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Abstract: Advances in nucleic acid amplification technologies have revolutionized diagnostics for
systemic, inherited, and infectious diseases. Current assays and platforms, however, often require
lengthy experimental procedures and multiple instruments to remove contaminants and inhibitors
from clinically-relevant, complex samples. This requirement of sample preparation has been a
bottleneck for using nucleic acid amplification tests (NAATs) at the point of care (POC), though
advances in “lab-on-chip” platforms that integrate sample preparation and NAATs have made
great strides in this space. Alternatively, direct NAATs—techniques that minimize or even bypass
sample preparation—present promising strategies for developing POC diagnostic tools for analyzing
real-world samples. In this review, we discuss the current status of direct NAATs. Specifically, we
surveyed potential testing systems published from 1989 to 2017, and analyzed their performances in
terms of robustness, sensitivity, clinical relevance, and suitability for POC diagnostics. We introduce
bubble plots to facilitate our analysis, as bubble plots enable effective visualization of the performances
of these direct NAATs. Through our review, we hope to initiate an in-depth examination of direct
NAATs and their potential for realizing POC diagnostics, and ultimately transformative technologies
that can further enhance healthcare.
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1. Introduction

Nucleic acid amplification tests (NAATs) have become indispensable tools in biology and medicine.
For example, for infectious diseases diagnostics, NAATs are generally faster, more sensitive, and more
specific than the current gold standard of culture-based techniques. In fact, a number of DNA- and
RNA-based diagnostics are now recommended by the US Food and Drug Administration (FDA) for
infectious diseases such as human immunodeficiency virus (HIV) [1,2]. Bringing NAATs to the point
of care (POC), and particularly to resource-poor settings, is envisioned to revolutionize healthcare.
Unfortunately, many NAATs require access to expensive, specialized equipment and a degree of
expertise that is highly unlikely to be found in decentralized laboratories. As an additional challenge,
these tests typically require an extraction step to isolate DNA or RNA from blood, urine or sputum,
and a purification step to eliminate contaminants from the sample matrix that can confound the actual
detection procedure (Figure 1). These procedures necessitate expensive instrumentation and can add
up to several hours to sample-to-answer results, which further restricts the use of NAATs within
centralized laboratories.
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Figure 1. Direct nucleic acid testing is much more convenient and streamlined than the three-step 
method with preparatory techniques. In a typical extraction experiment, buffer with lytic agents is 
added to dilute the sample and homogenized with a mixer. Sonication creates pressure waves that 
burst the cells in mechanical lysis. Lysozyme enzymatically destroys cells, and is removed from the 
reaction with vortexing and centrifugation in a phenol/chloroform phase separation. The DNA is 
precipitated in fresh ethanol and the resulting mixture is washed to remove excess contaminants. 
Excess liquid is removed so that the DNA can be resuspended in an appropriate buffer. 

Many groups have attempted to develop portable, integrated, microfluidics-based platforms to 
increase the functionality of diagnostic sensing and analysis [3–5], and some of these have even been 
commercialized (e.g., bioMerieux’s NucliSENS easyQ tests, TwistDx’s TwistAmp kits, and Enigma 
Diagnostic’s MiniLab). These platforms present breakthrough technologies for rapid, cost-effective, 
and user-friendly diagnostics. While it remains to be seen whether these systems are simple and 
error-free enough for developed and developing settings, they demonstrate the feasibility of 
implementing existing nucleic acid amplification methods for POC use [6–9]. 

An alternative approach to time-consuming and cumbersome sample preparation is performing 
NAATs directly from complex samples (Figure 1). The advantage of traditional amplification 
technologies, such as PCR with real-time spectroscopic or mass spectrometry detection, is that the 
results are highly specific and quantitative. However, these sensing platforms are expensive and 
require prior extraction of genetic material from the sample. 

Direct NAATs are advantageous when complicated, costly laboratory apparatuses are not 
available. They not only reduce the time, labor, and technical constraints of molecular testing, but 
also bring the additional benefit of standardizing results [10]. Indeed, a growing number of groups 
are developing such “direct” NAATs. Most notably, the Alere i Influenza A&B assay became the first 
FDA Clinical Laboratory Improvement Amendments (CLIA)-waived nucleic acid-based test [11] in 
January 2015. As the Alere i system requires no front-end nucleic acid extraction, and can be used 
outside of traditional laboratory sites [12–16], its development and CLIA-waived status provide 
strong support for further development of direct assays that can minimize or even bypass sample 
preparation. 

Thus motivated, we present the current state of direct assays and platforms that achieve nucleic 
acids detection and analysis from clinically-relevant, complex samples but with either minimal or 

Figure 1. Direct nucleic acid testing is much more convenient and streamlined than the three-step
method with preparatory techniques. In a typical extraction experiment, buffer with lytic agents is
added to dilute the sample and homogenized with a mixer. Sonication creates pressure waves that burst
the cells in mechanical lysis. Lysozyme enzymatically destroys cells, and is removed from the reaction
with vortexing and centrifugation in a phenol/chloroform phase separation. The DNA is precipitated
in fresh ethanol and the resulting mixture is washed to remove excess contaminants. Excess liquid is
removed so that the DNA can be resuspended in an appropriate buffer.

Many groups have attempted to develop portable, integrated, microfluidics-based platforms to
increase the functionality of diagnostic sensing and analysis [3–5], and some of these have even been
commercialized (e.g., bioMerieux’s NucliSENS easyQ tests, TwistDx’s TwistAmp kits, and Enigma
Diagnostic’s MiniLab). These platforms present breakthrough technologies for rapid, cost-effective, and
user-friendly diagnostics. While it remains to be seen whether these systems are simple and error-free
enough for developed and developing settings, they demonstrate the feasibility of implementing
existing nucleic acid amplification methods for POC use [6–9].

An alternative approach to time-consuming and cumbersome sample preparation is performing
NAATs directly from complex samples (Figure 1). The advantage of traditional amplification
technologies, such as PCR with real-time spectroscopic or mass spectrometry detection, is that
the results are highly specific and quantitative. However, these sensing platforms are expensive and
require prior extraction of genetic material from the sample.

Direct NAATs are advantageous when complicated, costly laboratory apparatuses are not available.
They not only reduce the time, labor, and technical constraints of molecular testing, but also bring the
additional benefit of standardizing results [10]. Indeed, a growing number of groups are developing
such “direct” NAATs. Most notably, the Alere i Influenza A&B assay became the first FDA Clinical
Laboratory Improvement Amendments (CLIA)-waived nucleic acid-based test [11] in January 2015.
As the Alere i system requires no front-end nucleic acid extraction, and can be used outside of traditional
laboratory sites [12–16], its development and CLIA-waived status provide strong support for further
development of direct assays that can minimize or even bypass sample preparation.

Thus motivated, we present the current state of direct assays and platforms that achieve nucleic
acids detection and analysis from clinically-relevant, complex samples but with either minimal or
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even no sample preparation procedures. We surveyed the literature from 1989–2017 and came across
a significant number of works that reported NAATs from bodily samples (e.g., blood-based liquids,
oral samples, swabs) without the complex steps generally involved in sample preparation. This meant
discarding the works that depended on sophisticated instruments and operations that are labor-,
time-, and cost-intensive, such as enzymatic (proteinases), chemical (acids, detergents), or physical
(temperature shock, mechanical disruptions) treatments. Then, we describe examples whereby data
visualization can be used to reveal the connections between the robustness, sensitivity, and efficacy
of technologies developed for direct DNA- and RNA-based tests. It is our hope that in reviewing
technologies such as these, and presenting these promising early findings in an information-rich and
accessible fashion, we can help to accelerate the development of approaches that make POC nucleic
acid testing rapid, accurate, simple, and affordable.

2. Methods

In order to find relevant articles with data on NAAT parameters, we performed literature searches
from December 2014 to February 2018.

2.1. Literature Search

We searched Google Scholar with a combination of search terms. These followed a formula
of combining a descriptor (e.g., “point-of-care”), an amplification technology (e.g., “LAMP” OR
“loop-mediated isothermal amplification”) and a sample matrix (e.g., “blood”). References of
previously published reviews, as well as those included in original studies, were checked for possible
candidate articles.

2.2. Record Screening

Articles were initially screened on the title, and secondly on the abstract. Any articles that relied on
microfluidic platforms or commercialized extraction devices were excluded. Publications that required
complex pre-processing with enzymatic treatment or chemical purification were not selected. Studies
were included if they involved direct amplification and detection of genetic material from one of six
representative sample types: blood, dried blood spot, serum and plasma, saliva and sputum, swabs,
urine, and stool. The full text of appropriate articles was read to extract the necessary information.

2.3. Data Abstraction

From each of the 174 published works surveyed, we extracted and recorded data that corresponded
to test performance. There are many parameters that cannot be ignored when considering NAATs:
accuracy, specificity, user-friendliness, training requirements, and so on. As such, we provide an
extensive examination of nucleic acid template specificity (including single or multiplexed reactions),
amplification methodologies (enzymes, operating temperatures, and amplification technology),
and user-friendliness (storage considerations, pretreatment requirements, and physical involvement)
in Supplementary Table S1.

In addition, we have classified assays that can feasibly be completed without extensive training
or high-end instrumentation as “direct,” whereas those with greater labor or equipment demands
(e.g., freezers, high-speed centrifugation, or incubation for multiple hours) are deemed “semi-direct.”
Specifically, the “semi-direct” assays have the following exceptions to a simple laboratory setup:
alternating between two or more incubation temperatures (other than room temperature), relying
on enzymatic activity, or requiring more than a brief, low-speed (<100× g) centrifugation. Methods
categorized as “semi-direct” face some hurdles to implementation as an on-site service for patient care.
What these tests do offer is a way to deliver actionable results that can link diagnosis to treatment.
With appropriate conversion from requirements for highly trained staff and sophisticated tools to
easy-to-use methods, “semi-direct” procedures will meet the requirements for POC diagnostic devices.
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2.4. Visualization Process

We found certain parameters could be distilled into numerical data, yielding particularly useful
insights when examining different tests. We have devised three major criteria that are indicative of
each platform’s robustness, sensitivity, and clinical efficacy:

1. Tolerance to the sample of interest—ideally, the assay should be able to detect its target against
a high concentration of background contaminants. We note that, although sample dilution
sometimes provides a convenient way of permitting amplification, doing so inevitably reduces
the limit of detection (LOD). Most NAATs analyze only a fraction of the sample volume. Sample
dilution therefore increases the likelihood of false negative results, especially when the samples
already have low target concentrations.

2. LOD—by foregoing sample preparation, one generally sacrifices the opportunity to concentrate
bulk samples, reducing the limit of detection and making sensitivity an important consideration.

3. Clinical evaluation—recognizing assays that have been validated with clinical samples.

Finally, we sought to devise a visual strategy that would clearly and quickly communicate the
importance of our criteria, compare the wide range of assays, discover trends in the data, and reveal
patterns in a single glance. Specifically, the essential information of the 174 reviewed publications is
presented quantitatively in a single plot. Relevant values are standardized and communicated in terms
of visual attributes of position, size, shape, and color.

We have found it particularly useful to visualize the data as “bubble plots.” In a bubble plot,
numerical values from three parameters are simultaneously visualized via the two axes and the size of
the circular marker. Different categories can also be grouped according to the color of the markers.
In our case, we can readily display the essential information (e.g., sample tolerance, LOD, and instances
of clinical testing) of related procedures to discern those that enhance test performance.

3. Brief Overview of Isothermal Amplification Techniques

In our survey, we came across eight DNA- and RNA-based testing techniques. As expected, PCR
(and reverse transcription PCR, or RT-PCR) has been the predominant technique. Notably, a number of
isothermal amplification techniques have also been used to develop direct NAATs. Herein, we provide
brief overviews of these lesser known isothermal amplification techniques.

3.1. LAMP

While PCR is the most commonly reported method of amplification, there is an increasing
number of isothermal amplification technologies that can be truly used at the POC. The single
reaction temperature enables the use of less costly, complicated instruments than for thermal cycling
tests. Loop-mediated isothermal amplification (LAMP) is one such widely researched, developed,
and characterized method [17]. Amplification employs a strand-displacing polymerase and two or
three pairs of primers: one that is sacrificed to linearize the template, and one or two others that prime
the DNA synthesis to produce concatenated, cauliflower-like products [18]. As with PCR, LAMP has
been modified to target RNA as reverse-transcription (RT)-LAMP [19].

LAMP has been compared to PCR in other ways as well, including applications with bacterial,
viral, fungal, and parasitic assays. Not only has the specificity and sensitivity been equivalent to that
of PCR, the robustness of LAMP to certain preparations of serum, swabs, and blood has shown it to be
more tolerant to inhibitors than PCR [8].

3.2. NASBA

The nucleic acid sequence-based amplification (NASBA) method is unique in its ability to
amplify single-stranded RNA directly [20]. This is most desirable for targeting RNA viruses and
for transcriptome analysis [8]. The continuous, homogeneous, isothermal process relies on RNA
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polymerase, RNase, and reverse transcriptase. First, the reverse transcriptase creates a double stranded
RNA:DNA hybrid from the RNA template; next, the original RNA is destroyed; a DNA duplex is
synthesized; then, the polymerase can transcribe RNA from the DNA. Each new RNA molecule can
repeat the cycle for exponential amplification.

NASBA has been applied to a wide-ranging set of research problems, including HIV diagnosis during
the AIDS epidemic of the 1990s and automated, real-time, clinical tests in blood with the modern NucliSENS
(bioMerieux, Inc., Durham, NC, USA) or in urine with the APTIMA assay (Hologic, San Diego, CA, USA).
NASBA is also used outside of the commercial sector with systems to monitor viruses in serum [21].

3.3. SDA

The strand displacement amplification (SDA) technique is based upon the abilities of a restriction
enzyme and a DNA polymerase. A primer containing a recognition sequence for the restriction
enzyme binds to its complementary, single stranded DNA target. After extension by the polymerase,
the restriction enzyme nicks the unmodified strand of the double-stranded hemiphosphorothioate
recognition site. DNA polymerase then extends the 3′ end of the nick, displacing the downstream
strand. The end result is exponential target amplification from the displaced strands, which serve as
targets for new reactions.

SDA is not complex, but it does suffer from sensitivity issues in the presence of background DNA.
The best way to overcome off-target amplification, and hence reduce false-positives, is to use simple
pretreatment procedures like those that have been developed for detection with the BDProbe-Tec
(Becton Dickinson Microbiology Systems, Sparks, MD, USA) and in-house systems for urine [22].

3.4. RPA

Recombinase polymerase amplification (RPA) avoids thermal cycling by using three core proteins
that operate optimally between 37–40 ◦C [23]. The first protein, recombinase, binds to primers that
recombine with a duplex target for strand displacement. The second, a single-stranded DNA binding
protein, attaches to the displaced strand before a strand-displacing polymerase copies the DNA from
the primer onwards for exponential amplification.

One of the requirements for RPA technology is sequence-specific detection. This avoids the problem
of primer artifacts that add to background fluorescence with nonspecific, intercalating dyes. With its
specific readout and rapidity (<20 min to results) as two main features, RPA provides an alternative to the
time-consuming processes of culturing and bacterial genotyping when testing for pathogens [7].

3.5. SIBA

Strand invasion based amplification (SIBA) is another amplification process that relies on
recombinase activity. In SIBA, there is a separate recombinase substrate that is inserted between two
primer-binding sites. The duplex peripheral to this insertion site is separated, enabling the primers to
bind. DNA polymerase can then extend the template from the bound primers. This use of an invading
substrate, one that is neither consumed nor included in the extension of DNA, is advantageous because
it abolishes primer artifacts. SIBA can therefore be used to reliably detect low copy numbers of
pathogens—other isothermal methods generate non-specific amplification products in the absence
of target DNA [24]. Going further, the specificity of SIBA enables multiplexing for the detection of
templates that differ by as little as two bases [25].

3.6. MDA

Multiple displacement amplification (MDA) is a technique that exploits the strand displacement,
proofreading, and polymerase activity of the φ29 bacteriophage DNA polymerase [26]. The highly
processive polymerase uses random primers to amplify an entire genome. MDA is therefore well-suited
for whole genome amplification from crude biological samples, which can be followed by single
nucleotide polymorphism (SNP) testing and genotyping [8].
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3.7. HCR

The concept of hybridization chain reaction (HCR) [27]—an enzyme-free, room-temperature
method—relies on a DNA trigger to initiate amplification. The initiator interacts with two stable
DNA hairpins to create nicked double helices. Amplification of this initiation event continues
until the hairpins are depleted. HCR is a useful assay for detecting short DNAs, such as human
immunodeficiency virus type 1 (HIV-1) in serum [28].

4. Analysis of Surveyed Direct NAATs

4.1. Growing Prevalence of Direct NAATs

Time-series plots offer an effective means for showing the growing prevalence of direct NAATs.
Specifically, within each sample type, we plotted the number of clinical samples that have been
analyzed by direct NAATs from 1989 to 2017 (Figure 2). Here, we also divided the data into two
cohorts based on whether samples were subjected to PCR (Figure 2, black) or isothermal amplification
techniques (Figure 2, red). As expected, we saw an overall rise in the number of clinical samples
analyzed via NAATs with minimal or no sample preparation over the analyzed period. Across all six
sample types, we observed sharp spikes, which indicate studies of high numbers of clinical samples.
Based on the sample type, swab samples had been most analyzed, while urine and stool samples had
been least analyzed. Within each sample type, after an initial lag, we saw a notable rise in the use of
isothermal amplification techniques. This first became apparent as early as 2003, several years after the
advent of LAMP in 2000, and twelve years after the introduction of NASBA [20]. PCR-based systems
emerged within five years of the technique’s inception in 1986 [29], and PCR largely continues to
dominate the realm of nucleic acid testing. The one notable exception is seen in our time-course of
blood testing, where isothermal techniques have surpassed PCR and RT-PCR in terms of the number
of assays performed on whole blood samples.
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Figure 2. Time-series data for direct nucleic acid diagnostics according to accrued number of samples
tested. Individual plots of number of clinical samples over time are subdivided according to sample
matrix as follows: (a) whole blood, (b) dried blood, (c) plasma and serum, (d) saliva and sputum,
(e) oral, dermal, and conjunctival swabs, and (f) urine and stool.
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4.2. Direct NAATs for Whole Blood

Because blood contains circulating nucleic acids, cells, and over 20,000 different proteins, it offers an
abundance of biomarkers for disease detection. Molecular diagnostics in blood are useful for detecting
specific DNA or RNA sequences from a range of bacterial, toxic, and viral infectious agents. Platforms
for hepatitis and human immunodeficiency virus [30], Staphylococcus aureus [31], and Plasmodium
species are just a few of the most-used systems enabling rapid diagnostics in whole blood.

Blood-based testing generally demands sophisticated detection instruments or extensive
preparation to recover inhibitor-free and high-purity DNA. Not all inhibitory blood components are
known [32], but heme compounds, anticoagulants, and immunoglobulin G (IgG) can all interfere
with amplification reactions by inhibiting DNA polymerase activity [33] or chelating necessary
cofactors [34,35]. Although a wide range of bloodborne viruses, bacteria, and parasites can in principle
be detected with nucleic acid testing, extraction- and purification-free means of detecting these
pathogens are not currently commercially available.

We have visualized the general trends of direct and semi-direct nucleic acid testing in blood as a
function of the LODs (Figure 3). The % (v/v) of blood tolerated in a reaction is plotted against the LOD
in g of template, with the number of clinical samples encoded as the area of the bubble. We have also
assigned colors to indicate the type of amplification technology. It is evident that many studies have
achieved high sensitivity in detecting their target in a low concentration of blood. This shows that
nucleic acid testing has great potential for blood-based tests in POC situations where collection volumes
are small (e.g., finger pricks) and parasite loads may be low. Those examples from the literature that
were not demonstrated on patient samples are considered separately in the plot, and represented by Xs
rather than bubble markers. Some of these are purported to have very low LODs that reach below
the fg level (Table S1)—it remains to be seen whether such tests will perform with the same extreme
sensitivity in a clinical context.
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Figure 3. Bubble plot of nucleic acid diagnostics performed in whole blood. Percent concentration (v/v)
of blood per reaction in a given procedure is displayed as a function of the limit of detection (LOD)
in g of template. The number of patient samples tested is proportional to the log of the marker area,
as shown at top, and the testing methodology is indicated by marker color. Cases shown with × instead
of bubble markers illustrate that patient testing was not reported.
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By assessing the PCR- and isothermal-based data, we could obtain some insight into how to
optimize these techniques to better tolerate blood as a sample matrix. Several of the semi-direct works
with PCR have employed over 50% blood in a reaction after heat-cold shock [36]. More noteworthy
is a truly direct example that relied on the specificity and efficacy of the Phusion polymerase (New
England Biolab, Ipswich, MA, USA) to perform PCR in 40% blood [37]. PCR typically employs
the Taq polymerase from Thermus aquaticus. Chemical additives, whether commercially-available
cocktails [38,39] or in-house buffers [39–52], allow the Taq family of polymerases to amplify DNA
from whole blood. PCR can likewise be optimized through the use of more unconventional
polymerases [53–58] and physical heating steps [53,59–64] to reduce the inhibitory effect of blood
components. These referenced works offer expedited methods to obtain amplifiable templates with
similar sensitivities to chemical-based extraction kits [59]. Though several authors include the use
of a centrifuge in the extraction process, these semi-direct methods of template preparation could
likely be completed by relying on careful pipette-based transfer of supernatants rather than high-speed
centrifugation [59,63].

Most isothermal amplification-based diagnostics in blood make use of LAMP [17], which offers
a highly tolerant means of amplification [8]. Simple treatments with heat [59,65–76] or
chemicals [73,77–81] can increase the sensitivity of the LAMP or RT-LAMP reaction. Most impressive
are the examples of direct amplification of DNA in blood with LAMP-based technologies [82,83] and
other isothermal amplification methods like MDA [84]. Some of these assays employ a post-heating
centrifugation step, but since Poon et al. have demonstrated that LAMP can be performed directly
on heat-treated blood without a spin-down process, this step could likely be avoided in semi-direct
processes [68].

Even though these successful examples of simple, direct nucleic acid testing methods highlight
the promise of DNA amplification in whole blood, there is an ongoing need for further improvements.
No assay has come close to reaching the capacity of Burckhardt et al.’s PCR amplification with Taq
polymerase in nearly 80% whole blood, as demonstrated over 20 years ago in 1994 [36]. The associated
treatment method is one of the more technically-involved and time-intensive, demanding 20 cycles of
heating and cooling. It remains to be seen whether an isothermal amplification method could equal
this tolerance. Perhaps these techniques will make up for their decreased level of tolerance in their
ease of use, as evidenced by Suzuki et al. achieving 20% incorporation of whole blood in LAMP with
only a five-minute heating [76].

4.3. Direct NAATs for Dried Blood

Dried blood spots offer a convenient alternative for screening for genetic disorders, testing for
infectious diseases, and profiling drug metabolism in settings with limited laboratory or storage
capabilities. Such samples are typically prepared by spotting whole blood, either from venous blood
or a finger prick, onto filter paper [85]. Sampling time is quick, temperature-controlled storage is
unnecessary, and biohazard risks are minimized for health care workers [86]. The downside of such
samples is that the DNA in the dried blood must be eluted from the paper-based cellular components
before it can be amplifiable.

Filter paper has been used as medium to test blood for infectious diseases since the 1940s [87].
From syphilis diagnosis during World War II [88], to infant screening in the 1960s [89], to HIV detection
and monitoring in the modern day [85,90], there are important assays with dried blood spots in NAATs.
Commercial technologies are even becoming widely available to map, monitor, and survey blood
spots from patients infected with malaria or other neglected tropical diseases [74,91]. In a similar
manner, the preparation and processing techniques for dried blood samples presented below could
open new avenues for disease control and elimination when combined with well-standardized assays
for detecting bloodborne pathogens.

As shown in Figure 4, all of the tests we surveyed have been validated with actual dried blood
spots. In the most-heavily tested example (720 clinical samples) by Raskin et al., pretreatment with
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heating-cooling cycles and addition of spermidine to the reaction helped boost the efficiency and yield
of the amplification [92]. Blood spot-containing filter paper can typically be directly added into a
mixture of reagents, though it necessitates overcoming the high background interference of the filter
paper and detecting small amounts of dried blood.
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To overcome the background interference from filter paper in directly amplifying dried blood
spots via PCR, researchers have bolstered the enzyme’s resistance to inhibitors and included various
buffer components [47,93]. Pretreatments, such as fixing [92,94–97] or heating [43,98–100], also aid
in improving sensitivity and specificity. Even if the procedures are reported as being too lengthy
for POC, there are appropriate ways to scale down the waiting period: for instance, an overnight
drying period with methanol while under vacuum [98] can be streamlined into a five-minute methanol
fix [100]. Most of the approaches to amplify DNA directly in blood spots use eluants—either from
commercial kits [51,101], in-house buffers [44,59,102–105], or water [106,107]—to overcome the various
difficulties that impede PCR reactions with paper matrices. Buffer-based eluants, in addition to
being cost-effective, can achieve even higher sensitivities than standard extraction protocols [105].
Similar preparatory approaches are used for LAMP, wherein heating in water [72,108], phosphate
buffered saline (PBS) [59], or sodium dodecyl sulfate (SDS) buffer [74] enables a fast and easy nucleic
acid elution with amplification results that are comparable to the conventional gold standard of
microscopy [72,74,108].

One of the difficulties in making blood spots suitable for LAMP and PCR is the need to re-suspend
the spots in liquid, then filter out the species of interest. The easiest way to address the former problem
is through long elution times; the latter, through centrifugation. This makes Taylor et al.’s amplification
of Plasmodium spp. DNA directly from clinical filter paper samples such a remarkable achievement
for low-resource settings. The combination of an inhibitor-resistant Taq mutant and an enhancer
cocktail resulted in a specificity and sensitivity of 100% for 48 patient samples [47]. All the approaches
have interesting characteristics that make them special, but none achieve the ease in use of this assay
for malaria.
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4.4. Direct NAATs for Plasma and Serum

Blood plasma and serum are widely used for quantitative molecular diagnostics in the areas of
clinical decision-making and therapeutic management [109]. Plasma is the pale yellowish fluid that
normally holds the blood cells of whole blood in suspension, whereas serum is the remnants of blood
plasma after the removal of clotting factors [110]. Circulating DNA in serum and plasma is a biomarker
for a diverse array of systemic, infectious, and genetic diseases. These include particular disorders
such as diabetes [109] and hepatitis B virus [111].

Refining blood into serum or plasma historically requires expensive equipment for centrifugation
or sedimentation. Recovering DNA or RNA from blood-based proteins, nutrients, electrolytes,
antibodies (particularly IgG), antigens, hormones, and exogenous substances becomes even more
challenging when considering the low relative levels of cell-free or cell-bound nucleic acids [112–114].
More recently, however, paper- or card-based devices [115,116], membrane-based sedimentation [117],
and microscale devices for cell differentiation and filtration [118] have made blood separation a single
step process at the POC. As such, we include these sample types here.

In assessing nucleic acid testing with plasma or serum, we see that most reactions are performed at
sample concentrations in the 20% range (Figure 5). However, it is important to note that the sensitivity
does not necessarily suffer in much more concentrated samples—in Liu et al.’s highly robust two-step
amplification process with direct hairpin assembly and HCR-based detection of SNP DNA sequences
in 50% (v/v) serum, they achieved a very low LOD of 100 pg [119]. These plasma/serum-based
tests are especially promising for use in real-world contexts, because their clinical relevance is
well-documented—18 out of the 24 cases examined here included testing with patient samples.
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Researchers have developed convenient PCR assays for both direct and semi-direct testing in
blood-based fluids. By using enhanced enzymes, DNA [49,50,67,120] and RNA [121,122] targets have
been successfully amplified in plasma and serum. Additionally, heat-based pretreatment can be used
to release nucleic acids prior to carrying out amplification [36,60,123–126].
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The effect of preheating can be seen in LAMP as well. LAMP is generally tolerant to the serum or
plasma environment [120,127], but preheating the input sample has been found to have a favorable
effect [128–131] that produces up to a 100-fold improvement in sensitivity [132]. This heating also
enabled Pardee et al. to detect Zika virus RNA in serum with high sensitivity using NASBA [21]. HCR
performs especially well in serum without any pretreatment [28,119,133–135], presumably because the
reaction relies on cascaded hybridization events instead of polymerases.

Because plasma and serum contain very low-abundance analytes, nucleic acid tests need to
operate with high sensitivity. Fortunately, LAMP-based applications are achieving increasingly low
limits of detection. Nijru et al., for instance, demonstrated that their LOD of 1 Trypanozoan parasite/L
serum in HAT diagnosis was 100-fold more sensitive than PCR testing. Such methods could still
benefit from user-friendly techniques for large-scale processing. Some semi-direct examples presented
above include a centrifugation step to collect condensate formed after heating, but could just as easily
rely on pipette collection to obviate the need for a high-speed centrifuge. Others might benefit from
certain stand-alone modules for plasma and serum separation that could be integrated into a POC
workflow [117,136].

4.5. Direct NAATs for Saliva and Sputum

Saliva and sputum are abundant and easy to obtain, and are thus attractive samples for diagnostics.
Saliva flows into the oral cavities through salivary glands, where blood vessels secrete the same protein
and nucleic acid biomarkers as in peripheral blood. In contrast with blood-based samples, saliva
sampling does not require trained technicians, presents fewer antigen-associated risks, and can be more
easily purified (saliva is 95% water) [137]. Sputum, a necessary sample for respiratory infections, is
mucus from the lower airways. Unfortunately, saliva and sputum are very heterogeneous with respect
to the distribution of organisms, chemical composition, and the presence of outside contaminants such
as toothpaste, cigarette smoke, coffee, or mouthwash. Technical extraction kits such as RNaqueous
and MagMAX (Life Technologies, Grand Island, NY, USA) are often used to eliminate inhibitors and
nucleases from oral samples. The viscosity of sputum requires particularly cumbersome protocols
for sample preparation: full processing begins with mucolytic agents such as N-acetyl-L-cysteine
(NALC) and dithiothreitol (DTT), disruption of mycobacteria by detergents and proteolytic enzymes,
then isolation of target DNA by organic solvents or capture reagents [138,139].

The human salivary microbiome has importance as a diagnostic indicator of oral cancer, oral
diseases such as periodontitis, and systemic diseases such as pneumonia [140]. As for sputum, it has
become the specimen of choice for detecting tuberculosis [141,142]. NAATs for Mycobacterium tuberculosis
have been endorsed by the WHO (World Health Organization) and the FDA for their high
accuracy [143,144]. The systems introduced below extend the practical usage of sputum for POC
testing by reducing the requirements for sputum manipulation.

Most reported nucleic acid testing methods for saliva and sputum show fairly high numbers for
patient samples tested, with only two of 30 cases that did not examine clinical specimens (Figure 6).
The approaches we examined generally employ dilutions of 20% or less, and achieve low detection
limits. This is critical for avoiding false positives, as the target concentrations in sputum and saliva are
small. The lowest LOD achieved—2 fg of Acinetobacter baumannii bacterial gDNA in sputum—required
pretreatment with Sputazyme (Kyokuto, Tokyo, Japan) and heat before LAMP analysis [145]. In contrast
with blood, the high water content of saliva should make it relatively easy to augment the concentration
of matrix that can be employed in an amplification reaction. There are several examples of amplification
directly on dried sputum collected via filter cards, which is an especially promising direction for direct
testing at the POC if samples need to be stored, handled by multiple clinicians, or reevaluated at later
dates [87,146,147].
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Amongst the collection of approaches for direct PCR amplification on saliva samples, those that
begin with dried saliva swabs fully circumvent DNA extraction, purification, and quantification [93].
Hall et al. added punches of saliva stains directly to the reaction mixture in order to perform STR
analysis. Genetic testing in saliva or sputum is often performed directly in liquid samples, and dilution
into the reagents is typically sufficient to negate the effect of any inhibitors [148–150], although heat [151]
or additives such as polyethylene glycol (PEG), hydroxides, or dithiothreitol (DTT) may be added to
further process samples [42,43,56,145]. With the broad range of bacterial species present in the mouth
(over 600 inventoried), differing in terms of their contributions to health and disease, PCR is very
useful for profiling large numbers of bacteria. Some species are recalcitrant to lysing, like Streptococcus.
So, instead of relying on bead-beating, phenol treatments, or other steps, Aas et al. applied proteinase
K lysates directly to PCR reagents [140]. Several other groups have followed suit in detecting bacterial
taxa in healthy [152,153] and diseased saliva samples [154]. Direct amplification is also possible in
the field of LAMP-based diagnostics, as evidenced in testing for Zika [82] and malaria [65]. Du et al.
went further than simplifying the sample treatment, a ten-minute heating of Zaire Ebolavirus DNA
in saliva, by actually providing a LAMP-to-glucose transduction that can be read out on a handheld
glucometer [155].

Designing direct tests for sputum is inherently difficult because many nucleic acid-based methods
process samples analogously to culture-based protocols. In this N-acetyl-L-cysteine (NALC)-NaOH
method [156], the viscous sputum matrix is liquefied through several buffer exchanges and high-speed
centrifugation into a more manipulative sample for testing. An additional concern is decontamination.
This is necessary for culture, but also useful to protect the operator from biosafety hazards in molecular
testing [157]. Several semi-direct examples based on LAMP [158–160], recombinase polymerase
amplification (RPA) [23,161], or PCR [162–166] have adopted this practice.

However, side-by-side comparisons of nucleic acid testing on sputum samples with or without
NaOH-NALC treatment have indicated that NaOH-NALC processing could be removed to enable
truly direct protocols for sputum. Mitarai et al. reported that the addition of NALC to a sputum
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specimen prior to extraction had no effect on testing for TB [167]. Furthermore, Tarhan et al. showed
that the sensitivity in TB testing was better for sputum samples that were measured directly, rather
than after extraction with NaOH-NALC [168]. In pursuing alternatives to the lengthy NaOH-NALC
method, sputum has been used in PCR after adding mucolytic agents [56,169], diluting in buffer [148],
or bead-beating [157] to reduce viscosity. A more aggressive pretreatment, relying on chemical,
thermal, and mechanical means of disruption, used heating and centrifugation to detect TB in 548
sputum samples with comparable performance to more expensive molecular-based systems [170].
One particularly noteworthy example of direct testing used LAMP to diagnose tuberculosis at three
peripheral laboratories [147]. In the study, LAMP had a sensitivity of 97.9%, detecting 173 out of 177
smear-negative, culture-positive sputum samples. The authors canvassed the laboratory personnel
after they implemented the heating, washing, and filter-tip capture steps before direct amplification to
verify that the assay had significant potential to be adopted for routine use.

Several early examples of PCR on sputum samples with Mycobacterium spp. reported sensitivities
in the single-digit copy number range. However, the pretreatment methods were quite divergent.
Sjobring et al. used long centrifugation and sonication steps, in addition to boiling, to detect down
to eight organisms [171]. Sritharan et al. was able to cut down the steps to a 30 min boiling period,
with a resulting LOD of 1 organism [172]. Since these examples in the 1990s, only one technique
with a pre-amplification wash and an RPA reaction has been able to match this performance in
detecting a single mycobacterium [161]. As far as combining specificity and sensitivity without
adding technical difficulty, Priye et al.’s recent multiplexed RT-LAMP detection system for Zika,
dengue, and chikungunya achieved LODs of 44 copies/reaction with no need for lysis or extraction [82].
These impressive outcomes from isothermal technologies like RPA and LAMP illustrate that fancy
hardware is not necessary for testing modalities to achieve high specificity directly in human samples.

4.6. Direct NAATs for Oral, Dermal, and Conjunctival Swabs

Swabs have become a mainstay in testing for viral pathogens. Molecular systems that identify
respiratory tract infections in nasal swabs [13] or STIs (sexually transmitted infections) in dermal,
genital, and conjunctival swabs [173] are used for rapid, accurate patient diagnosis. DNA collection
from swabs is attractive because it is simple, minimally invasive, and even enables self-sampling.
However, swab-collected specimens are likely to contain polymerase inhibitors such as secreted
minerals, electrolytes, hormones, enzymes, immunoglobulins, and cytokines, as well as topical
medications [137,174–177]. As a result, many swab tests now on the market remove these inhibitors
via extraction methods that are too involved and complex to be suitable for the POC [178].

All of the swab sample studies we examined employed at least one patient sample, and most
achieved high sensitivity at a reasonable level of dilution in the buffer used for DNA elution from
the solid swab (Figure 7). One remarkable study examined 4518 patient swabs in direct PCR for STR
(short tandem repeat) analysis [179]—unfortunately, the authors did not report the yields of DNA
obtained or the lowest amounts detected. This is a particularly common problem amongst these
references—when the LODs are not reported, it is especially difficult to replicate these procedures
or compare the manipulations used in sample storage, DNA replication, and detection [180,181].
Special attention should therefore be paid to reproducibility in future efforts at direct amplification of
swab samples.
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Typically, elution either at room temperature [51,176,182–186] or with heating [43,44,187–191] is
sufficient to generate PCR-amplifiable template from swabs in solution. These methods of dilution or
heating can save over thirty minutes of processing time, as with Nihonyanagi et al.’s heating protocol
to release MRSA in CellEaseII (Biocosm Inc., Hyogo, Japan) diluents [169]. LAMP-based testing of
swab samples can also be performed at room-temperature [192–196] or while heated [145,197–202],
as can MDA [84]. In particular, Mahony et al.’s LAMP-based test for influenza A and B achieved an
analytical sensitivity of one genome equivalent, operating via a novel swab preparation procedure of
vortexing and heating [198].

Moving towards instrument-free molecular diagnostics systems, a lateral-flow strand-displacement
amplification (SDA) [203] assay could directly detect MRSA from nasal swabs with a sensitivity of
600 copies/reaction [204]. Lateral flow eliminates the need for expensive detectors. Rogdriguez et al.
went one step further by combining paper-based extraction and in situ amplification with lateral flow
to develop an RT-LAMP assay for H1N1 in patient nasopharyngeal specimens. Their sensitivity of
500 copies/reaction was well below the mean viral load for H1N1 patients [205]. Pushing to even lower
limits of detection, an HDA-based assay with a vertical-flow DNA strip readout [206] could directly
test clinical genital swabs in transport medium for HSV types 1 and 2 [207]. The nucleic acid assays
had LODs of 5.5 and 34.1 copies/reaction for HSV-1 and HSV-2, respectively, and were able to detect
low-viral loads below the sensitivity of culture tests.

The most sensitive tests on swabs rely on LAMP reactions: for example, fewer than
10 copies/reaction of viral targets were seen after brief heating steps in Hank’s buffer (Whittaker
Bioproducts, Boston, MA, USA) [197], M-Swab diluent (Copan Diagnostics Inc., Murrieta, CA,
USA) [198], or water [202]. It is noteworthy is that entire swab samples can be used in amplification
reactions, eliminating the loss of starting material that accompanies liquid and hardware transfers.
This approach has also been successful in several instances of STR testing [43,179]. Rodriguez et al.
used a similar approach in detecting clinical levels of H1N1 by passing an in-house elution buffer with
the sample of interest through a filter paper-based setup, then amplifying on the filter membrane [205].
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Future developments could focus on direct reactions with swabs that integrate extraction, amplification,
and detection in a single tube for POC usage. This would give low-resource settings alternatives to
instrument-dependent assays like the Alere i platform for detecting influenza A & B from nasal swabs.

4.7. Direct NAATs for Urine and Stool

Diseases of the kidney or genitourinary tract can often be detected from stool or urine. Urea
destabilizes interactions between primers, template and polymerase, and since urea is typically
present in adult urine at concentrations six-fold greater than can be tolerated in PCR reactions,
ultracentrifugation, or related procedures are typically used to prepare such samples for nucleic acid
testing [208–210]. Molecular tests for the identification of pathogens in stool rely on extraction methods
to remove the proteinases, bile salts, polyphenols, and acids that directly inhibit the activity of DNA
polymerases [211,212]. Methods for testing external specimens have been integrated into diagnostic
screens for pathogens such as Chlamydia trachomatis, Neisseria gonorrhoeae, and Clostridium difficile with
high sensitivity and specificity [213–217].

In surveying direct nucleic acid testing methods (Figure 8), we noted that the LODs are generally
lower for urine-based tests than for feces-based. However, there is one example of direct PCR in stool
samples, taking advantage of buffer additives and enhanced Phire polymerase (New England Biolabs,
Ipswich, MA, USA), which achieved a LOD of 0.002 pg of bacterial DNA. However, there is a clear
need for increased testing with patient samples, as nearly half of the referenced works do not include
any clinical validation. This issue is especially notable with fecal testing, where patient testing is only
reported in one study.
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Though complex extraction methods are recommended prior to PCR in order to remove inhibitory
components of urine and feces, changes to the reaction chemistry could effectively relieve the
negative effects of the sample matrix. With urine, this alteration takes the form of a hydrogel-encased
reaction [183]. The authors developed a pre-assembled, desiccated, gel-based cassette that is rehydrated
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by the liquid in raw urine samples. The polyacrylamide gel matrix effectively filters biological inhibitors
out of the amplification reaction, enabling detection of Mycoplasma homonis and Ureaplasma urealyticum.
For feces, the options are to employ inhibitor-resistant polymerases [57] and buffer additives [212].
In the case of one large-scale characterization by Hall et al., the combination of both Phire polymerase
(New England Biolabs, Ipswich, MA, USA) and Ampdirect (Biomatrica, San Diego, CA) gave an LOD
of nearly one copy/reaction in PCR for Francisella tularensis in 0.5% stool [56]. One can also lyse bacteria
in urine [218] or stool [219,220] through heating to release an amplifiable amount of target DNA with
minimal levels of inhibitors. Moore et al. managed to detect Human norovirus repeatedly in 11 out
of 12 outbreak stool samples after boiling the diluted feces in PBS [221]. Although centrifugation is
employed in some semi-direct methods to create a supernatant from the collected stool, we believe a
dilution step could accomplish the same feat by allowing solids to settle at the base of a highly aqueous,
non-viscous sample.

Isothermal amplification techniques like LAMP and RPA generally demonstrate a higher tolerance
than PCR for urine, as they can be carried out directly. As such, LAMP-based assays without
any pre-processing steps or chemical enhancements have detected the causative agents of viral
infections [82,127,131] or STIs [222,223], and pathogenic bacteria such as Escherichia coli [224].
The developers of the recently established isothermal method SIBA showed the utility of this
amplification technique by detecting Chlamydia trachomatis and Neisseria gonorrhoeae in a low-copy
urine sample [25].

5. Discussion

The landscape of molecular diagnostics is constantly advancing, as is the current paradigm of
healthcare. The advent of mobile health and telemedicine has decentralized patient care. It has also
put a new emphasis on usability and non-invasiveness in disease testing. Nucleic acid diagnostics
that reduce the difficulties and expenditures of standard multi-step procedures by direct amplification
can expedite patient testing in POC, hospital, and laboratory situations [225]. In this review, we are
thus motivated to discuss the current state of the art for direct NAATs: assays and platforms that
require minimal or no sample preparation procedures. We search the literature from 1989 to 2017
and find 174 published works that we consider direct NAATs. We first categorize these works based
on the type of complex samples. We subsequently employ bubble plots to facilitate the comparison
of the amplification method, robustness in complex media, sensitivity to target, and clinical usage.
Our findings indicate that the majority of direct NAATs exhibit a tolerance of less than 17% for their
sample of interest, and fewer than 30 patient-based evaluations. Still, there are diagnostic procedures
that far surpass these averages. Sim et al.’s study of direct PCR on 4518 buccal swabs [179], for instance,
is robust and carried out directly on the entire sample for maximal ease. Improvements must continue
to be made for all sample types in terms of facilitating this level of evaluation with clinical samples.

Despite significant developments to date, there remain several challenges for realizing direct
NAATs with user-friendliness, consistency, and generalizability. In furthering the development of
direct testing, it is important to take a holistic approach and consider the type of sample to be analyzed,
the method of sample acquisition, the throughput and volume, and any chemical or mechanical
requirements, and the amplification technique. Another key point to note is that different matrices
will function best in different environments. An improved understanding of the mechanisms behind
emerging nucleic acid amplification reactions and mutant polymerases will enable the rationalization of
how inhibitory compounds can make or break an amplification system. Furthermore, molecular assays
have much to learn from diagnostics that are continuously being developed in the commercial pipeline.
Proprietary technology will always hold knowledge at a cost to the user, but the implementation of
new ideas can lead researchers towards better and more successful ways in which to modernize the
ever-changing field of disease testing.
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6. Conclusions

As we enter the age of electronic, mobile, and personalized medicine, there remains much room
for creativity and innovation in the design of NAATs and POC diagnostics. Molecular diagnostics,
as the highest-growing segment of all in vitro diagnostic products [226], truly have great potential for
both developed and low-resource areas. The diagnostic community continues to strive for tests that
are reliable against variable electrical resources, water quality, trained staff, or harsh environmental
conditions [227,228]. Researchers continue to seek approvals such as the FDA’s CLIA waivers or the
WHO’s ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free,
and delivered to end-users) criteria. In this regard, direct NAATs present a promising approach.
Through this review, it is our hope to stimulate the discussion on direct NAATs and their potential as
POC diagnostics. Ultimately, we seek to help accelerate the development of POC diagnostics that can
be CLIA waived and/or meet the WHO ASSURED criteria, thereby ushering in the next revolution
in healthcare.
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