links {a,b}, {c,d}
in G(t) satisfying the following conditions:

(1) {a,b} and {c,d} are not links in G′(t).
(2) {a,c} and {b,d} are not links in G(t).
(3) {a,c} is a link in G′(t).
Analogously we define a good pair in G′(t) with respect

to G(t) by interchanging the roles of G(t) and G′(t) in the
previous definition. Given a good pair {a,b}, {c,d} in G(t)
with respect to G′(t), the associated cross-rewiring operation
consists of replacing the links {a,b} and {c,d} in G(t) by {a,c}
and {b,d} to get a new network G(t + 1). Observe that G(t)
and G(t + 1) are in general different as nonlabeled networks.
However, the degrees of the involved nodes a,b,c,d are not
modified after performing the cross rewiring. In consequence,
G(t) and G(t + 1) have the same degree sequences. On the
other hand, set G′(t + 1) = G′(t) and let E(t), E(t + 1),
E′(t), E′(t + 1) be respectively the sets of links of G(t),
G(t + 1), G′(t), G′(t + 1). Then, |E′(t + 1)| = |E′(t)| and,
by the definition of the cross-rewiring operation over a good
pair, |E(t + 1)| = |E(t)|. Moreover, by the definition of a
good pair, either |E(t + 1) ∩ E′(t + 1)| = |E(t) ∩ E′(t)| + 1
if {b,d} is a link in G′(t) or |E(t + 1) ∩ E′(t + 1)| = |E(t) ∩
E′(t)| + 2 otherwise. Then, if we denote O(G(t),G′(t)) and
O(G(t + 1),G′(t + 1)) by O(t) and O(t + 1) respectively, a
trivial computation yields that

O(t + 1) = O(t) + xO(t)2 + 2xO(t) + x

L − x − xO(t)
, (10)

where x ∈ {1,2} and L = |E(t)| + |E′(t)|. As a consequence
of (10), the overlap after performing a cross-rewiring operation
in a good pair of links slightly (but strictly) increases.

From now on, let 0 � α � Opot(D,D′) be the desired
overlap coefficient. In view of what has been said, let us

TABLE II. Maximum overlap (first row) generated by the CR
algorithm starting with two random arrangements D,D′ of the
corresponding degree sets vs the upper bound Opot(D,D′) (second
row). In all cases N = 10 000, 〈k〉 = 10.

Regular Poisson SF Exponential

1 0.738 11 0.562 01 0.637 31
Regular 1 0.776 12 0.611 29 0.678 17

0.638 81 0.492 42 0.563 93
Poisson 0.696 05 0.565 36 0.625 55

0.446 73 0.477 69
SF 0.514 43 0.538 22

0.534 26
Exponential 0.589 36

consider the following CR algorithm (standing for “cross
rewiring”):

CR algorithm [input: D,D′,α]
(1) Use the configuration model to get two random networks

G(0),G′(0) of size N and degree sequences D,D′. The overlap
between G(0) and G′(0) is close to 0.

At each time step t � 0:
(2) Choose at random (if it exists) a good pair of links in

G(t) with respect to G′(t). Perform a cross-rewiring operation
in G(t) using such a pair, obtaining a new network G(t + 1).
Set G′(t + 1) := G′(t). Then, by (10), O(G(t + 1),G′(t +
1)) > O(G(t),G′(t)). If O(G(t + 1),G′(t + 1)) � α, set G :=
G(t + 1), G′ := G′(t + 1) and stop.

(3) Repeat the previous step interchanging the roles of G(t)
and G′(t). Proceed to the next time step.

It is clear that after a finite number t0 of steps the algorithm
will stop, either because no good pairs are found or because
the overlap between G(t0) and G′(t0) has reached the value
α. In any case, the output of the algorithm is the pair of
networks G(t0),G′(t0). A natural question is whether in general
the algorithm may halt forced by the condition that no good
pairs are found, before having reached a value of the overlap
close to α, especially when α is close to Opot(D,D′) [we
stress the fact that Opot(D,D′) is just an upper bound, far
from being realizable in general]. So, it makes sense to remove
the stop condition given by the overlap and let the algorithm
run until no more good pairs are found. In Table II we show
the maximum overlap obtained in this way for several pairs
of distributions, together with the upper bound Opot(D,D′).
In all cases, the input degree sequences D,D′ are random
arrangements of the degree sets associated to the respective
distributions. The obtained overlap is relatively close to the
upper bound, suggesting that indeed the CR algorithm is able
to sweep the entire range of permitted overlaps between 0 and
Opot(D,D′).

VI. BELOW THE CRITICAL OVERLAP: TWO DESIRABLE
STATISTICAL FEATURES OF THE NETWORKS

GENERATED BY THE CR ALGORITHM

Let us introduce another relevant quantity that we will call
critical overlap. It is defined as the potential overlap between
two random sequences (Drand,D

′
rand) ∼ p(k) × p′(k) where
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p(k),p′(k) are empirical distributions of N nodes:

Ocr (N,p,p′) := Opot(Drand,D
′
rand),

that for N big enough and pairs of distributions with bounded
variance can be essentially considered as independent from the
particular sampled sequences. Against an initial intuition, the
critical overlap is not close to 0 but lies relatively close toO (see
Table I). By running the CR algorithm with sequences Drand,
D′

rand one can get any overlap α between 0 and (values close
to) Ocr (N,p,p′). As we will see, proceeding in this way the
obtained two-layer network exhibits some desirable statistical
features (lack of in- and cross-layer correlations). For higher
values of α, it is unavoidable to introduce correlations and
deviate from what happens in a “configuration model” context
(Sec. VII).

A. Lack of in-layer degree-degree correlations

The lack of degree-degree correlations inside each layer is
often a crucial requirement in the derivation of the equations
governing mean-field multilayer models. In particular, this will
be a basic assumption in the derivation of system (16) and (17)
for the susceptible-infectious-recovered (SIR) model proposed
in Sec. VIII. It is reasonable to expect that each network in a pair
created via the CR algorithm with random initial sequences is
uncorrelated, since:

(1) The networks G(0),G′(0) are randomly generated via
the configuration model algorithm, which is known to produce
uncorrelated networks.

(2) A cross rewiring performed over a good pair of links
{a,b}, {c,d} increases (decreases) the global degree-degree
correlation if the new links connect the two nodes with the
smallest degrees and the two nodes with the largest degrees
(respectively, if one of the new links connects the node with
the largest degree to the node with lowest degree). But the
rewiring criterion in the CR algorithm is intended to increase
the overlap coefficient and has nothing to do with the degrees
of the four involved nodes. So, some reconnections will
increase the global degree-degree correlation and some will
decrease it, thus expecting essentially an overall balance.

To support this claim, we show in Table III the standard
Pearson coefficient r for each layer, computed from the two
random variables defined by the degrees of the nodes at
both ends of randomly chosen links [22]. Values of r close
to −1 (respectively 1) account for dissortative (respectively
assortative) networks, while values close to 0 correspond to
uncorrelated networks. As in Table II, the CR algorithm was
executed taking as input two random arrangements of the
corresponding degree sets.

B. Lack of cross-layer degree-degree correlations

The cross-layer degree-degree correlation τ is defined as
the correlation of the respective degrees ki and k′

i of the same
node i in the two layers. In Sec. VII we will show precisely
how to measure it. We note that the epidemic model proposed
in Sec. VIII will be simple enough to be independent of this
sort of correlation, but this may not be the case for more
sophisticated models, so that the question of obtaining a given
overlap controlling τ makes sense. Observe that the cross-layer

degree-degree correlation between two networks G,G′ de-
pends only on the respective degree sequences, not on the par-
ticular links joining the nodes in G and G′. On the other hand,
τ ≈ 0 for two independent random sequences Drand,D

′
rand.

Since during the execution of the CR algorithm the respective
degree sequences are not modified, the lack of degree-degree
correlations follows when using the CR algorithm starting with
two independent random arrangements of the degree sets of
p(k),p′(k).

VII. ABOVE THE CRITICAL OVERLAP: ACCOUNTING
FOR CROSS-LAYER DEGREE-DEGREE CORRELATIONS

In view of the previous sections, there is a natural algo-
rithm that allows us to get any prescribed overlap 0 � α �
O(N,p,p′): arrange the degree sets of p(k) and p′(k) to get
degree sequences D,D′ increasingly ordered. According to (9),
O(N,p,p′) � Opot(D,D′). Then, run the CR algorithm taking
D,D′ and α as input. This algorithm generates a pair of net-
works with maximum cross-layer degree-degree correlation.
Indeed, nodes 1 and N have respectively the smallest and the
largest degree in both layers, and the intermediate nodes have
the same degree rank.

As we will see, there is an unavoidable relationship between
high values of the overlap and the cross-layer degree-degree
correlation, but the question arises whether it is possible to get
a value of the overlap close to the maximum while controlling
the cross-layer correlation to some extent.

Given two degree sequences D = (k1,k2, . . . ,kN ) and D′ =
(k′

1,k
′
2, . . . ,k

′
N ), it is natural to measure the cross-layer degree-

degree correlations by using the Kendall’s τ -b coefficient [23]:

τ (D,D′) := Nc − Nd√
(N0 − N1)(N0 − N2)

.

Here Nc is the number of concordant pairs, Nd is the number
of discordant pairs, N0 = N (N − 1)/2, N1 = ∑

i ti(ti − 1)/2,
and N2 = ∑

j t ′j (t ′j − 1)/2, where ti is the number of tied
values in the ith group of ties for D (analogously for t ′j
and D′). A pair of indices i �= j is said to be concordant
if (ki − kj )(k′

i − k′
j ) > 0, discordant if (ki − kj )(k′

i − k′
j ) < 0,

or tied if (ki − kj )(k′
i − k′

j ) = 0.
It is well known that if the agreement (respectively,

disagreement) between the two rankings is perfect, then
τ (D,D′) = 1 [respectively τ (D,D′) = −1], while if D and D′
are independent (lack of cross-layer degree-degree correlation)
then τ (D,D′) is expected to be close to 0. Note also that if σ

is any permutation, τ (σ (D),σ (D′)) = τ (D,D′). So, in what
follows we will assume without loss of generality that D is
increasingly ordered:

k1 � k2 � · · · � kN .

The cross-layer degree-degree correlation between two net-
works G,G′ depends only on the respective degree sequences
D,D′, not on the particular links joining the nodes in G and G′.
Considering a permutation σ of the elements of D′ corresponds
to relabeling the nodes of G′ to get a network G′′ isomorphic
(so, equally distributed) to G′, and it makes sense to study
how the potential overlap Opot(D,σ (D′)) and the correlation
coefficient τ (D,σ (D′)) vary in terms of σ with respect to
Opot(D,D′) and τ (D,D′). Since any permutation decomposes
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TABLE III. Pearson coefficient to measure the degree-degree correlations in each layer for several pairs of networks obtained from the CR
algorithm with prescribed overlap α = 0.15,0.3,0.45. In all cases, N = 10 000 and 〈k〉 = 10.

α = 0.15 α = 0.3 α = 0.45 α = 0.15 α = 0.3 α = 0.45

Poisson 0.022 88 0.024 74 0.054 29 Poisson 0.014 04 0.037 58 0.073 38
SF 0.006 73 0.047 74 0.129 42 Poisson 0.013 82 0.043 92 0.056 24

SF 0.004 19 0.032 07 0.074 98 SF 0.008 30 0.030 33 0.078 82
Exponential 0.027 11 0.077 71 0.131 75 SF 0.015 86 0.047 19 0.079 09

Poisson 0.018 88 0.035 88 0.054 01 Exponential 0.022 10 0.070 99 0.128 41
Exponential 0.032 90 0.070 54 0.097 41 Exponential 0.052 03 0.078 87 0.117 22

in a sequence of transpositions (or swaps) of two elements,
let us consider a pair of indices i < j such that k′

i > k′
j (a

discordant pair). When we swap both entries in D′ to get
a sequence D′′ such that k′′

i = k′
j , k′′

j = k′
i and k′′

l = k′
l for

l �= i,j , then τ (D,D′′) > τ (D,D′). On the other hand, it is
trivial to check that

∑
n min{kn,k

′′
n} − ∑

n min{kn,k
′
n} equals

(a) 0 if k′
j < k′

i < ki < kj ,
(b) kj − ki > 0 if k′

j < ki < kj < k′
i ,

(c) k′
i − ki > 0 if k′

j < ki < k′
i < kj ,

(d) k′
i − k′

j > 0 if ki < k′
j < k′

i < kj ,
(e) kj − k′

j > 0 if ki < k′
j < kj < k′

i ,
(f) 0 if ki < kj < k′

j < k′
i .

Since Opot((rn)N1 ,(r ′
n)N1 ) is increasing as a function of∑

n min{rn,r
′
n} [see (7)], it follows that the potential overlap

does not decrease when performing a swap that increases
the τ -b coefficient. Analogously, one can check that the τ -b
coefficient does not decrease after a swap that increases the
potential overlap. This remark plainly shows that, as expected,
there is a direct relationship between overlap and cross-layer
degree-degree correlation.

Keeping in mind that we want to find a sequence of swaps
in order to increase the potential overlap while controlling in
some sense the cross-layer degree-degree correlation, a crucial
remark is that, together with the swaps of types (b)–(e) above,
that increase both the potential overlap and the τ -b coefficient,
there are two cases for which the swap k′

i ↔ k′
j does not modify

the potential overlap while it decreases the τ -b coefficient:
(A) k′

i < k′
j < k1 < kj ,

(B) ki < kj < k′
i < k′

j .
Before describing what we call the LS-CR algorithm (stand-

ing for label swap–cross rewiring), we give an example of
how it works. Let p(k),p′(k) be two empirical distributions ap-
proximating respectively a Poisson distribution with 〈k〉 = 10
and a scale-free distribution with 〈k′〉 = 12. Set N = 10 000.
Let D,D′ two random arrangements of the degree sets. The
cross-layer degree-degree correlation is expected to be close
to 0. Indeed, in a particular simulation we get τ (D,D′) =
0.014 70, while Opot(D,D′) = 0.574 78 = Ocr (N,p,p′). So,
since the cross-rewiring operations do not modify the cross-
layer correlation, if we want a prescribed overlapα smaller than
0.574 78, the CR algorithm suffices to construct a two-layer
network with overlap close to α and a small τ -b coefficient.
But suppose that the desired overlap is significantly larger.
To see how big it can be, rearrange the elements in D,D′
to get two sequences σ (D),ρ(D′) increasingly ordered and
computeOpot(σ (D),ρ(D′)) = 0.749 283, that according to (9)
is an absolute upper bound for the largest permitted overlap.

The corresponding τ -b coefficient is of course very close to
1: τ (σ (D),ρ(D′)) = 0.949 190. Suppose now that the desired
overlap is very close to O, for instance α = 0.73. We proceed
as follows. Rearrange D′ using the permutation σ [so σ (D)
is increasingly ordered while σ (D′) is not]. Both the potential
overlap and the τ -b coefficient between σ (D) and σ (D′) do
not change. Now we perform a series of swaps in σ (D′) of
any of types (b)–(e), that increase both the potential overlap
and the τ -b coefficient, until we reach the potential overlap
α. Then, we perform as many swaps of type (A)-(B) as
possible in order to diminish the τ -b coefficient without
modifying the potential overlap. After running this algorithm
in our particular simulation, we get a sequence D′′ such that
τ (σ (D),D′′) = 0.648 549. Of course the correlation is high,
but significantly smaller than 1. Finally, now we can use the
CR algorithm with input σ (D),D′′,α to effectively construct
the two-layer network. If we repeat the previous scheme with
a prescribed overlap α = 0.65, still close to the maximum, we
get a sequence D′′ such that τ (σ (D),D′′) = 0.209 785. It is
instructive to visualize the evolution of both Opot and τ during
the complete sequence of swaps (see Fig. 1).

So, let 0 � α � O(N,p,p′) be the desired overlap. The
following LS-CR algorithm (standing for label swap–cross
rewiring) is intended to construct two networks of N nodes dis-
tributed according to p(k),p′(k) with an overlap close to α and
a cross-layer degree-degree correlation as small as possible.

FIG. 1. Evolution of the potential overlap (crosses) and the
cross-layer degree-degree correlation (diamonds) when performing
a sequence of swaps.
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TABLE IV. Three examples of a series of executions of the LS-CR algorithm with prescribed overlaps 0.6, 0.65, 0.7, 0.75, 0.8, and 0.85.
In all cases, N = 10 000, 〈k〉 = 12 for the first distribution, and 〈k′〉 = 14 for the second one. For any pair of distributions we report both
the critical and the theoretical maximum overlap. For each two-layer network, we show the overlap α, the Kendall’s τ -b coefficient τ for the
cross-layer degree-degree correlation, and the Pearson coefficients ρ1, ρ2 for the in-layer degree-degree correlations.

0.6 0.65 0.70 0.75 0.80 0.85

α 0.5844 0.5952 0.6389 0.6985 0.7614 0.8050
ER 12–Exp 14 τ −0.0178 −0.0005 0.0935 0.3537 0.6152 0.7899
Ocr = 0.6330 ρ1 0.0753 0.0692 0.0522 0.0241 −0.0087 −0.0095
O = 0.8350 ρ2 0.1865 0.2055 0.3517 0.3543 0.3311 0.2727

α 0.5387 0.5788 0.6386 0.7014 0.7688 0.8459
Exp 12–Exp 14 τ −0.0006 0.0323 0.2116 0.3656 0.5132 0.6743
Ocr = 0.5797 ρ1 0.2010 0.1833 0.1451 0.0851 0.0366 0.0166
O = 0.8545 ρ2 0.1715 0.2377 0.2104 0.1798 0.3271 0.1102

α 0.5102 0.5702 0.6236 0.6879 0.7611 0.8385
SF 12–SF 14 τ 0.1543 0.2900 0.4033 0.4989 0.5722 0.6246
Ocr = 0.5027 ρ1 0.0982 0.0957 0.0761 0.0551 0.0269 0.0021
O = 0.8522 ρ2 0.1215 0.1106 0.0980 0.0696 0.0362 −0.0760

LS-CR algorithm [input: N,p(k),p′(k),α]
(1) Take degree sequences Drand,D

′
rand by rearranging at

random the degree sets of p(k),p′(k). Then,

Opot(Drand,D
′
rand) = Ocr (N,p,p′).

(2) If α � Ocr (N,p,p′), execute the CR algorithm with
input Drand,D

′
rand,α and stop. Otherwise,

(3) Let σ be the permutation that rearranges Drand increas-
ingly. Set D0 = σ (Drand), D′

0 = σ (D′
rand). Then,

Opot(D0,D
′
0) = Opot(Drand,D

′
rand),

τ (D0,D
′
0) = τ (Drand,D

′
rand) ≈ 0.

(4) At each time step t � 0:
Choose at random (if it exists) a pair of indices i < j such

that the four corresponding entries in D0 and D′
t satisfy any of

the conditions (b)–(e). Swap the entries i and j in D′
t to get a

new sequence D′
t+1. Then,

Opot(D0,D
′
t+1) > Opot(D0,D

′
t ).

If Opot(D0,D
′
t+1) � α, set t0 := t + 1 and go to step 5. Other-

wise, proceed to the next time step.
(5) At each time step t � t0:
Choose at random (if it exists) a pair of indices i < j such

that the four corresponding entries in D0 and D′
t satisfy either

(A) or (B). Swap the entries i and j in D′
t to get a new sequence

D′
t+1. Then,

Opot(D0,D
′
t+1) = Opot(D0,D

′
t ),

τ (D0,D
′
t+1) < τ (D0,D

′
t ).

If no pairs are found satisfying (A) or (B), set t1 := t and go
to step 6. Otherwise, proceed to the next time step.

(6) Execute the CR algorithm with input D0,D
′
t1
,α.

In Table IV we show some statistical features of the two-
layer network obtained from the LS-CR algorithm for several
pairs of distributions and different values of the prescribed
overlap, all beyond the critical one. In each case we show
the obtained overlap α, the Kendall’s τ -b coefficient τ for
the cross-layer correlation, and the Pearson coefficients ρ1,

ρ2 for the degree-degree correlation inside each layer. The
evolution of the statistics with the overlap depends of course on
the particular distributions considered, but some clear general
conclusions can be extracted. In all cases, the obtained overlaps
are close to the prescribed one. The τ -b coefficient approaches
1 (even relatively) only for values of the overlap beyond
about 80% of the theoretical maximum. The degree-degree
correlations inside each layer remain in most cases close to 0.

As a final remark, it is clear that the LS-CR algorithm admits
a lot of variants depending on the type and order of swaps that
one performs (in the “LS” part of the algorithm). For instance,
one may be interested in inverting the roles and generate a
two-layer network with a prescribed cross-layer degree-degree
correlation, while getting an overlap as big as possible.

VIII. A SIMPLE EXAMPLE: A MEAN-FIELD SIR
EPIDEMIC MODEL ON A TWO-LAYER NETWORK

This section aims at illustrating that, specially for mean-
field models of processes that take place over a two-layer
network, the qualitative response of a model may depend
critically on the interlayer overlap. To do it, we present a simple
example of an epidemic model with information dissemination
and determine the impact of the overlap on the final outbreak
size predicted by the model.

Epidemic models describe the spread of infectious diseases
on populations whose individuals are classified into distinct
classes according to their infection state as, for instance,
susceptible (S), infectious (I), and recovered (R) individuals. A
closer look at the physical transmission of an infection reveals
that a suitable description of populations must take into account
the network layer A of physical contacts among individuals,
with nodes representing individuals and links corresponding
to physical contacts along which disease can propagate. On
the other hand, if one assumes that the probability of getting
infected through an infectious contact S-I depends on the
awareness state of the susceptible individual, then a second
network layer B over which information about the infection
status of individuals circulates can be considered. In the context
of management and control of sexually transmitted diseases
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(STDs), an example of this second network layer is given by the
partner notification program. This service helps to reach sexual
contacts of patients of STDs and inform them that they may be
at risk, and hence the need of seeking medical care [24,25]. So,
in our approach, if a pair of individuals, one susceptible and the
other infectious, are connected to each other in both network
layers, we assume that the transmission rate βc (here c stands
for common) will be smaller than the normal transmission rate
β because the susceptible partner adopts preventive measures
to diminish the risk of contagion.

According to this scenario, next we derive a mean-field
SIR epidemic model which implicitly assumes spreading of
information on the infection status of nodes in one layer, while
explicitly modeling the transmission of an infectious agent in
a second layer. Following the standard approach for STDs
where the heterogeneity in the number of contacts (sexual
partners) is a basic ingredient [26], individuals are classified
according to their infection state and their number of physical
contacts. So, the model will take into account the network
layer A of physical contacts in terms of its degree distribution
pA(k) = Nk/N where Nk is the number of individuals having
degree k. Analogously, the information or notification network
(network layer B) is described by its degree distribution pB(k).
For the sake of brevity, a pair of nodes connected to each other
in both networks is said to share a common link, although the
natures of the connections are dissimilar. Moreover, the model
does not assume that links in layer B are a subset of those in
layer A, as could be the case in partner notification.

Within each layer, it is assumed that there is no degree-
degree correlation, i.e., neighbors in each layer are randomly
sampled from the population according to the so-called propor-
tionate mixing of individuals. This means that, in each layer,
the probability P (k′|k) that a node of degree k is connected
to a node of degree k′ is independent of the degree k and it
is given by the fraction of links pointing to nodes of degree
k′, i.e., P (k′|k) = k′p(k′)/〈k〉. Now, let Ik(t) be the number of
infectious nodes of degree k at time t in layer A. Although
links are unordered pairs of connected nodes by definition, let
us consider that every link {u,v} gives rise to two oriented
links u → v and v → u. Then, the probability that a randomly
chosen oriented link of A leads to an infectious node is given
by the fraction of oriented links in A pointing to infectious
nodes [26], that is,


I (t) = 1

〈kA〉N
∑

k

k Ik(t) = 1

〈kA〉
∑

k

k ik(t),

where 〈kA〉 is the average degree in A, and ik(t) := Ik(t)/N is
the fraction of nodes that are both infectious and of degree k

in A at time t .
Finally, let LA, LB , and LA∩B denote the number of links

of A, B, and common links, respectively. Let pB|A be the
probability that a randomly chosen link of A, an A link,
connects two nodes that are also connected in B, that is,
pB|A = LA∩B

LA
. Similarly, pA|B = LA∩B

LB
is the probability that a

randomly chosen B link is a common link to both networks.
We stress that a key assumption in the model derivation is

the uniformity of the overlap between the links of each layer.
More precisely: the overlap α is a global feature of the pair
of networks {A,B} that depends on the respective whole sets

of links, and the equations of the model, that will account for
what happens around a typical node i, will be derived using α

as a parameter. Implicitly, this corresponds to the mean-field
approximation that the local overlap around the node i (fraction
of links confluent to i in the union network that are common
links of A and B) does not deviate significantly from α. This
assumption is clearly unrealistic in general. For instance, a
particular run of the LS-CR algorithm with prescribed overlap
α = 0.5 over two exponential networks of 5000 nodes and
mean degrees 45 and 30 leads to a mean local overlap equal
to 0.5439 and a standard deviation of 0.1790. So, it is relevant
to test the goodness of this approximation by comparing the
predictions of the model with simulation outputs.

Taking it all into account, the epidemic spreading is de-
scribed in terms of Ik(t), and also of Sk(t) and Rk(t), the number
of susceptible and recovered nodes of degree k in layer A at
time t respectively, which satisfy Sk(t) + Ik(t) + Rk(t) = Nk .
In particular, the differential equations for Sk and Ik are

dSk

dt
= −k(1 − pB|A)βSk 
I − kpB|A βcSk
I , (11)

dIk

dt
= k(1 − pB|A)βSk 
I + kpB|A βcSk
I − μIk. (12)

The first term on the right-hand side of (12) is the rate of
creation of new infectious nodes of degree k in A due to
transmissions of the infection through links that only belong
to layer A, whereas the second one is the rate of creation
of new infectious nodes from transmissions across common
links. The last term accounts for the recoveries of infectious
nodes, which occur at a recovery rate μ. Here 〈kA〉pB|A is the
expected number of common oriented links. Therefore, since
this number is the same regardless of the network we use to
compute it, the following consistency relationship must follow:

〈kA〉pB|A = 〈kB〉pA|B. (13)

Now let us express pB|A and pA|B in terms of the overlap
α := O(A,B), which is defined as α = LA∩B

LA∪B
where LA∪B is the

set of links of the union network A ∪ B. Using that 〈k〉N = 2L,
pB|A can be expressed in terms of α as follows:

pB|A = LA∩B

LA

= LA∩B

LA∪B

LA∪B

LA

= α
LA + LB − LA∩B

LA

= α

(
1 + 〈kB〉

〈kA〉 − pB|A

)
. (14)

From this simple relationship it immediately follows that

pB|A =
(

1 + 〈kB〉
〈kA〉

)
α

1 + α
. (15)

Similarly,

pA|B =
(

1 + 〈kA〉
〈kB〉

)
α

1 + α
.

As expected, pB|A and pA|B fulfill relationship (13).
Introducing (15) into system (11) and (12), the overlap

appears as a new parameter of the model which now, in terms
of the fractions sk = Sk/N and ik = Ik/N of susceptible and
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infectious nodes of degree k, reads

dsk

dt
= −kβ0(α)sk 
I , (16)

dik

dt
= kβ0(α)sk 
I − μik, (17)

where

β0(α) := 1

1 + α

[
β

(
1 − 〈kB〉

〈kA〉α
)

+ βc

(
1 + 〈kB〉

〈kA〉
)

α

]
,

and sk + ik + rk = pA(k).
These equations correspond to the standard SIR model

for heterogeneous and closed populations with proportionate
mixing [26,27], but with an averaged transmission rate β0(α)
that takes into account the degree of overlap between the two
layers. A similar mean-field approach for modeling epidemic
spreading in single heterogeneous networks was adopted in
[28] using, as a state variable, the fraction ρk of nodes of degree
k that are infectious. The connection between both approaches
is given by the relationship between the state variables. For
instance, ik = Ik/N = Ik/Nk · Nk/N =: ρk p(k).

Simple facts about system (16) and (17) are as follows:
(1) Since the factor α/(1 + α) in (15) is increasing in α, and

α � min{〈kA〉,〈kB〉}/ max{〈kA〉,〈kB〉} [see (8)], it follows that

pB|A � min {〈kA〉,〈kB〉}
〈kA〉 .

So, when 〈kA〉 � 〈kB〉 we get pB|A � 1 while for 〈kA〉 > 〈kB〉
we get pB|A � 〈kB〉/〈kA〉 < 1.

(2) If βc = β or α = 0, the system reduces to the classic SIR
model, as expected, because information dissemination plays
no role in the infection spread. If α = 1, we actually have one
network and again the system reduces to the SIR model but
now with β replaced by βc.

To determine the impact of the network overlap on the
initial epidemic growth, we linearize the system (16) and (17)
about the disease-free equilibrium (s∗

k ,i
∗
k ) = (pA(k),0) ∀k and

obtain that the elements of the Jacobian matrix J ∗ evaluated
at this equilibrium are

J ∗
kk′ = β0(α)

〈kA〉 kk′pA(k) − μδkk′ ,

where δkk′ is the Kronecker delta. Since the only
non-zero eigenvalue of the matrix (kk′pA(k)) is equal to
〈k2

A〉 = ∑
k k2pA(k) [with an associated eigenvector whose

components vk are proportional to kpA(k)], it follows that the
largest eigenvalue of J ∗ is

�1(α) = 〈k2
A〉

〈kA〉β0(α) − μ,

which corresponds to the initial growth rate of the epidemic.
Clearly, �1 decreases with α because βc < β, and �1(α) = 0
at β0(α)/μ = 〈kA〉/〈k2

A〉, which corresponds to the epidemic
threshold according to this mean-field approximation. Notice
that, under proportionate mixing, the expected degree of a
node reached by following a randomly chosen link in network
A is 〈k2

A〉/〈kA〉.
We have checked the accuracy of the model (16) and (17) by

collating the predicted epidemic final size, i.e., the number of
individuals ever infected, with the histogram of final outbreak

sizes of an ensemble of 1500 stochastic epidemic realizations
on a network of 5000 nodes and using α as a tuning parameter.
Each network layer is generated according to the configuration
model, and the desired value of α is attained using the CR
algorithm to guarantee the in-layer degree-degree correlation
is as close to 0 as possible. To clearly separate the dichotomy
“minor outbreak vs major outbreak” (initial extinctions are
highly feasible because only one node is randomly infected at
t = 0), we chose the values of the parameters to be far enough
from the epidemic threshold. This guarantees the existence of
a marked distribution of final major-outbreak sizes, in addition
to the one of minor-outbreak sizes around 1.

For an acceptable prediction of the model, the final epidemic
size obtained from the mean-field approximation should be rel-
atively close to the mean value around which major outbreaks
are distributed. We insist that, in addition to the well-known
limitations of the mean-field approach when modeling epi-
demic processes on one-layer networks [29], here the accuracy
of predictions also depends on the fulfillment of the implicit hy-
potheses assumed in the derivation of expression (15) for pB|A.
Namely, (i) there is no in-layer degree-degree correlations, and
(ii) the occurrence of a common link is the same for any pair
of nodes in the network. So, the value of pB|A does not depend
on the degree of a node in layer A and, hence, the overlap
between layers is uniformly distributed (i.e., there are no parts
of the network more overlapped than others). Assumption (i) is
guaranteed by the algorithms. However, assumption (ii) is not
feasible when the architectures of both layers are very different
from each other. Then, our simulations have been performed
on networks with two different architectures reflecting two
extreme cases. First, we have considered two-layer networks
where each layer is in turn a regular random network. This
guarantees that both hypotheses are satisfied and, moreover,
a good accuracy of the mean-field approach for this type of
network if the degree of each layer is high enough. Second, we
have considered networks with both layers having exponential
degree distributions which have a high variance. In both cases,
the mean degrees are 45 (layer A) and 30 (layer B), both
high enough to minimize the impact of stochastic fluctuations
around infected nodes.

To derive an analytical expression of the final epi-
demic size note that, for all k, Sk(∞) = Nk − Rk(∞) since
limt→∞ Ik(t) = 0 [Sk(∞) and Rk(∞) are the limits of Sk(t)
and Rk(t) as t → ∞]. From this fact, the initial condition
is (sk(0),ik(0)) = (pA(k),0), and integrating from 0 to ∞ the
equation resulting from the sum of Eqs. (16) and (17), we have∫ ∞

0
Ik(t)dt = 1

μ
Rk(∞).

Now, integrating (16) from 0 to ∞, and using the previous
expression, it follows that Rk(∞) = Nk(1 − e−kξ ), with ξ :=

β0(α)
μ〈kA〉N

∑
k kRk(∞). Therefore, the final epidemic size is given

by ∑
k

Rk(∞) =
∑

k

Nk(1 − e−kξ ) (18)

with ξ being the positive solution (if it exists) of the equation

ξ = β0(α)

〈kA〉μ 〈k(1 − e−kξ )〉. (19)
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FIG. 2. Histograms of 1500 final outbreak sizes on a two-layer
network of 5000 nodes. Each layer is generated as a regular random
network of degree kA = 45 and kB = 30, respectively. The size
distribution of small outbreaks ranges from 1 to 9 in the three panels
but only the frequency of a final size equal to 1 (the initial infected
node recovers before infecting any neighbor) can be distinguished.
Vertical dotted line from bottom to top shows the predicted final
epidemic size according to (18) and (19). Insets: magnified histograms
of major-outbreak sizes. Parameters: β = 0.1, βc = 0.05, μ = 1, and
α = 0.3 (a), 0.4 (b), and 0.5 (c).
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FIG. 3. Histograms of 1500 final outbreak sizes on a two-layer
network of 5000 nodes and exponential degree distributions on each
layer with expected degrees 〈kA〉 = 45 and 〈kB〉 = 30, respectively
(see Sec. IV for details). The size distribution of small outbreaks
ranges from 1 to 5 in top panel, and from 1 to 7 in middle and bottom
panels. Note that only the frequency of a final size equal to 1 (the
initial infected node recovers before infecting any neighbor) can be
perceived. Vertical dotted line from bottom to top shows the predicted
final epidemic size according to (18) and (19). Insets: magnified
histograms of major-outbreak sizes. Parameters: β = 0.1, βc = 0.05,
μ = 1, and α = 0.3 (a), 0.4 (b), and 0.5 (c).
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It is interesting to observe that, since ξ = 0 is always a solution,
this equation will have a unique positive solution ξ ∗(α) if the
derivative with respect to ξ of its right-hand side is larger than 1,
which is equivalent to having �1(α) > 0, i.e., a positive initial
epidemic growth (the uniqueness follows from the convexity of
the function defined by this right-hand side). This derivation of
the final epidemic size is presented for the sake of completeness
because, indeed, it follows from the one given in Ref. [26],
Appendix E, in a more general setting.

Figures 2 and 3 show the histograms of final outbreak sizes
obtained from the stochastic simulations on regular random
networks (RNNs) and on networks with exponential degree
distributions, respectively, for three values of α. These figures
also show the mean final epidemic size given by Eq. (18)
after numerically solving Eq. (19) using the generated degree
sequence in layer A. When the CR algorithm is applied and
the distribution of major outbreaks is clearly distinguished
from the one of minor outbreaks (otherwise to talk about the
final size of an epidemic makes no sense), the predicted final
size on RNNs is almost the same as the mean final size of
the major outbreaks (4853 vs 4850, 4816 vs 4818, and 4776
vs 4775 for α = 0.3, 0.4, 0.5, and rounded values). For the
exponential networks, the predicted final epidemic size differs
less than 5% from the mean final size of major outbreaks for
most of the networks generated with the configuration model
with different degree distributions (not shown here). In Fig. 3,
this disagreement is indeed less than 2%. Therefore, in these
cases the proposed mean-field model qualitatively captures the
impact of the overlap on the expected final size of an epidemic.

IX. CONCLUSIONS

The aim of this paper is to provide a toolbox of algorithms to
generate two networks G,G′ sharing the same set of N nodes
(a two-layer network) whose respective degree distributions
p(k),p′(k) are given, with a prescribed overlap coefficient α

defined by the Jaccard index.
First of all, we study the possible range (αm,αM ) ⊂ [0,1]

of permitted overlap coefficients in terms of p(k), p′(k) and
N . We start by proving that αm ≈ 0 for any p(k),p′(k) and N

big enough. Given two fixed degree sequences D = (ki)Ni=1 and
D′ = (k′

i)
N
i=1, we derive an upper bound of α for any pair of

networks sequenced as D and D′, by assuming the condition
(not realizable in general) that the intersection network has
exactly min{ki,k

′
i} links attached at node i. We call this upper

bound potential overlap between D and D′ and we denote it by
Opot(D,D′). Then we prove that an estimate (more properly,
an upper bound) for αM is precisely Opot(S,S ′), where S,S ′ are
degree sequences sampled from p(k),p′(k) whose respective
elements are increasingly arranged.

To construct the desired algorithm we proceed in three
steps. First, we define a partial procedure, that we call CR
algorithm, that takes any pair of degree sequences D,D′ and
a value α between 0 and Opot(D,D′) and constructs a pair of
networks G,G′ sequenced as D,D′ whose overlap is as close as
possible to α. Second, we introduce what we call the critical
overlap αm < αc < αM , defined as Opot(Drand,D

′
rand) where

Drand,D
′
rand are random sequences sampled from p(k),p′(k).

Against an initial intuition, αc is closer to αM than expected. We
show that the CR algorithm with Drand,D

′
rand as input suffices

to construct a pair of networks having any overlap below αc and
exhibiting some desirable statistical properties, specifically
lack of in- and cross-layer degree-degree correlations. Finally,
when the desired overlap is beyond αc, we propose what
we call the LS-CR algorithm, that minimizes the cross-layer
degree-degree correlations that unavoidably appear for high
values of α.

To illustrate the impact of the network overlap, we present
a simple example of an SIR epidemic model over a two-layer
network (physical contacts–information dissemination) and
determine the impact of α on the initial epidemic growth and on
the final epidemic size predicted by the model. The comparison
of the epidemic final size with the average final size of major
outbreaks obtained from stochastic simulations shows an ex-
cellent agreement on regular random networks of high degrees,
and a qualitatively good agreement on exponential networks.
Provided that one wants to perform simulations to validate
this (or any) model where a multilayer network is involved, a
systematic procedure to generate couples of networks of given
size and degree distributions with a prescribed value of the
overlap α as those presented here seems to be a useful tool.
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