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Abstract: PM2.5 is a main source of China’s frequent air pollution. Using real-time monitoring
of PM2.5 data in 338 Chinese cities during 2014–2017, this study employed multi-temporal and
multi-spatial scale statistical analysis to reveal the temporal and spatial characteristics of PM2.5

patterns and a spatial econometric model to quantify the socio-economic driving factors of PM2.5

concentration changes. The results are as follows: (1) The annual average value of PM2.5 concentration
decreased year by year and the monthly average showed a U-shaped curve from January to December.
The daily mean value of PM2.5 concentration had the characteristics of pulse-type fluctuation and
the hourly variation presented a bimodal curve. (2) During 2014–2017, the overall PM2.5 pollution
reduced significantly, but that of more than two-thirds of cities still exceeded the standard value
(35 µg/m3) regulated by Chinese government. PM2.5 pollution patterns showed high values in central
and eastern Chinese cities and low values in peripheral areas, with the distinction evident along
the same line that delineates China’s uneven population distribution. (3) Population agglomeration,
industrial development, foreign investment, transportation, and pollution emissions contributed to
the increase of PM2.5 concentration. Urban population density contributed most significantly while
economic development and technological progress reduced PM2.5 concentration. The results also
suggest that China in general remains a “pollution shelter” for foreign-funded enterprises.
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1. Introduction

China’s rapid industrialization and urbanization alongside high annual emissions of pollutants [1]
has caused the air quality of Chinese cities to deteriorate significantly, threatening public health and
urban residents’ well-being. In recent years, the frequent occurrence of haze pollution in Beijing and
other megacities in China has led to a public outcry and has attracted considerable global attention [2].
Since 2013, there has been large-scale and long-term air pollution incidents in China, especially fine
particulate matter of less than 2.5 microns (PM2.5) pollution [3]. In 2015, 265 of the 338 cities in China
exceeded the PM2.5 standard of the World Health Organization (WHO) (10 µg/m3). PM2.5 was the
most polluting component in the number of polluted days, accounting for 66.8% of the exceeded days.
As PM2.5 refers to fine particles with a small aerodynamic equivalent diameter, it is the most important
characteristic pollutant of atmospheric composite pollution [4,5]. Research has shown that PM2.5 can
damage human lung tissue, aggravate chronic respiratory and cardiovascular diseases, and increase
the risk of cancer in exposed populations [6,7]. The risk of emergency hospitalization for cardiovascular
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and cerebrovascular diseases increased by 1.29% per 10 µg/m3 increase in the concentration of PM2.5.
In 2013, the International Agency for Research on Cancer listed PM2.5 as a human carcinogen [8].
In addition, PM2.5 can be transmitted over a long distance, stay in the atmosphere for a long time,
reduce atmospheric visibility, adversely affect transportation, delay flights or lead to their cancellation,
and cause highway closures [9]. High PM2.5 pollution has even forced schools to suspend classes in
primary and secondary schools [10].

The serious harm resulting from PM2.5 has led the academic community to pay close attention to
the issue and carry out large-scale PM2.5 research. The research mainly focuses on the features of PM2.5

pollution [11], its chemical composition, source analysis, health effects [12], cross-border pollution [13],
and the impact of PM2.5 on atmospheric visibility [14] and human health. Most of the studies are based
on pilot experiment monitoring results for a given city or region. The data range is small and the time
scale is short. The spatial estimation and spatial characteristic analysis of PM2.5 concentration mainly
use the following four data types and methods to estimate PM2.5 concentration: Remote sensing image
to retrieve atmospheric aerosol thickness [15], real-time data spatial interpolation of the monitoring
points [16], a regression model [17], and a hybrid model [18]. PM2.5 research has gradually shifted
from small scale to medium scale and large scale. The research content has also changed from models
evaluating PM2.5 concentration to those investigating the influence mechanism. The influencing factors
of PM2.5 mainly focus on climatic meteorological conditions and social and economic activities, which
all play an important role in the formation and diffusion of PM2.5. In terms of temporal and spatial
distribution characteristics of PM2.5 concentration, the research mainly focuses on different time scales
of a certain region or country, revealing the evolution of its temporal and spatial patterns, and looking
for scientific and effective pollution control methods. In terms of climate and meteorology factors,
urban PM2.5 concentration is related to temperature, precipitation, wind speed, atmospheric pressure,
atmospheric humidity, total radiation, and so on. In terms of social and economic factors, urban PM2.5

concentration has certain correlation with population agglomeration [19], economic growth, industrial
structure, fossil energy consumption [20], and traffic conditions. In recent years, several studies have
been published on the factors that promote socio-economic pollution in China. The studies found that
population concentration, economic development, inter-regional trade, industrialization, urbanization,
vehicle emissions, city size, and energy use exacerbated PM2.5 pollution [21].

To cope with the frequent occurrence of haze pollution, China’s Ministry of Environmental
Protection newly incorporated PM2.5 into environmental air quality monitoring, via the Environmental
Air Quality Standard (GB 3095-2012), and set corresponding standards. Thereafter, the Ministry of
Environmental Protection developed a monitoring implementation plan, set up automatic monitoring
points for air quality, and published PM2.5 real-time monitoring data for the public. A total of
945 monitoring points were set up in 190 cities in 2014, 2015, and 2016, and the monitoring scope
was expanded to 1436 monitoring points in 338 cities in 2017. In addition, in response to serious
and persistent PM2.5 pollution, the State Council of China announced its goal of reducing PM2.5

concentration by 25% from 2012 to 2017. To achieve this ambitious goal, scientific research was
undertaken on the temporal and spatial evolution characteristics of PM2.5, through quantitative
research on human factors, including economic growth, population agglomeration, urbanization, and
industrialization. The research concluded that it was especially important for Chinese policymakers to
make policies that control air pollution and make trade-offs between development and protection [21].

This study used geostatistical analysis and exploratory spatial data analysis to analyze real-time
monitoring data of PM2.5 concentration in 2014–2017. It analyzes the pollution characteristics and
temporal and spatial patterns of PM2.5 pollution in 329 prefecture-level cities in China from two
dimensions, time and space. Moreover, this study analyzes the important factors affecting the
distribution of PM2.5 concentration, from the perspective of social economy, in order to provide
a scientific basis for air pollution control.
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2. Materials and Methods

2.1. Data Sources

The study area was mainland China (excluding Hong Kong, Macau, and Taiwan, owing to
data availability restrictions). The study data were PM2.5 concentration monitoring values of 1436
monitoring points in 338 cities in China from 2014 to 2017. The research data were from real-time
monitoring data released by the China National Environmental Monitoring Center (http://www.
cnemc.cn) and the China Air Quality Online Monitoring and Analysis Platform (https://www.aqistudy.
cn/historydata/index.php). The monitoring site used Thermo Fisher 1405F (Thermo Fisher Scientific,
Waltham, MA, USA) to observe the concentration of PM2.5. The goal of this method was to cut PM2.5

in ambient air at a constant flow rate and to use a filter membrane dynamic measurement system and
micro-oscillation balance to measure PM2.5 concentration [22].

According to China’s ambient air quality standards (GB 3095-2012), Chinese cities are regarded
as second-class environmental functional areas, including residential areas, mixed commercial and
commercial areas, industrial areas, cultural areas, and rural areas. The annual and daily limits of
PM2.5 concentration are 35 µg/m3 and 75 µg/m3, respectively. The Environmental Air Quality Index
AQI Technical Regulations (HJ633-2012), issued by the Ministry of Environmental Protection, defines
pollution based on a 24 h classification. PM2.5 concentration at 0–35 µg/m3 is excellent, 35–75 µg/m3

is good, 75–115 µg/m3 is light pollution, 115–150 µg/m3 is moderate pollution, 150–250 µg/m3 is
heavy pollution, and 250–500 µg/m3 is serious pollution.

“Daily average” refers to the arithmetic mean of a 24 h monitoring value on a natural day.
“Monthly average” refers to the arithmetic mean of the average value of each day in a month. “Quarter
average” refers to the arithmetic mean of the average value of each day in a quarter. “Annual average”
refers to the arithmetic average of the daily averages over the course of a year. Spring is from March
to May, summer is from June to August, fall is from September to November, and winter is from
December to February.

In this study, socio-economic development data affecting PM2.5 concentration were mainly from
the China Urban Statistical Yearbook (2014–2017). For some missing data, the statistical yearbooks of
each province and city are referenced.

2.2. Methods

2.2.1. Hot Spot Analysis (Getis–Ord Gi)

Hot spot analysis uses the local G statistic proposed by Getis and Ord. The calculation formula is
the following:

G∗
i =

∑j wijxjx∗ ∑j wij

S∗

√{
n ∑j w2

ij −
(

∑j wij

)2
}

/(n − 1)

(1)

In the formula, x = ∑
j

xj/n, s∗ =
√

∑
j

x2
j − x2

j . the G-statistic is a significant statistic. A high

G-value indicates a high value spatial agglomeration, that is, a hot spot; a low G-value indicates a
low value spatial agglomeration, that is, a cold spot; and a close value of 0 indicates no significant
spatial correlation.

2.2.2. Kriging Interpolation

Limited by physical and economic conditions, China’s environmental monitoring points are
unevenly distributed, but PM2.5 concentration has a significant spatial autocorrelation. Interpolation
accuracy of monitoring data at the regional level is more accurate than the data acquired from remote
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sensing inversion [23]. Therefore, the complete spatial distribution of the region can be explained
by interpolation.

The Kriging interpolation method, also known as the optimal spatial covariance interpolation
method, is an optimal interpolation method for spatial interpolation. It can obtain good continuity,
high accuracy, and good volatility, and the results have no bias and minimum variance, which can
accurately simulate the spatial distribution characteristics of PM2.5 [24]. The estimated value Z∗(V)

of any one of the parcels is represented by the weighted average of the observations of the adjacent
parcels is the following:

Z∗(V) =
n

∑
i=1

λiZ(xi) (2)

In the formula, n is the number of adjacent samples Z(xi) and λi is the weight of the observed
sample Z(xi). To ensure an unbiased estimation of the estimated value Z∗(V) to the true value Z(V),
condition E[Z∗(V)− Z(V)] = 0 is satisfied.

2.2.3. Spatial Regression Model of Urban PM2.5 Socioeconomic Factors

The spatial difference of PM2.5 concentration in Chinese cities is significant and the influencing
factors are diverse. This study discusses the influencing factors of PM2.5 from the perspective of
socio-economic factors.

According to the existing research results, economic development, urbanization, and industrialization
are the three main driving forces of urban development [21]. This study analyzes the effects of PM2.5

concentration changes from the following 10 factors, as shown in Table 1. Economic development
includes economic growth and foreign investment. Urbanization includes population agglomeration,
urban scale, urban greening, and transportation. Industrialization includes industrial structure, energy
consumption, scientific and technological progress, and pollution emissions. The corresponding
indicators of these 10 independent variables are per capita gross domestic product (GDP) (X1),
foreign direct investment (FDI) amount (X2), population density (X3), urban built-up area (X4), urban
greening rate (X5), number of owned vehicles (X6), industrial output value to GDP (X7), total energy
consumption (X8), science and technology expenditure to GDP (X9), and soot emissions (X10).

The above 10 indicators are included in the analysis model according to the traditional
measurement model without considering the spatial effect. The model is as follows:

lnY = β0 + β1lnX1 + β2lnX2 + β3lnX3 + β4lnX4 + β5X5 + β6lnX6

+β7X7 + β8lnX8 + β9X9 + β10lnX10 + ε
(3)

In formula (3), Y is the PM2.5 concentration value. The values X1, . . . ,X10 are per capita GDP,
FDI amount, population density, urban built-up area, urban greening rate, number of owned vehicles,
industrial output value to GDP, total energy consumption, science and technology expenditure to GDP,
and soot emissions, respectively. The value β is the model parameter. The value ε is a random error term.
The natural logarithm of the independent variable is used to reduce the effect of heteroscedasticity on
the model estimate.

The change of PM2.5 concentration in each city is affected by surrounding cities and has spatial
autocorrelation and spatial dependence. Therefore, this study extends the basic analysis model to the
spatial econometric model. The calculation formula of the spatial lag model based on the basic analysis
model is as follows:

lnY = β0 + ρWY + β1lnX1 + β2lnX2 + β3lnX3 + β4lnX4 + β5X5+β6lnX6

+β7X7 + β8lnX8 + β9X9 + β10lnX10 + ε
(4)

In the formula, Y, X1, ..., X10, β, and ε are defined as in formula (4). The value ρ is a spatial
regression coefficient. The value W is a spatial weight matrix.
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The calculation formula of the spatial error model based on the basic analysis model is as follows:

lnY = β0 + β1lnX1 + β2lnX2 + β3lnX3 + β4lnX4 + β5X5 + β6lnX6

+β7X7 + β8lnX8 + β9X9 + β10lnX10 + ϕWε + µ
(5)

In the formula, Y, X1, ..., X10, β, and ε are defined as in formula (5). The value ϕ is the spatial error
coefficient and µ is a random error vector of the normal distribution.

When choosing the spatial model, the ordinary least squares (OLS) method is used to estimate the
spatial related constraint model and then the significance selection model of the Lagrange multiplier
is compared.

If the Lagrange multiplier LM (lag) is more statistically significant than LM (error) and if R-LM
(lag) is more significant than R-LM (error), the spatial lag model (SLM) is selected, otherwise structural
equation modeling (SLM) is selected.

Table 1. Social and economic factors affecting PM2.5 concentration in Chinese cities.

Drivers Factors Independent Variable Number

Economic
development

Economic growth Per capita GDP [25] X1
Foreign investment Foreign direct investment amount [26] X2

Urbanization

Population agglomeration Population density [27] X3
Urban scale Urban built-up area [28] X4
Urban greening Urban greening rate [29] X5
Transportation Number of owned vehicles [30] X6

Industrialization

Industrial structure Industrial output value to GDP [31] X7
Energy consumption Total energy consumption [32] X8
Scientific and technological progress Science and technology expenditure to GDP X9
Pollution emissions Soot emissions [33] X10

Note: GDP: Gross Domestic Product.

3. Results

3.1. PM2.5 Time–Dimension Evolution Characteristics

3.1.1. Annual Changes in PM2.5

The annual average value of PM2.5 concentration in Chinese cities from 2014 to 2017 showed
a downward trend at an average of 62.9 µg/m3, 56.2 µg/m3, 50.1 µg/m3, and 40.3 µg/m3 for each
year, respectively, as shown in Figure 1. The PM2.5 concentration value decreased by 22.6 µg/m3 in
2014–2017, a decrease of 35.93%. The drop in PM2.5 concentration was due to the initial success of
cross-regional comprehensive governance in China in recent years. However, the annual average of
PM2.5 concentration in 2017 was still 1.15 times higher than the secondary standard value (35 µg/m3).
It was also higher than the PM2.5 concentration limit (10 µg/m3) set by the WHO and Western
developed countries.

By using K-S as normality test, the p values of PM2.5 in 2014–2017 were 0.001, 0.005, 0.003 and 0.019,
which indicate that the concentration of PM2.5 was normally distributed every year. From the annual
concentration distribution interval, the distribution frequency of the daily average PM2.5 concentration
was close to the normal distribution. The normal curve of PM2.5 concentration decreased year by year
and the peaks increased year by year. This result indicated that PM2.5 concentration in most cities
decreased year by year and the pollution of fine particulate matter improved year by year. Cities with
PM2.5 concentration between 35 and 70 µg/m3 had the greatest improvement, while those with mild
and moderate pollution had smaller improvement. In 2014, PM2.5 concentration in some cities was
still moderately high but, after 2017, the overall air quality of Chinese cities improved significantly.
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Figure 1. PM2.5 concentration value box line normal curve from 2014 to 2017.

3.1.2. Seasonal and Monthly Changes of PM2.5

The change of PM2.5 concentration in China had a distinct seasonality, which was characterized
by variation of high winter and low summer and middle spring and fall. In 2017, the average PM2.5

concentration in spring, summer, fall, and winter was 41.08 µg/m3, 26.17 µg/m3, 38.25 µg/m3, and
66.33 µg/m3, respectively. The difference in PM2.5 concentration between winter and summer was
40.16 µg/m3. This was related to the heating method of coal burning in winter in China, less rainfall,
and sparse vegetation in winter. During the period from 2014 to 2017, the PM2.5 concentration in
spring, summer, fall, and winter showed a downward trend year by year. The biggest PM2.5 drop was
in summer; it fell from 44.08 µg/m3 in 2014 to 26.17 µg/m3 in 2017, a drop of 40.63%.

In terms of month-to-month changes, the monthly mean values of PM2.5 concentrations in 2014
and 2017 all showed U-shaped variation characteristics [3]. These values fell from January to May,
were basically stable from June to September, while rising from October to December. The U-shaped
inflection point appeared in August each year, that is, the PM2.5 concentration in August was the
lowest in the whole year. In 2017, the average daily maximum and minimum values appeared in
January (118.32 µg/m3) and August (17.12 µg/m3), respectively. Through smooth curve simulation,
it was found that the U-type features had a flattening trend year by year and the PM2.5 concentration
decreased the most in October, with a drop of 41.18%.

3.1.3. Daily Changes of PM2.5

The change of average daily concentration in Chinese cities presented a periodic U-pulse
fluctuation rule [25], as shown in Figure 2. In spring and winter, the fluctuation cycle was short
and the frequency was high, with a cycle of about 7 days. Summer and fall had long fluctuation
periods and low frequency, with a period of about 10–15 days. From 2014 to 2017, the daily maximum
and minimum PM2.5 concentrations showed a downward trend. The average daily maximum PM2.5

concentration decreased from 183.69 µg/m3 to 118.32 µg/m3, a decrease of 35.59%. The daily average
minimum PM2.5 concentration decreased from 26.15 µg/m3 to 17.12 µg/m3, a decrease of 34.53%.
The range of maximum and minimum values dropped from 157.54 µg/m3 in 2014 to 101.20 µg/m3 in
2017. The result showed that the urban air quality in China was getting better year by year, but the
average daily PM2.5 concentration in winter and spring was still high.

The average daily PM2.5 concentration in Chinese cities reached 93.42% in 2017. The proportion of
mild pollution and moderate pollution was 5.48% and 1.10%, respectively. In 2014, the compliance rate
was only 77.81%. In terms of the annual variation of over-standard, the over-standard days in Chinese
cities in the years 2014–2017 were 81 days, 60 days, 50 days, and 24 days, respectively. The number of
days exceeding the standard decreased year by year and the rate of exceeding the standard decreased
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from 22.19% to 6.58%. 2017 was the year with the largest number of days reduced, with 26 days less
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Traffic peak was concentrated in the morning, when the amount of particulate matter discharged
from urban traffic increased. Moreover, the atmosphere mixed layer was low in height and the
inversion layer was likely to appear close to the ground, leading to adverse diffusion of pollutants and
forming the first peak of the PM2.5 concentration. In the afternoon, traffic pollution emissions were
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lower and the convective movement in the atmosphere was enhanced, which was conducive to the
spread of pollutants; thus, a trough was formed at around 16:00. After the evening, traffic pollution
during rush-hour traffic and cooking fume pollution continued to increase and the PM2.5 concentration
gradually increased. Moreover, the low valley electricity price caused industrial production to increase,
which led to the increase of PM2.5 pollution. As a result, the second PM2.5 concentration peak occurred
during the night to the early morning hours.

There was no “weekend effect” in PM2.5 concentration in Chinese cities. Conversely, the PM2.5

concentration on weekends was higher than on working days. This may be because the 338 cities in
this study contain more small-sized cities and people work and live in a smaller radius. Industrial
production activities in small cities have high weekend operating rates and emit more pollutants into
the atmosphere [34]. This shows that the changes in people’s daily life and rest over the weekend have
no significant impact on PM2.5 pollution.

3.2. PM2.5 Spatial Dimension Evolution Characteristics

3.2.1. Evolution of PM2.5 Spatial Pattern

The geostatistics are explored by using the semivariance function to explore the spatial variability
and correlation of PM2.5 concentration [3]. The fitting parameters are shown in Table 2. The result show
that the nugget variance coefficient is greater than 0.726, which indicates that PM2.5 concentration has
a certain spatial autocorrelation. The range of PM2.5 concentration is 71.53 km, which is larger than the
average distance of monitoring point. The semivariance function fitting determination coefficient R2 is
0.863, greater than 0.5, showing a significant data fitting effect. The result supports using Kriging spatial
interpolation analysis. Therefore, based on the analysis of spatial variability characteristics, the values
of PM2.5 concentration in Chinese cities are estimated by the ordinary Kriging interpolation method
and the spatial distribution characteristics of PM2.5 concentration in Chinese cities are analyzed.

Table 2. Theoretic model and parameters of semivariance of PM2.5 concentration in Chinese cities.

Variable Nugget
Variance

Structural
Variance Proportion Range

(km)
Residual

Square RSS
Coefficient of

Determination R2
Theoretical

Model

PM2.5 0.327 0.451 0.726 71.534 3.14 × 10−4 0.863 Gaussian

China’s PM2.5 concentration high and low value east–west boundary line is the Hu Huanyong
Line [35], while the north–south boundary line is the Yangtze River. The intersection area east of the Hu
Huanyong Line and north of the Yangtze River was a cluster of high-polluting urban clusters, including
Beijing, Hebei, Shandong, Henan, and Hubei, as shown in Figure 4. The range covers moderately and
heavily polluted cities with an annual average of 81 µg/m3 or more. The areas heavily polluted by
PM2.5 were concentrated in the contiguous zone and the outward diffusion gradually became better.
There was a certain coupling between PM2.5 concentration and socio-economic activity of the region.
The east of the Hu Huanyong Line had a developed economy, dense population, and concentrated
industrial layout, resulting in serious PM2.5 pollution in the east. The geomorphological area of
the North China Plain made PM2.5 pollution conducive to diffusion and mutual influence, resulting
in increased pollution. The average annual PM2.5 concentration to the west of the Hu Huanyong
Line (except the central part of Xinjiang) and the south of the Yangtze River is low, including Tibet,
Yunnan in the southwestern regions, and the southeast coastal regions. Furthermore, cities with an
average annual PM2.5 concentration reaching the secondary standard limit were mainly distributed in
this region.

From the perspective of spatial evolution in 2014–2017, the scope of PM2.5 pollution gradually
narrowed and the pollution situation significantly improved. The pollution range in the
Beijing–Tianjin–Hebei region shrank toward the southwest, and the pollution ranges in Henan and
Shandong shrank to the north and west, respectively. This is mainly because the local government
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increased supervision and prevention and controlled measures for regions with heavy pollution, which
reduced the local PM2.5 concentration and the air pollution range gradually spread to cities with
poor supervision.
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3.2.2. Spatial Distribution of PM2.5 Annual Average Exceeding the Standard

According to China’s environmental air quality standard (GB 3095-2012), the PM2.5 concentration
in most cities exceeded the standard to different degrees. In 2014–2017, Chinese PM2.5 concentration
exceeded the standard range by more than two-thirds of the total area, forming the pollution pattern
of high value in the central and eastern China and low value in the peripheral areas (Figure 4).

In 2014, a total of 190 cities were included in the monitoring but, of them, only 18 cities in the
coastal and inland regions did not exceed the standard. Other cities had different levels of exceeding
the standard, with the proportion exceeding the standard as high as 90.53%. By 2015, the scope of
the over-standard had been reduced to 83.16% of the monitored cities. The annual average PM2.5

concentration in 91.05% of cities decreased to different degrees, with an average decline of 8.08 µg/m3.
Among them, Shijiazhuang City, the capital of Hebei Province, where pollution was serious, had the
biggest drop, as high as 34.90 µg/m3. In 2016, the average annual value of PM2.5 concentration in most
cities fell below 65 µg/m3 and the average decline was reduced to 6.36 µg/m3, which was slower than
the decline in 2015. The proportion of cities exceeding the standard decreased to 80.26%. The biggest
drop was 19.10 µg/m3 for Langfang City of Hebei Province. In 2017, the annual average value of PM2.5

concentration in the area above 65 µg/m3 shrank, with an average decrease of 6.87 µg/m3. China’s
urban air quality continues to improve, with the number of cities exceeding the standard steadily
decreasing. Hebei Province was still the most polluted area in China and a key area for PM2.5 emission
reduction and air pollution prevention.
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During 2014–2017, the proportion of cities that met the PM2.5 concentration standard rose from
9.7% to 33.88%. The compliance area slowly expanded from the periphery to the middle and the air
quality gradually improved.

3.2.3. Spatial Distribution of the Daily Average of PM2.5 Exceeding the Standard Number

Referring to the Ambient Air Quality Index (AQI) Technical Regulations (HJ633-2012), this study
calculated the proportion of days with excessive daily mean according to the second-level daily mean
standard (75 µg/m3). The proportion of over-standard days in China’s urban daily average showed
a similar spatial distribution pattern to the annual average over-standard ratio. The serious areas
exceeding the standard were mainly concentrated in Hebei, Henan, and Shandong, with the spatial
pattern gradually spreading out from the pollution core area (Figure 5).

The proportion of over-standard days in Chinese cities in 2014 ranged from 0.91% to 68.49%,
with an average over-standard ratio of 26.25%. However, in 2017, the proportion of over-standard
days in all cities ranged from 0.18% to 48.09%, the average over-standard ratio fell to 12.78%, and the
over-standard rate showed a downward trend.

From the perspective of specific cities, in 2014, pollution was the most serious in Xingtai, Baoding,
and Handan cities in Hebei Province, exceeding 64%, as measured by the proportion of over-standard
days. By 2017, the proportion of over-standard days in these three cities had dropped to 36%, but it was
still relatively serious compared to other cities. Areas with high pollution were most clearly reduced
and the proportion of days exceeding the standard in Hebei, Henan, Shandong, Shanxi, and Jiangsu
provinces was significantly reduced. This result showed that the regional integrated air pollution
control implemented by the Chinese government in recent years has achieved remarkable results [36].
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3.2.4. PM2.5 Spatial Agglomeration Analysis

By calculating the Moran’s I, we explored the spatial agglomeration of the annual average PM2.5

concentration in Chinese cities and identified high and low pollution hotspots. The results showed
that Moran’s I was 0.291, 0.327, 0.329, and 0.504 for each year in 2014–2017, respectively, which all
passed the significance test of 1%. This finding showed that the annual average of PM2.5 concentration
in Chinese cities had a high spatial positive correlation and cities with similar pollution levels tended
to have spatial clustering distribution, as shown in Figure 6.

PM2.5 concentration hot spots in 2014 were mainly concentrated in Hebei Province, Shandong
Province, Shanxi Province, Henan Province, Beijing City, and Tianjin City. In this region, high PM2.5

concentration appeared to form a stable and continuous contaminated contig and the air quality was
poor. By 2017, the PM2.5 concentration hotspots had expanded to the south and the area gradually
expanded. Hubei Province, Jiangsu Province, and Anhui Province became hot spots, as did Urumqi
City and Kezhou City in Xinjiang Province. There was a large desert in the west of Xinjiang Province
and dusty weather in the dusty areas was frequent. The PM2.5 concentration over the desert area
would be greater than the particle concentration in the vegetation covered area [19].

In 2014, PM2.5 concentration cold spots were mainly concentrated in Guangdong, Fujian,
and Guangxi provinces on the southeast coast [28], which was related to the strong coastal wind
and conducive to diffusion [3]. By 2017, as the number of PM2.5 monitoring points increased,
the area of cold spots also gradually expanded, showing a trend of moving northward and westward.
The underdeveloped inland regions of Tibet, Yunnan, Qinghai, and Gansu provinces had also become
cold spots. The cold spots became a continuously stable area with good air quality. The middle and
upper reaches of the Yangtze River form frequent alternating zones of polluted air and fine air. The air
quality in southern China has improved significantly.
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3.3. Socio-Economic Factors Affecting PM2.5 Concentration

Based on the above Equation (3), the socio-economic factors influencing the distribution of PM2.5

concentration were analyzed by using the PM2.5 density and the socio-economic data of Chinese cities.
There was spatial correlation between PM2.5 concentration and independent variables, and thus, spatial
effects were considered in the model building. The correlation between the independent variables
was analyzed in SPSS (IBM SPSS, Somers, NY, USA), and the correlation coefficients were all less than
0.5. By using OLS to estimate the model, the variance expansion factor of each variable was obtained,
which was less than the critical value 10, indicating that the model did not have a multicollinearity
problem. Using OLS estimation to consider the spatial correlation constraint model, it was found
that LMLAG was statistically more significant than LMERR, R-LMAG was significant, and R-LMERR
was not significant. Therefore, the SLM was selected for analysis. The model estimation results are
shown in Table 3. Comparing the results of the OLS and SLM models, the fitting degree R2 in the OLS
estimation was 0.406 and the R2 in the spatial lag model estimation was 0.626. It can be seen that the
fitting degree of the model was significantly improved after considering the spatial correlation.

From the perspective of economic development, urbanization, and industrialization, this study
evaluated the socio-economic driving force of PM2.5 concentration in Chinese cities. In the long
run, economic growth, industrialization, and urbanization were important driving forces of PM2.5

pollution in Chinese cities, which was consistent with some earlier studies [21]. The high PM2.5

concentration was mainly concentrated in metropolitan areas with large population, high GDP, and a
large proportion of urbanization and industrialization [19]. Human activities were often the source of
PM2.5 concentration.

The influencing factors of the model include economic development, population agglomeration,
industrial structure, energy consumption, foreign investment, urban scale, urban greening,
transportation, technological progress, and pollution emissions. Among them, the total energy
consumption, urban built-up area, urban greening rate, and PM2.5 concentration were not significant,
indicating that these three had no significant impact on PM2.5 concentration changes in China.

Population agglomeration, industrial structure, foreign investment, transportation, and pollution
emissions were important factors to promote PM2.5 pollution. Population density, industrial output
value to GDP, FDI amount, number of owned vehicles, and soot emissions were significantly positively
correlated with urban PM2.5 concentrations. For a 1% increase in each of these five factors, PM2.5

concentration increased by 0.107%, 0.010%, 0.023%, 0.096%, and 0.040%. Among them, population
density contributed the most to the change of PM2.5 concentration (r = 0.107, p < 0.01) and the
production and living of urban population agglomeration directly aggravated PM2.5 pollution [37].
The number of owned vehicles (r = 0.096, p < 0.05) also had a large impact, indicating that the rapid
growth of vehicle ownership and the increase of vehicle exhaust emissions were one of the important
causes of PM2.5 pollution. Air pollution prevention and control should increase the treatment of
automobile emissions. From the perspective of the transportation process, local transportation and
regional transportation have significantly promoted the PM2.5 pollution load in the region [38]. The FDI
amount (r = 0.023, p < 0.1) had a significant positive impact on PM2.5 concentration. This showed
that FDI inflow contributed to air pollution and the “pollution shelter” hypothesis was established
in China [26]. When FDI was selected for location, it was affected by environmental regulations
and environmental governance costs. Moreover, China has become a refuge for highly polluting
foreign-funded enterprises. Industrial output value to GDP (r = 0.010, p < 0.01) was significantly
positively correlated with PM2.5 concentration. This showed that China was still in the period of
industrial development and industrial agglomeration was the main source of environmental pollution.
At the same time, industrial activities emitted a large amount of pollutants, such as smoke and dust
(r = 0.096, p < 0.01), which was an important factor causing PM2.5 pollution. Heavy pollution areas
in Shandong, Henan, Hebei, Shanxi, and other provinces were the most important coal and steel
industrial agglomerations in China and the spatial agglomeration was one of the important factors
leading to PM2.5 pollution.
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Table 3. Result of the models.

Drivers Influencing Factor Independent Variable
OLS SLM

r p r p

Constant 4.41441 *** 0.00000 0.87407 * 0.09802

Economic development Economic growth Per capita GDP −0.27561*** 0.00059 −0.26298 *** 0.00001
Foreign investment Foreign direct investment amount 0.06319 *** 0.00056 0.02288 * 0.09638

Urbanization

Population agglomeration Population density 0.13741 *** 0.00030 0.10663 *** 0.00018
Urban scale Urban built-up area −0.00759 0.90826 −0.00806 0.87284

Urban greening Urban greening rate 0.00123 0.79717 −0.00119 0.74338
Transportation Number of owned vehicles 0.11840 ** 0.02025 0.09557 ** 0.01340

Industrialization

Industrial structure Industrial output value to GDP 0.00939 *** 0.00191 0.00986 *** 0.00002
Energy consumption Total energy consumption −0.02118 0.64834 0.03408 0.33715

Technological progress Science and technology Expenditure to GDP −0.08875 *** 0.00549 −0.04031 * 0.09514
Pollution emissions Soot emissions 0.09570 *** 0.00002 0.03963 ** 0.01682

R2 0.40629 *** 0.00005 0.62593 *** 0.00004
LMLAG 100.38681 *** 0.00000
LMERR 54.92353 *** 0.00000

R-LMLAG 47.70872 *** 0.00000
R-LMERR 2.24540 0.13401

Note: *, **, and *** mean significant at 10%, 5%, and 1% level, respectively. OLS: ordinary least squares; SLM: spatial lag model; LMLAG: Lagrange Multiplier (lag); LMERR: Lagrange
Multiplier (error); R-LMLAG: Robust of Lagrange Multiplier (lag); R-LMERR: Robust of Lagrange Multiplier (error).
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Economic growth and technological progress have significantly promoted the improvement of
urban PM2.5 concentration. Per capita GDP had a significant negative impact on PM2.5 concentration,
for every 1% increase in per capita GDP, PM2.5 concentration fell by 0.263%. There was an inverted
U-shaped environmental Kuznets curve (EKC) between per capita GDP and PM2.5 concentration,
which is consistent with previous studies [39]. China has crossed the inflection point of the inverted
U-shaped curve [40]. Economic development has promoted an improved atmospheric environment.
China’s economic growth has passed the stage of sacrificing environmental quality. In addition,
the proportion of science and technology expenditure to GDP was significantly negatively correlated
with PM2.5 concentration. For every 1 percentage point increase in the proportion of science and
technology expenditure, the PM2.5 concentration decreased by 0.040%. Scientific and technological
progress could prevent and control air pollution, and the Porter hypothesis was verified for China’s
air pollution control. Appropriate environmental regulation stimulated technological innovation of
enterprises. Enterprises reduce pollution emissions and achieve a win–win situation while reducing
costs and improving product competitiveness.

4. Discussion

In the past few years, haze caused by high PM2.5 concentration has been of increasing concern
to the Chinese public and government. China faced a series of air pollution threats in the process of
rapid urbanization and industrialization. The phenomenon of haze is not unique to China. Britain, the
United States, Germany, France, and other developed countries have also experienced intensive and
large-scale haze in their processes of industrialization. However, these countries cured air pollution
through industrial upgrading and relocation and various government initiatives. In a review of air
environment governance practices and experiences in different countries, the Chinese government has
issued several laws, regulations, and policies on atmospheric prevention since 2013. Since then, there
have been remarkable achievements in air pollution mitigation and haze control in China.

In recent years, the Chinese government has adopted a multi-level, cross-regional, and
multi-directional control model for haze pollution in key areas. The model consists of a hierarchical
vertical linkage structure consisting of a country-urban agglomeration-city. This model cooperated
with the trans-district and transverse linkage governance mode of several provinces, municipalities,
and administrative regions. The linkage mechanism included industry access, energy structure,
green transportation, cross-regional assistance, monitoring and early warning, and consultation and
accountability. In terms of specific control measures, over the past 5 years, China has steadily intensified
efforts to control haze pollution. These measures included the treatment of “scattered pollution”
enterprises, the implementation of ultra-low emission transformation of coal-fired thermal power
units, the elimination of yellow-standard cars and old cars, the elimination of small coal-fired boilers,
and the emergency response of heavily polluted weather, etc. The Chinese government has formed a
coordinated regional management model for haze pollution, formed based on regional linkage and the
participation of government-led, enterprise-oriented, and public and social organizations. This model
has become the fundamental path and inevitable choice to win the battle for blue skies.

The driving factors of PM2.5 concentration change in China are complex [41]. The anthropogenic
factors were the most important driving factors affecting PM2.5 concentration, including industrial
pollution, coal combustion, motor vehicle emissions, dust, biomass combustion, and garbage
incineration [31]. In addition, natural factors, such as atmospheric circulation [42], topography, extreme
weather, and regional transmission, also had great influences on PM2.5 concentration. Due to the large
spatial inequality of industrial structure, energy structure, and physical and geographical conditions,
the key factors driving the change of PM2.5 varied across different regions in China. Atmospheric
pollutants have complexity and long-term treatment and the impact of urban economic growth and
urbanization expansion on air pollution in China is worth exploring. The public cries on air pollution
and the crisis of different environmental types are also the future focus, needing in-depth exploration.
Finally, it is also important to explore empirical studies on the impact of PM2.5 or other air pollutants
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on public health, which can expand our understanding of the disastrous consequences of the air quality
degradation in China [28].

5. Conclusions

Previous studies have paid attention to the changing pattern of PM2.5 concentration and its
socio-economic determinants [37]. Most studies have focused on regional PM2.5 concentration, but have
seldom explored the national geographic variation. However, the research at the large territorial scale
is critical to understand the socio-economic mechanism of air pollution. Therefore, this study advanced
our understanding of the spatial heterogeneity of pollution and the dynamic relationship between
economic development gradients and pollution concentration levels. The multi temporary (i.e., daily,
monthly, and yearly) data of PM2.5 concentration was more closely related to the public’s ordinal life
and exposure to pollutants, which is more practical and instructive for spatial policy implications
for the country’s environment governance. Moreover, the longitudinal data can better reflect the
policy effectiveness of the Chinese government in reducing PM2.5 concentration and corresponding
characteristics of spatial changes. From the data aspect, the PM2.5 ground monitoring data was much
more reliable and accurate than the remote sensing inversion data. Based on the above research,
the following conclusions were mainly drawn:

(1) The time dimension change of PM2.5 concentration had the following characteristics. First, from
the perspective of annual changes, the annual average of PM2.5 in Chinese cities in 2014–2017
dropped year by year, from 62.9 µg/m3 to 40.3 µg /m3, and urban air quality improved year by
year. Second, from the perspective of monthly changes, the monthly average of PM2.5 showed the
characteristics of a U-type fluctuation and change. Along with with high winter and low summer,
spring and fall were transitional periods, and the U-type characteristics were flattened year by
year. Third, from the perspective of day-by-day data, the average daily concentration changes of
Chinese cities presented the periodic u-pulse fluctuation rule. The spring and winter fluctuation
periods were short and the frequency was high. The summer and fall fluctuation periods were
long and the frequency was low. Finally, from the perspective of time-to-time changes, the PM2.5

hourly curve showed a bimodal distribution and the peak was formed after the morning and
evening travel peak.

(2) The PM2.5 spatial dimension had the following characteristics. The PM2.5 concentration was low
in the east and high to the west of the Hu Huanyong Line. Similarly, it was high in the north
and low to the south of the Yangtze River. The intersection area east of the Hu Huanyong Line
and north of the Yangtze River was a cluster of highly polluted cities, including Beijing, Hebei,
Shandong, Henan, and Hubei. These areas contained moderately and heavily polluted cities,
with an annual average of 81 µg/m3 or more. Rapid economic and social development of urban
agglomeration was the main determinant of PM2.5 pollution.

(3) In Chinese cities, PM2.5 exceeded the limit by more than two-thirds of the total area over the
years, presenting a pollution pattern of high in the middle and low on the four sides. However,
the over-standard ranged to the middle every year and the air pollution situation improved.

(4) The annual average value of PM2.5 in Chinese cities had obvious spatial agglomeration and
formed hot spots and cold spots in dynamic changes. Hot spots were mainly concentrated in
Hebei Province, Shandong Province, and Beijing City, among others. The high concentration of
PM2.5 concentration formed a stable and continuous pollution contiguous zone. The cold spot
areas were mainly concentrated in the southeast coastal areas, which were related to the diffusion
of coastal wind.

(5) PM2.5 pollution had spatial autocorrelation and the model considering spatial effects was superior
to the ordinary model. Economic growth, industrialization, and urbanization increased PM2.5

concentration in Chinese cities. Population agglomeration, industrialization, foreign investment,
transportation, and pollution emissions are important factors to promote PM2.5 pollution. Among
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them, urban population density contributed most to PM2.5 concentration. The “pollution shelter”
hypothesis was established for China, which remains a refuge for highly polluting foreign-funded
enterprises. Economic development and scientific and technological progress significantly
promoted the improvement of urban PM2.5 concentration. There was an inverted U-shaped
environmental Kuznets curve (EKC) between per capita GDP and PM2.5 concentration. China
has crossed the inflection point of the inverted U-shaped curve.
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