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Effects of contour propagation and
background corrections in different MRI
flow software packages
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Abstract
Background: Velocity-encoded magnetic resonance imaging (VENC-MRI) is a commonly used technique in cardiac exam-

inations. This technique utilizes the phase shift properties of protons moving along a magnetic field gradient. VENC-MRI

offers a unique way of measuring the severity of valve regurgitation by directly quantifying the regurgitation flow volume.

Purpose: To compare flow analysis results of different software programs and to assess the effect of background

correction in sample patient cases.

Material and Methods: A phantom was built out of Polymethyl methacrylate (PMMA) which provides tubes of

different diameters. These tubes can be connected to an external water circuit to generate a water flow inside the

tubes. Expected absolute flow quantities inside the tubes were determined from preset tube- and flow-parameters.

Different flow conditions were measured with a VENC-MRI sequence and the images evaluated using different software

packages. In a second step six randomly selected patients showing different degrees of aortic insufficiency were evaluated

in clinical terms.

Results: The contour propagation algorithms used in the software packages performed differently even on static

phantom geometry. In terms of clinical evaluation the software packages performed similarly. Enabling background

correction or leaving out manual correction of propagated contours changed results for severity of aortic insufficiency.

Conclusion: Turning on background correction and manual correction of propagated contours in MRI flow volume

measurements is strongly recommended.
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Introduction

Velocity-encoded magnetic resonance imaging (VENC-
MRI) is a commonly used technique in cardiac exam-
inations (1,2). There is also growing interest for using
this technique in brain examinations (3,4).

VENC-MRI utilizes the phase properties of protons
moving parallel to a magnetic field gradient. These pro-
tons undergo a phase shift which is proportional to
their velocity. Subtracting a reference scan from a vel-
ocity encoded scan results in phase contrast velocity
maps. Clinical applications of VENC-MRI include
measurement of valve regurgitation severity (5–7) or
detection of hemodynamic significance of stenosis (8).

For patients with valve regurgitation VENC-MRI is
a unique technique compared to other imaging

modalities as it can directly quantify the regurgitation
in mL/min (9). A device used to directly quantify a
physical property needs quality assurance (QA).
Summers et al. (10) presented a phantom for flow meas-
urement and assessed it in a multisite trial. Their phan-
tom consists of straight, stenosed, and U-bend flow
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channels embedded in polymer layers. These static
agarose layers can be used for background offset
correction.

Inter-study reproducibility of VENC-MRI was
assessed and the variability was found to be very low
(11). One of the major reasons for errors in velocity
encoded measurements is the existence of field inhomo-
geneities inside the scanner. These lead to eddy current
effects which will in turn introduce spatially dependent
phase distortions (12). These distortions or phase off-
sets can be corrected by analyzing areas with static
tissue to derive a correction function for the offset
error (12,13). Phase errors caused by concomitant
fields (14) are corrected during postprocessing as imple-
mented in the scanner software.

To analyze flow through a specific region of VENC-
MRI images a region of interest has to be delineated.
In case of patients with aortic insufficiency images of a
two-dimensional (2D) slice perpendicular to the aorta
are acquired at multiple time frames throughout the
R-R interval of the heart cycle. As the cross-section
and the position of the aorta changes over time the
region of interest (ROI) has to be adjusted for all time
frames. Van der Geest et al. (15) presented an automatic
contour propagation algorithm where only the center of
the aorta on one time-frame needs to be selected by
the user. Automatic propagation could be done in
about 6 s compared to 10min of manual contouring.

Inter- and intra-observer variabilities for manual
and automatic detection of the aortic contour was
shown to be low demonstrating that the automatically
detected contours detection yielded reproducible results
(15). Misalignments of contours by errors in propaga-
tion algorithms present an additional source of errors
for VENC-MRI measurements.

The aim of this study was to compare flow analysis
results of different software programs and to assess the
effect of background correction and contour misalign-
ment for sample patient cases. Comparison results
should show the impact of the assessed effects and
from that give a guideline for necessary steps in the
physician’s workflow.

Material and Methods

Phantom

The phantom consists of a cylinder out of
Polymethylmethacrylate (PMMA) with a diameter of
300mm. By filling the phantom with distilled water a
signal for phase offset calculations is provided. Six
tubes showing different flow configurations (e.g. con-
stant tube diameter or varying tube diameter to simulate
different degrees of stenosis) were placed inside the phan-
tom. The diameters of the inner tubes were 24mm and

10mm with several possible stenosis lengths. A seventh
tube inside the phantom allows for inserting smaller
tubes with customized flow configurations. Fig. 1
shows a three-dimensional (3D) model of the phantom.

A water circuit was designed to enable continuous
measurements of different flow rates (Fig. 2). To allow
for simple changes and direct control of flow rates the
pump was placed outside of the MRI room. A fre-
quency converter was used to change flow rates of the
water pump. The flow rates were measured by rota-
meters directly behind the pump for comparison to
the MRI measurements.

Expected mean flow velocity inside the tube was cal-
culated with following formula:

v ¼
4f

�d2
ð1Þ

where v is the expected velocity, f the flow rate, and d
the tube diameter.

Software

Four different commercially available software packages
and manual postprocessing done in MATLAB (The
MathWorks Inc., Natick, MA, USA) were compared.
The software packages used were Siemens Argus Flow
(Siemens Healthcare, Erlangen, Germany (16)), circle
CVI42 (Circle Cardiovascular Imaging Inc., Calgary,
Canada (17)), Medviso Segment (Medviso AB, Lund,
Sweden (18)), and Medis Q-Flow (Medis Medical
Imaging Systems BV, Leiden, The Netherlands (19)).

Patients

Six patients were selected to cover regurgitation frac-
tion in the range of 0–40%. The age of selected patients
was in the range of 21–72 years (5 women, 1 man).

Fig. 1. 3D model of the phantom.
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Image acquisition

Images were acquired on an Avanto 1.5T and on a
Skyra 3T (Siemens Healthcare) using Siemens’ stand-
ard VENC encoded flow sequence ‘‘FLASH’’. For
the phantom measurements an ECG curve was simu-
lated and used to acquire eight time-frames with a
TR of 117ms, a TE of 3.34ms, a flip angle of 20
degrees, a slice thickness of 6mm, and an in-plane
resolution of 0.9mm. Patient’s R-R intervals were
acquired in 30 time-frames using the same
sequence with enabled ECG triggering, a TR of
39.76ms, a TE of 2.68ms, a flip angle of 20 degrees,
a slice thickness of 6mm, and an in-plane resolution
of 1.77mm.

Software operating procedure

The operating procedure for the phantom was to delin-
eate the tube on the first time-frame, then run the con-
tour propagation algorithm to create delineations on all
succeeding time-frames. No manual correction was
applied afterwards.

For patient cases, contours were manually corrected
if needed. Resulting forward and backward flow vol-
umes were collected for original automatic contours
and for manually corrected ones to inspect differences.
Additionally also background corrected values were cal-
culated for both cases. All software packages support
‘‘static tissue background correction’’ so this correction
was applied in all cases. A region inside the back muscles
of each patient was selected as static-tissue region. As
there is no contour propagation involved in the back-
ground correction calculation the same correction values
were applied in all software packages.

Manual postprocessing in MATLAB was done for
the phantom measurements by selecting the ROI pixel-
by-pixel on magnitude images.

Results

Phantom

The results for the phantom measurements are shown
in Table 1. The average absolute deviation for detected
area and mean flow velocity were below 2% for CVI42,

Fig. 2. Flow circuit set-up.
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Segment and manual masking in MATLAB. Contour
propagation in Argus resulted in a too large area for
the tube with a diameter of 24mm (area¼ 452.4 mm2)
and in a too small area for the tube with a diameter of
10mm (area¼ 78.5 mm2). Average absolute deviation
in Argus for the area was 5.3% and for the mean flow
velocity 2.5%. Q-Flow’s contour propagation esti-
mated a too large area for both tube sizes resulting in
an average absolute deviation for flow and area of
6.8% and 14.1%, respectively.

Software

Table 2 shows the different features available for simple
flow measurements in each of the software packages.
Some software manufacturers provide other features
like T1, T2/T2* Mapping, tissue characterization, per-
fusion, 4D viewing, etc. together with VENC analysis
or in additional software packages. Here only the part
for VENC analysis of each software package was tested
so additional features were not listed in Table 2.

Patients

After manual correction of contours all software pack-
ages showed similar results in regurgitant fraction for
patient measurements (Table 3). Leaving out manual
correction of propagated contours showed a maximum
difference of 6.6% for Patient P3 using CVI42.

Highest difference for enabling background correc-
tion of 7.2% was found using Q-Flow for patient P1.
Mean velocity offset was �2.5 cm/s with a maximum
velocity of 96 cm/s in this case.

Discussion

In clinical day-to-day routine of analyzing aortic
flow, physicians contour the aorta on one time-

frame where the aorta is clearly visible and let the
software propagate this first contour onto all cardiac
phases. In a second step, contours are typically cor-
rected manually. For clinical evaluation the quota of
backward flow volume to forward flow volume
(regurgitant fraction) is analyzed. According to this
clinical procedure six patient cases were compared by
first delineating the aorta where it showed well visible
borders. Then the contour propagation was run and
afterwards the contours were manually corrected if
needed.

For the phantom measurements CVI42 and Segment
showed best agreement in terms of detected area and
mean velocity inside the tubes. Using MATLAB to
manually mask the tubes in the images yielded similar
results. No manual correction was applied afterwards
as the goal was to test the detection of a simple clearly
delimited circular geometry.

Q-Flow showed the worst results for the phantom
measurements but this could be due to some part of the
algorithm which does not affect clinical evaluation. The
exact functional principle of the algorithm is unknown
at this point but it is important to note that there are
such large differences in contour propagation. In
response to an inquiry by email Medis (Medis
Medical Imaging Systems BV, Leiden, The
Netherlands (19)) pointed out that the contour detec-
tion was revised in their new Version 5.6 which our
institute was not yet upgraded to.

Comparison of patient evaluation showed that the
effect of background correction is non-neglectable.
Gatehouse et al. (20) showed that a velocity offset cor-
rection of 2.4 cm/s could result in up to a 10% differ-
ence in regurgitant fraction. They also proposed that
the maximum offset which does not need correction is
0.6 cm/s. Mean offset error was 2.7% for their multi-
site phantom based study. These results are in agree-
ment with the results presented in this paper where a

Table 1. Mean flow velocity and area results for phantom measurements.

Flow

(cm/s)

Area

(mm2)

Argus deviation (%) CVI42 deviation (%)

Segment

deviation (%)

Q-Flow

deviation (%)

MATLAB

deviation (%)

Flow Area Flow Area Flow Area Flow Area Flow Area

20.0 452.4 �3.0 þ4.9 þ1.2 �1.6 þ2.1 �3.4 �1.7 þ4.0 �0.2 þ1.3

50.0 452.4 �7.1 þ9.6 �1.8 þ0.4 �1.1 �1.0 �4.2 þ6.0 �1.9 þ1.3

100.0 452.4 �0.3 þ5.1 þ2.0 þ3.3 þ3.8 �0.8 þ0.9 þ5.9 þ3.2 þ1.3

42.4 78.5 �2.2 �8.4 �1.5 �2.3 �2.4 þ0.3 �14.6 þ18.9 �2.5 �0.9

63.6 78.5 �0.5 �2.7 þ0.6 þ0.5 þ0.5 þ2.2 �10.0 þ21.3 þ1.0 �0.9

106.1 78.5 þ0.9 �5.3 þ0.9 þ1.3 þ1.2 þ1.8 �8.0 þ22.4 þ1.5 �0.9

169.7 78.5 �3.0 �0.9 �0.8 þ1.2 �0.9 þ3.2 �7.9 þ20.3 �0.3 �0.9

Average deviation �2.2 þ0.3 þ0.1 þ0.4 þ0.5 þ0.3 �6.5 þ14.1 þ0.1 þ0.1

Avg. absolute dev. 2.5 5.3 1.3 1.5 1.7 1.8 6.8 14.1 1.5 1.1
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mean velocity offset of �2.5 cm/s showed a difference in
regurgitant fraction of 7.2%.

One limitation of the study presented here was the
estimation of phase offset due to magnetic field inho-
mogeneities by deriving a linear correction function
from areas containing static tissue (12–14). This first
approximation of background offset was chosen as
this type of correction is supported by all compared
software packages. To use phantom calibration meas-
urements is a more precise method for background cor-
rection (21) but doubles measurement time and is not
done in the clinical routine of our institute (see Table 1
for software packages which provide phantom offset
correction).

Giese et al. (22) presented an alternative approach to
use magnetic field monitoring to calculate background
velocity offset corrections. They showed that echo times
can be optimized to minimize background offset and by
additionally using the calculated offsets, the errors
could be decreased to less than 0.5%. This is a promis-
ing method for background correction as it is very
accurate and does not lengthen measurement time.

A second limitation is the size of the patient set. The
purpose of this study was not to show statistically sig-
nificant differences in contour propagation but to con-
firm that manual contour correction should be done by
default and to show that background offset correction
has an impact on clinical evaluation of patients.
Ignoring errors of automatically propagated contours
lead to differences in regurgitant fraction of the same
dimension as the ones resulting from background
offset. This could mislead the clinical evaluation of
the severity of aortic insufficiency.

The software package Segment being freely available
for research purposes showed reproducible results and
provides the highest number of features for flow evalu-
ation. Segment provided all commonly used back-
ground correction methods.

In conclusion, contour propagation algorithms
showed differences between software programs. Even
for a simple static phantom geometry differences in
contour detection were seen. For patient cases the con-
tour propagations varied between patients and between

Table 2. Available features in software programs used for this study.

Argus CVI42 Segment Q-Flow

Contour propagation x x x x

2D flow velocity profile x x x

3D flow velocity profile x

ROI BG correction x x x x

Surrounding contour BG correction x

Phantom BG correction x x

Polynomial fit BG correction x

Static tissue BG correction x x

Distance measurement * x x x

Play movie X x x x

Save movie X x x

License Commercialy Commercial Free non-commercial,

commercial

Commercial

*Available in standard viewer of Siemens system but not in the Argus window.

yNo stand-alone, only available for a Siemens Multimodality Workplace or for a Siemens MR.

BG, background; ROI, region of interest.

Table 3. Regurgitant fraction in % representing the severity of

aortic insufficiency.

Backward forward flow

volume quota (severity)/same with manually

corrected contours (%)

Patient Argus CVI42 Segment Q-Flow

P1 33.9/30.2 32.0/32.0 32.0/32.0 34.3/32.6

P1_BGC 27.5/24.4 25.7/25.7 25.7/25.7 27.1/25.5

P2 0.0/0.0 0.3/0.3 0.4/0.4 0.6/0.6

P2_BGC 0.0/0.0 0.4/0.4 0.5/0.5 0.8/0.8

P3 10.9/10.9 17.1/10.5 10.9/10.8 11.5/11.6

P3_BGC 16.4/16.4 21.8/15.8 16.6/16.5 17.6/17.7

P4 47.1/47.1 46.6/46.5 46.7/46.7 47.8 /47.7

P4_BGC 40.7/40.7 40.0/40.0 40.0/40.0 40.8/40.7

P5 0.1/0.1 0.1/0.1 0.1/0.1 0.1/0.1

P5_BGC 1.0/1.0 2.7/2.4 2.5/2.5 3.2/3.2

P6 6.5/6.5 8.3/8.3 8.0/8.0 9.8/10.5

P6_BGC 8.9/8.9 10.6/10.6 10.3/10.3 12.4/13.1

BGC, with background correction.
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programs. Automatic contour propagation has to be
checked and corrected manually if there is a visible dis-
crepancy. In terms of clinical evaluation of regurgitant
fraction the different software programs performed
similarly.

Enabling background correction or leaving out
manual correction of propagated contours lead to
non-neglectable changes in regurgitant fraction.
Therefore turning on background correction and
checking automatically propagated contours for valid-
ity is recommended for all MRI flow volume
measurements.
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