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Abstract

As one of the few irreversible protein posttranslational modifications, proteolytic cleavage is involved in nearly all aspects of
cellular activities, ranging from gene regulation to cell life-cycle regulation. Among the various protease-specific types of pro-
teolytic cleavage, cleavages by casapses/granzyme B are considered as essential in the initiation and execution of programmed
cell death and inflammation processes. Although a number of substrates for both types of proteolytic cleavage have been
experimentally identified, the complete repertoire of caspases and granzyme B substrates remains to be fully characterized.
To tackle this issue and complement experimental efforts for substrate identification, systematic bioinformatics studies of
known cleavage sites provide important insights into caspase/granzyme B substrate specificity, and facilitate the discovery of
novel substrates. In this article, we review and benchmark 12 state-of-the-art sequence-based bioinformatics approaches and
tools for caspases/granzyme B cleavage prediction. We evaluate and compare these methods in terms of their input/output,
algorithms used, prediction performance, validation methods and software availability and utility. In addition, we construct
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independent data sets consisting of caspases/granzyme B substrates from different species and accordingly assess the predict-
ive power of these different predictors for the identification of cleavage sites. We find that the prediction results are highly vari-
able among different predictors. Furthermore, we experimentally validate the predictions of a case study by performing caspase
cleavage assay. We anticipate that this comprehensive review and survey analysis will provide an insightful resource for biolo-
gists and bioinformaticians who are interested in using and/or developing tools for caspase/granzyme B cleavage prediction.
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Introduction

Proteases are proteolytic enzymes that catalyze the breakdown
of protein or peptide substrates by hydrolysis of peptide bonds
[1–9]. They represent 2% (at least 500–600 proteases) of all gene
products in human and are involved in the functional regula-
tion of a large number of important physiological processes
such as cell cycle [10, 11], cell proliferation [12], programmed
cell death [13–15], DNA replication [16], tissue remodeling [17]
and immune response [18, 19]. The members in this class of
enzymes recognize specific substrate protein sequences and
catalyze the hydrolysis of peptide bonds to activate or degrade
the substrate proteins. The effects of the hydrolysis reactions
are frequently amplified, resulting in a rapid and substantial
change of the biological systems through modulating the bal-
ance of proteomic dynamics. Such highly orchestrated se-
quence of events is thus termed ‘proteolytic cascades’ [20].

Caspases are a family of proteases that can be subdivided
functionally into those involved in either apoptosis or inflam-
mation [21]. In 1993, researchers found that the Caenorhabditis
elegans cell death gene, ced-3, has a remarkable sequence simi-
larity to interleukin-1b-converting enzyme (caspase-1), a mam-
malian protease responsible for proteolytic maturation of
pro-interleukin-1b [22]. This finding elucidated the first two
members of the caspase family and provided evidence that
these proteinases might play an essential role in apoptosis.
Subsequent studies of these proteinases drove the identification
of several other caspase family members important for apop-
tosis or inflammation.

Apoptosis, or programmed cell death, is a fundamental pro-
cess that occurs in all tissues during development, homeostasis
and disease [23–26]. On the other hand, the inflammatory re-
sponse is triggered by innate immune sensors following cellular
damage, infection or stress, and serves to clear the harmful
stimulus and initiate healing [27, 28].

To date, at least 15 mammalian caspases have been identi-
fied [29], and they are categorized into three groups, based on
their substrate specificities: Group I caspases (caspase-1, 4, 5
and 13) prefer bulky hydrophobic amino acids at the P4 site and
cleave the peptide sequence (W/L)EHD, Group II caspases (cas-
pase-2, 3 and 7) preferentially cleave the sequence motif DEXD,
whereas Group III caspases (caspase-6, 8, 9 and 10) cleave the
motif (I/V/L)E(H/T)D. In contrast to the caspases, granzyme B,
another essential serine protease for apoptosis/inflammation,
prefers to cleave the sequence motif IEXD [30].

For caspases not falling into Groups I, II and III, caspase-11 is
considered as an orthologue of caspase-4 and 5 found in mur-
ine. Activation of caspase-11 leads to septic shock, pyroptosis
and often organismal death. Caspase-12 is closely related to
caspase-1, and the activating form of caspase-12 is only found
in people of African descent in Homo sapiens. Caspase-14 is
enriched in human skin and mainly expressed in the upper
layers of the epidermis. The protein is mainly localized to the
cytosol according to the Cell Atlas.

Caspases are essential to coordinating and integrating sig-
nals, which lead to apoptosis, inflammation and other forms of
programmed death, including pyroptosis and necroptosis
[31, 32]. This view is supported by observations that proteins
involved in apoptosis and inflammation contain common con-
served domains, including caspase-associated recruitment
domains and death effector domains, which are also present in
caspases. Recent findings have indicated that classically
‘apoptotic’ caspases have essential roles in initiating inflamma-
tion, both directly and via inflammatory cell death pathways
[33].

The specificity of proteases like caspases depends primarily
on their active sites, whose selectivity depends on preferences
for a number of specific amino acids at defined positions.
In addition to the primary amino acid sequence of the substrate,
the substrate specificity of a protease is also influenced by the
three-dimensional conformation of its substrates. In particular,
proteases preferentially cleave substrates within extended loop
regions, while residues that are buried within the interior of the
protein substrate are usually inaccessible to the protease active
site.

Identification of native substrates of caspases and granzyme
B is the key to the understanding of their physiological roles,
implicated in the pathological processes contributing to proteo-
lytic cascades, and leading to apoptotic cell death. Identification
of native substrates also means to find potential substrates that
can serve as viable therapeutic targets. Although the application
of advanced large-scale high-throughput proteomic techniques
has significantly increased the number of experimentally veri-
fied caspase and granzyme B substrates, the complete repertoire
of the native substrates remains to be discovered, and further-
more, many other cleavage sites within the known substrates
are not fully experimentally identified. Moreover, experimental
identification and characterization of protease substrates are
often time-consuming, expensive and requiring extensively
trained personnel. Therefore, bioinformatic prediction of cas-
pase and granzyme B substrates may provide valuable and ex-
perimentally testable information regarding novel potential
cleavage sites or putative substrates, i.e. ranking the candidate
protein target list according to their likeliness, narrowing it
down to a reasonable number to be validated in the test tube.

Sequence and structural analysis of substrates of caspases
and granzyme B has enabled the development of computational
approaches for prediction of potential cleavage sites and puta-
tive substrates from sequence alone [34–36] using techniques
for analyzing protein sequences [37–40]. However, the rapid
growth in prediction approaches since the last comprehensive
comparison [41], which was reported almost 5 years ago, creates
a need to critically assess and compare the expanding and di-
verse bundle of prediction methods. In this article, therefore, we
present a comprehensive review of 12 sequence-based methods
for caspases/granzyme B cleavage prediction, offering insights
into the nature of different predictors and facilitating potential
improvement of caspases/granzyme B cleavage prediction.
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All predictors are critically reviewed in terms of input/output,
algorithm, prediction performance, validation method and soft-
ware utility, i.e. whether a stand-alone software is available.
To evaluate the performance of caspases/granzyme B cleavage
predictors, we assembled independent testing data sets con-
taining substrates of caspases/granzyme B of various species
with carefully collected and curated data.

To address whether the predicted caspase substrate is really
cleaved by caspase, we selected top-scoring sequences and test
cleavage in vitro with a caspase assay. These sequences are top-
ranked by prediction tools showing outstanding performances
in our independent testing datasets.

Methods
Existing tools reviewed in this study

We briefly summarize the key aspects of the 12 tools evaluated
for caspase/granzyme B cleavage prediction in Table 1.
The tools included in the benchmarking analysis are GraBCas
[48], CaSPredictor [49], PoPS [50], SitePrediction [51], Cascleave
[52], Cascleave 2.0 [41], Pripper [53], PCSS [54], CASVM [55], CAT3
[56], PROSPER [57] and Blast [58].

Model input

In machine learning, the data set is often divided into training
and testing data sets. The training data sets are used to build a
computational model to learn hidden patterns in the data. For
caspase/granzyme B substrates, the data are usually collected
from various databases, such as MEROPS peptidase database
[59], which contains over 410 000 listed cleavage peptidases as
well as 28 000 inhibitors (physiological and nonphysiological).
Other databases are CutDB [60], CaMPDB [61], TopFIND [62] and
Degrabase [63]. CutDB integrates 3070 proteolytic events for 470
different proteases captured from public archives. CaMPDB con-
tains sequences of calpains, substrates and inhibitors as well as
substrate cleavage sites, collected from the literature. TopFIND
contains >290 000 N-/C-termini and >33 000 cleavage sites.
Degrabase comprises about 8000 unique N termini from >3200
proteins directly identified in subtiligase-based positive enrich-
ment mass spectrometry experiments in healthy and apoptotic
human cell lines.

The issue of biased prediction often occurs when there is an
extensive overlap between the training and testing data sets.
To avoid such bias, tools such as Pripper constructed training
data sets according to careful selection criteria of the data
(including removing the sequence redundancy between the
training and test data sets, controlling the ratio of positive data
to negative data, as well as performing multiple rounds of ran-
domization tests, e.g. 10 repeats of 10-fold cross-validation).
Apart from the sequence overlap between the training data set
and validation data set, the issue of data imbalance also needs
to be addressed. Use of an unbalanced data set often leads to
biased models that favor the prediction of the ‘majority’ class of
samples. Most tools solve this issue by selecting the positive
data set from experimental databases and manually generat-
ing/sampling the negative data set with different approaches.
For example, Cascleave/Cascleave 2.0 address this issue by gen-
erating positive and negative data sets from substrate sequen-
ces using a local sliding window approach surrounding the
experimentally verified cleavage sites and other residues that
are found not to be cleaved by caspases, respectively. Cascleave
also uses an undersampling approach by reducing the size of

the overrepresented negative samples. Pripper creates the nega-
tive data set by selecting negative training sequences generated
from the same substrate sequences that are used for positive
sequences. Both Cascleave/Cascleave 2.0 and PROSPER set the
ratio of the positive to negative data to approximately 1:3.
Pripper sets the ratio of the positive data to negative data to ap-
proximately 1:1. Similar efforts to minimize the unbalanced
data (such as controlling the ratio of positive and negative data),
though not explained in detail, can be observed in the develop-
ment of other prediction tools such as PoPS.

Models construction and development

Early tools for caspase/granzyme B cleavage site prediction pre-
dict caspase/granzyme B cleavage sites from sequence informa-
tion only, while more sophisticated tools developed more
recently consider additional information such as secondary
structure (SS) information, hydrophilicity/hydrophobicity, as
well as solvent accessibility (SA) and protein native disorder in-
formation. The prediction methods can be generally classified
into two types, machine learning-based algorithms and statis-
tical scoring method-based algorithms. Machine learning-based
tools include CASVM, Pripper, PCSS, PROSPER, Cascleave and
Cascleave 2.0. While Statistical scoring method-based tools in-
clude GraBCas, CaSPredictor, PoPS, SitePrediction, CAT3 and
Blast.

GraBCas is a scoring method based on position-specific scor-
ing matrices (PSSMs). The PSSM is constructed based on experi-
mentally determined substrate specificities. For computing the
score in PSSM, GraBCas screens for tetrapeptides with Asp (D) at
their last position (P1) in a given amino acid sequence. Given
the tetrapeptide A4A3A2D (P4P3P2P1) of a potential cleavage
site, its cleavage score for a given endopeptidase is computed
by multiplying the corresponding matrix entries of A2 at pos-
ition P2, A3 at position P3 and A4 at position P4. To improve the
performance, GraBCas analyzes the amino acid distribution of
known granzyme B and caspase-3 cleavage sites at positions
P6-P2’ [where P and P’ mean residues C-terminal to the cleavage
site as prime (P’) site and N-terminal peptide residues as non-
prime (P) site] taken from the literature. CaSPredictor, a tool
published at the same time with GraBCas, developed a scoring
algorithm named CCSearch (Caspase Cleavage Site searcher),
which is based on three parameters. The first parameter is cal-
culated from the BLOSUM62 Substitution Matrix. The second
parameter is the relative frequency f(i) for each amino acid resi-
due at position i (P4-P1) from annotated sequences. The last par-
ameter is the PEST index, calculated by giving a value of 1 to the
amino acids in the following set: Ser (S), Thr (T), Pro (P), Glu or
Asp (E/D), Asn (N) and Gln (Q), which are the residues of PEST
regions [64]. There is an evidence that PEST-like sequences, rich
in the aforementioned amino acids, if located in the upstream
or downstream of the cleavage site, may contribute to the speci-
ficity for at least 60% verified caspase substrates [64, 65]. PoPS is
a tool based on a computational model built from three compo-
nents. The first component is the number of subsites within
the active site of the protease. The second component is the
specificity profile of each subsite, assigning a value to each of
the 20 amino acids based on the relative contribution of the
amino acid at that subsite to the overall substrate specificity of
the protease. The last component is the weight of the subsite
[50]. SitePrediction is a tool based on the idea that besides the
occurrences of fixed consensus cleavage sites in the substrate
sequence, a second score is calculated to improve the perform-
ance. This score is based on the similarity of the potential
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Table 1. A summary of key features of each tool evaluated in this article

Tools SitePrediction Cascleave PoPS Pripper

Species Multispecies Multispecies Multispecies Multispecies
Web server availability http://www.dmbr.ugent.

be/prx/bioit2-public/
SitePrediction/

http://sunflower.kuicr.
kyoto-u.ac.jp/~sjn/
Cascleave/

http://pops.csse.mon
ash.edu.au/

No server

Algorithm Combination of frequency
score representing
amino acids occurrence
and position similarity

BEAA trained and tested
support vector regression
(SVR) model

PSSM matrix Combination of
SVM/random forest and
J48 algorithm

Option of batch prediction Yes No Yes Yes
Adjustment of prediction

thresholds
No o Yes No

Standalone software
availability

No No Yes No

Language implemented Cþþ Perl Java Java
Dataset origin Data from MEROPS Multiple resources Data from MEROPS Data from EBI [42]
Ratio of positive to negative

samples
– 1:3 – 1: 1

Sliding window size – 16 amino acids – 10 amino acids
Computing time for proc-

essing a sequence
Within a second 5 min Within a second Within a second

Whether structural infor-
mation considered

Secondary structure pre-
diction, SA and PEST se-
quence occurrence
considered

Secondary structure, SA
and natively disordered
regions considered

Secondary or tertiary
structure of the sub-
strate considered

Not considered

Types of caspases
applicable

Specific training sets cor-
responding to caspases
1, 3, 6, 7, 8

Mixed training sets for all
caspases

Mixed training sets for
all caspases

Mixed training sets for all
caspases

Tools CAT3 PCSS Blast PROSPER
Species Multispecies Multispecies N.A. Multi-Species
Web server availability No web server http://salilab.org/peptide N.A. https://prosper.erc.mon

ash.edu.au/webserver.
html

Algorithm PSSM matrix SVM with radial basis
function (RBF) kernel

N.A. BEAA trained and tested
SVR model with RBF
kernel combined with
MDGI feature selection

Option of batch prediction Yes Yes N.A. No
Adjustment of prediction

thresholds
Yes Yes N.A. No

Standalone software
availability

Yes No N.A. No

Language implemented Perl – N.A. Perl
Dataset origin Data from PubMed [43] Multiple resources N.A. Data from MEROPS, CutDB

and PMAP [44]
Ratio of positive to negative

samples
– – N.A. 1:3

Sliding window size – – N.A. Six amino acids
Computing time for proc-

essing a sequence
Within a second A few minutes N.A. A few minutes

Whether Structure informa-
tion considered

Not considered Regular secondary structure
considered

N.A. Secondary structure, SA
and native disorder
considered

Types of caspases
applicable

Training sets correspond-
ing to caspases-3

Separated training sets for
caspases and granzyme B

N.A. Mixed training sets for all
caspases

Tools GraBCas CasPredictor CASVM Cascleave 2.0
Species Multispecies Multispecies Multispecies Multispecies
Web server availability http://wwwalt.med-rz.uni

kliniksaarland.de/med_
fak/humangenetik/soft
ware/index.html (Not
available)

http://icb.usp.br/ �farmaco/
Jose/CaSpredictorfiles
(Not available)

http://www.casbase.org/
casvm/index.html
(not available)

http://www.structbioin
for.org/cascleave2/ (not
available)

Continued
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cleavage sites to the known sites used. SitePrediction also
makes use of extra features, including PEST sequences, SA and
SS, which may also provide contribution to the prediction per-
formance [51]. CAT3 is a PSSM matrix-based method developed
in 2012 [56]. CAT3 exploits positional specific frequency matri-
ces from the multiple sequence alignments of the relevant set
of peptides. Each matrix consists of 14 rows, representing posi-
tions P9. . .P1P1’. . .P5’, where a D amino acid is at the position P1.
The 20 columns of the matrix represent the frequencies of each
amino acid. CAT3 also uses two weighting systems to correct
the probability of overrepresented and underrepresented amino
acids in the frequency matrices to establish the scoring matri-
ces: Calculating log odd ratio and subtraction of negative control
background, which also contributes to the accuracy of CAT3.
Blast is an aligning tool ubiquitously used in proteomics.
Assuming that target substrates share a similar sequence, it can
be used as a rudimentary prediction tool [52]. For our assess-
ment, the cleavage score of a query test protein corresponds to
the highest Blast bit score (a normalized aligned value, inde-
pendent from sequence length and database size) with the
known substrates in the training set. PROSPERous [66] is a re-
cently developed tool, which uses a combination of various
scoring functions as the input, including nearest neighbor simi-
larity (NNS), amino acid frequency (AAF), WebLogo-based
Sequence conservation (WLS), BLOSUM62 Substitution Index
(BSI) as well as pairs of these function, namely, AAFþNNS,
WLSþBSI and NNSþWLS. More recently, an advanced version

of PROSPER, termed iProt-Sub [67], was developed to provide
optimized cleavage site prediction models with a larger cover-
age of more proteases (up to 4 major protease families and 38
different proteases). iProt-Sub uses 11 different sequence
encoding schemes in combination with a two-step feature se-
lection procedure to remove the redundant features and im-
prove the accuracy [67].

Most of the recently developed tools for predicting caspase/
granzyme B cleavage sites are based on the support vector
machine (SVM) algorithm. These tools include CASVM, Pripper,
PCSS, Cascleave, Cascleave 2.0, PROSPER and iProt-Sub.

SVMs are classifiers that based on the maximization of the
margin between classes. The data are considered as n-dimension-
al vectors, and the algorithm finds a hyperplane that separates
vectors in different classes with a maximal margin. A kernel func-
tion can be used to map vectors of the original feature space to a
higher-dimensional space in which the data can always be linear-
ly separated. Note that the selection of training data greatly
affects the performance of an SVM classifier; therefore, we will
provide a detailed description of the way to select training data
for each tool. CASVM is trained with sequences from a data set
containing unique caspase cleavage sites, obtained from experi-
mentally verified caspase substrates and an equal number of
‘non-cleavage’ sites, i.e. random tetrapeptide sequences extracted
elsewhere on the same substrate. The tetrapeptide sequences are
selected with the upstream 10 residues up to P14 position and
downstream 10 residues up to P10’ position (i.e. the classifier is

Table 1. (continued)

Tools SitePrediction Cascleave PoPS Pripper

Algorithm Scoring matrices BLOSUM 62 Substitution
Matrix-based CCSearcher
algorithm

SVM Maximum relevance,
minimum redundancy
and forward feature
selection techniques
trained SVM model

Option of batch prediction – – – –
Adjustment of prediction

thresholds
– – – –

Standalone software
availability

– – – –

Language implemented Java Visual Basic Perl Java
Dataset origin – Various databases, includ-

ing SwissProt [45],
InterDom [46] and Pfam
[47]

Various resources MEROPS

Ratio of positive to negative
samples

– – – 1:1

Sliding window size – – Three scanning window
sizes are available:
P4P1, P4P2’ and
P14P10’

–

Computing time for proc-
essing a sequence

– – – –

Whether Structure informa-
tion considered

Not considered Not considered Not considered Secondary structure, SA
and natively disordered
regions considered

Types of caspases
applicable

Specific training sets
corresponding to
caspases-3 and
granzyme B

Mixed training sets for all
caspases

Mixed training sets for
all caspases

Mixed training sets for all
caspases

Note: These features include applicable species, whether web server exists, algorithm used, whether the batch prediction option is available, whether threshold is ad-

justable, whether stand-alone software exists, programming language used to implement the program, the origins of training data set, ratio of positive and negative

samples, sliding window size (if exists), computing time to process one sequence and whether SA and SS is considered. The ‘-’ option means not available or not men-

tioned in the original paper.
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trained on a local window size of P14-P10’ sites) from the sub-
strates. The SVM model of Pripper is trained on a balanced data
set containing positive cleavage site samples gathered from 358
substrate proteins, and negative sequences generated from sub-
strate sequences containing positive ones, specifically by select-
ing Asp (D) positions that have not been detected as caspase
cleavage sites. Feature vectors consist of a fixed number of amino
acids, encoded in a numerical form, incorporating both sides of
the cleavage site. Each amino acid in the sequence is represented
as an array of length 20 representing the 20 different amino acids.
Only one element is set to 1, identifying the amino acid in ques-
tion, while the rest is set to 0. PCSS model is based on single-
cleavage sequences, each with eight features representing oligo-
peptides. To each residue, a feature number by the formula
(n*20þ i) is assigned, where n represents the zero-based position
in the peptide sequence of the residue, and i represents the pos-
ition of the residue in line with a zero-based alphabetical ordering
of all residues. In addition, PCSS also considers SS features, native
disorder feature, SA feature calculated by DSSP [68], Disopred [69]
and PSI-PRED [70], respectively. Cascleave uses a feature extrac-
tion method named binary encoding amino acid sequence pro-
files (BEAA) and its extension to include relevant structural
features. In BEAA of which is encoded, substrate sequences are
transformed into n-dimensional vectors using an orthonormal
encoding scheme, in which each amino acid is represented by a
20-dimensional binary vector composed of either 0 or 1 elements.
Similarly to PCSS, the structural information predicted by state-
of-the-art algorithms, specifically, SSs, SA and natively unstruc-
tured regions are incorporated into the model to improve the per-
formance. Cascleave also uses a novel approach named Bi-profile
Bayesian signature, which is reported to significantly improve
performance in methylation sites prediction [71]. Similarly to
Cascleave, Cascleave 2.0 considers various structural information,
including (but not limited to) SSs, solvent accessibility, disordered
region and amino acid index (AAindex [72]). AAindex consists of a
list of amino acid indices representing various physicochemical
and biochemical properties. Cascleave 2.0 also involves an over-
and underrepresented feature enrichment analysis. The rationale
is that for each protein substrate, the set of various heteroge-
neous features generated above is highly dimensional, heteroge-
neous, noisy and redundant, and thus removing redundant
features and using more relevant features might be useful for
improving the predictive performance. Inclusion of noisy and re-
dundant leads to a time-consuming practice to train classifiers,
thereby resulting in possible biased model training and predic-
tion. Cascleave 2.0 automatically estimates and eliminates noisy
features. PROSPER, like Cascleave, is an SVM-based method; it can
be applied to a broader range of proteases. Compared with
Cascleave, PROSPER uses a feature selection method called mean
decrease Gini index (MDGI) within the random forest algorithm,
which can generate a score quantifying the importance and con-
tribution of the individual element of a feature vector for correctly
classifying a residue into a cleavage site or noncleavage site. The
MGDI feature selection step has proven useful for improving the
prediction accuracy [73] and is particularly useful for large train-
ing data sets.

Performance evaluation

To assess the performance of the compared methods, several
cross-validation approaches are usually used, including N-fold,
leave-one-out and leave-family-out. In addition, we look into
prediction details by performing a case study. Cross-validation
is typically exploited to avoid overfitting the training data set.

Cross-validation consists in splitting the data set into N folds
and combine N�1 folds as the training data set, while the left
data set is regarded as test data set. Leave-one-out and leave-
family-out are specific cases of N-fold cross-validation. Given a
data set with D data samples, leave-one-out cross-validation
(LOOCV) combines D�1 samples to form the training data set
and leaves the remaining one sample as the test sample. By it-
eratively selecting test sample, each sample in the data set is
used as a test sample once. On the other hand, in the leave-
family- out cross-validation, if the data set is collected from
different species/families, each subset from the same species/
family is iteratively selected and regarded as test data sets once,
while other subsets will be combined to form the training data
set. As each sample/subset is iteratively selected as the test set,
we need to perform the prediction many times with different
combination of training datasets. We then average these results
(usually accuracy) and acquire the final performance for cross-
validation tests. Among the evaluated tools, Cascleave,
Cascleave 2.0, PROSPER use the 5-fold cross-validation, while
Cascleave 2.0 uses the LOOCV to assess their performance.
Performing an independent test is another way to evaluate the
performance of bioinformatics tools. In particular, it involves
applying the algorithm to an independent test data set with a
different data distribution, e.g. data obtained from other experi-
ments. Finally, case study, or experimental validation of predic-
tions, is another effective way to test the performance of a
prediction tool in real-world applications, providing useful in-
formation of the scalability and usefulness of a tool on un-
known data. Here, we perform both independent test and case
study to assess and compare different methods.

Experimental validation

Recombinant target substrate proteins are incubated with active
caspase-3 (Genetex) or active caspase-8 (Biovision) at 37

�
C for 2 h.

After incubation, proteins are separated on 10% sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels and
transferred to nitrocellulose membrane. Transferred membrane
is blocked with 4% blockace at 4

�
C for 2 h and incubated with anti-

myc antibody (9E10) for 1:2000 in 0.2% blockace in tris-buffered
saline (TBS) containing 0.02% tween 80 (TTBS). After incubation,
membrane is incubated with peroxidase conjugated anti-mouse
Ig for 1:5000 in 0.2% blockace in TBS-Tween (TTBS) for 1 h. Bound
antibody is visualized by supersignal west pico (PIERCE) according
to manufacturer’s instruction and LAS4000 mini (Fuji).

Predictor utility

An important consideration for developing practically useful
predictors in the biological research community is to provide a
user-friendly Web interface or a local software tool, to enable
nonbioinformaticians to apply the model directly to their own
data. The usefulness of bioinformatics tools depends on three
main factors, i.e. the Web interface, the output and interpret-
ation of prediction results and the availability of local execut-
able software. A user-friendly interface can provide appropriate
guidance and instructions for users to avoid making potential
mistakes when exploiting the Web server. This is particularly
important when parameter settings are required before con-
ducting prediction tasks. Among the predictors we tested,
SitePrediction, Cascleave, PCSS and Blast have implemented
Web servers. All these tools require to provide parameters
regarding penalty, prediction algorithm, error handling as well
as e-mail address where the prediction results will be sent.

1674 | Bao et al.

Deleted Text: one
Deleted Text: zero
Deleted Text: single 
Deleted Text: secondary structure
Deleted Text: solvent accessibility
Deleted Text: utilizes 
Deleted Text: zero 
Deleted Text: one 
Deleted Text: secondary structure
Deleted Text: solvent accessibility
Deleted Text: employs 
Deleted Text: secondary structure
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: are 
Deleted Text: employing 
Deleted Text: to 
Deleted Text: utilizes 
Deleted Text: -
Deleted Text: ,
Deleted Text: utilized
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: utilize 
Deleted Text: utilizes 
Deleted Text: leave-one-out <?A3B2 thyc=10?>cross-validation<?thyc?> (
Deleted Text: )
Deleted Text: V
Deleted Text: <sup>&hx2218;</sup>
Deleted Text: nitrocellurose 
Deleted Text: <sup>&hx2218;</sup>
Deleted Text:  
Deleted Text: , 
Deleted Text:  
Deleted Text: , 
Deleted Text: antidoby 
Deleted Text: acoording
Deleted Text: -


Specifically, SitePrediction requires an input sequence to be
submitted in the FASTA format, and the type of protease can be
optionally selected, and multiple substrate protein sequences
can be predicted at the same time. Cascleave requires users to
input substrate sequences that need to be predicted, as well as
algorithms used for performing the prediction. In addition, the
user also needs to specify the e-mail address to acquire the pre-
diction results. As Cascleave does not support batch submis-
sion, users can submit only one protein sequence to Cascleave
each time. PCSS requires users to specify the training data as
well as classifying data to perform the prediction, and also lists
some pre-generated models for executing a quick prediction.

On the other hand, stand-alone software allows users to per-
form predictions for a large amount of sequences on local
machines, offering an advantage over Web servers. However, there
exists also a burden of installing (and perhaps compiling) the soft-
ware locally, along with the dependent libraries. In addition, if the
input sequence data are too large, there exists a possibility that the
local resources may not be sufficient enough to run the program
properly. Among the predictors we tested, Pripper and CAT3 are
stand-alone software tools written using Java, whereas PoPS pro-
vides a JNLP file for downloading and local usage.

Result
Independent test and performance evaluation

In this section, to assess the performance of the reviewed tools
in an objective and fair manner, we constructed independent
test sets of caspase-1 and 3 substrates for H. sapiens. To evaluate
the performance of these tools on other species, we also con-
structed independent test sets of caspase-1 and 3 substrates for
Mus musculus and Escherichia coli.

Note that as some of the tools are not accessible (i.e. neither
implemented as Web servers nor downloadable), we were
forced to limit our assessment to the available ones: PoPS,
SitePrediction, Cascleave, Pripper, PCSS, CAT3 and Blast.

Test data set construction

For each of the three species, we extracted all the fasta sequen-
ces from MEROPS of release 12.0 [59]. Training data sets for each

tool and independent test data sets should have a minimum
overlap, because a large overlap will likely result in an overesti-
mation of the performance and biased prediction outcome. We
therefore eliminated sequences that were overlapped in the
training data sets of prediction tools, including Cascleave and
Cascleave 2.0 from the independent test data sets. Both of these
tools are recently developed, and thus, it is understandable that
their training data set covered most of the extracted sequences
(especially when compared with training datasets of tools
developed in the early years). Our analysis showed that more
than half of the extracted sequences were discarded for this rea-
son, leaving 66 caspase-1 substrate sequences and 121 caspase-
3 substrate sequences, respectively, in total, for all three
species. For the negative data sets, we randomly selected pro-
teins excluding those identified as substrates of caspase-1 or
3 of each species. To avoid biased performance evaluation, the
size of negative data sets was set as the same as of positive data
sets. These constructed independent test data sets are named
as Cas1-all and Cas3-all, respectively.

We further divided these data sets according to the corre-
sponding species these substrates belong to, resulting in an-
other six data sets corresponding to caspase-1 and caspase-3
substrates of the three species. Each of these sets is named as
Cas1-homo, Cas3-homo, Cas1-mus, Cas3-mus, Cas1-coli and
Cas3-coli, respectively. We notice that for caspase-1 the sizes of
cas1-mus and cas1-coli were too small to be used for an effect-
ive receiver operating characteristic (ROC) evaluation, and thus,
we skipped these two data sets when drawing ROC curves. We
also notice that CAT3 was designed only for predicting caspase-
3 substrates, and thus, we only performed the evaluation of
CAT3 on the sets that composed of caspase 1 substrates. The
detailed description of the test sets used is shown in Table 2.

Performance comparison

Among the reviewed predictors, as PoPS only has one parameter
(threshold), we set the threshold as 0 to obtain more available
results (as a lower threshold leads to a larger number of pre-
dicted potential cleavage sites [50]). For Cascleave, several pre-
diction models (or the combination of models) such as BEAA,
BPBAA and BPBDISO were tested. As the combination of BEAA,
BPBAA and BPBDISO achieved the best in terms of the ROC

Table 2. Detailed description of the eight test data sets used in this study

Test set
name

Positive or
negative

Test set description

Cas1-all Positive set Combination of caspase-1 substrates from H. sapiens, M. musculus and Escherichia coli extracted from MEROPS
Negative set Combination of protein from H. sapiens, M. musculus and E. coli excluding caspase-1 substrates.

Cas3-all Positive set Combination of caspase-3 substrates from H. sapiens, M. musculus and E. coli extracted from MEROPS
Negative set Combination of protein from H. sapiens, M. musculus and E. coli excluding caspase-3 substrates

Cas1-homo Positive set Caspase-1 substrates from H. sapiens extracted from MEROPS
Negative set Protein excluding caspase-1 substrates from H. sapiens

Cas3-homo Positive set Caspase-3 substrates from H. sapiens extracted from MEROPS
Negative set Protein excluding caspase-3 substrates from H. sapiens

Cas1-mus Positive set Caspase-1 substrates from M. musculus extracted from MEROPS.
Negative set Protein excluding caspase-1 substrates from M. musculus.

Cas3-mus Positive set Caspase-3 substrates from M. musculus extracted from MEROPS
Negative set Protein excluding caspase-3 substrates from M. musculus

Cas1-coli Positive set Caspase-1 substrates from E. coli extracted from MEROPS
Negative set Protein excluding caspase-1 substrates from E. coli

Cas3-coli Positive set Caspase-3 substrates from E. coli extracted from MEROPS
Negative set Protein excluding caspase-3 substrates from E. coli
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curve, we chose this option for evaluation. For SitePrediction,
different predefined training databases, corresponding to vari-
ous species, exist. It is therefore possible to choose a particular
database for each test set. For caspase-1 substrates prediction,
we chose ‘caspase-1 for all species’ training database, and for
caspase-3 substrates prediction, we chose the ‘caspase 3 for all
species’ training database to perform the evaluation. For
Pripper, as vote option gets the highest performance on the ROC
curve testing, we chose the ‘vote’ option and cut option as ‘Full
cut’. For PCSS, we chose the caspase option in the pre-generated
model and selected the training iteration as 100. For Blast, we
used the default parameters to perform the prediction. Then,
we performed the prediction on each of the constructed inde-
pendent test sets described in the test data set construction sec-
tion, and for each set, we evaluated the performance using area
under the curve (AUC) values.

Figures 1 and 2 show the ROC curves of different tools
assessed using the Cas1-all and Cas3-all test data sets, respect-
ively. Cascleave, PoPS and Pripper outperformed other tools and
achieved the best AUC values on the Cas1-all set (with an AUC
value of 0.796 for Cascleave, 0.739 for PoPS and 0.655 for Pripper,
respectively), while tools such as Blast, which depends on the se-
quence similarity, performed poorly in ROC performance. While
on the Cas3-all set Cascleave, SitePrediction and CAT3 achieved
the best AUC values (with an AUC value of 0.693 for Cascleave,
0.711 for CAT3 and 0.754 for SitePrediction, respectively).

Figure 3 shows the ROC curves of different tools on the Cas1-
homo set. PoPS, Cascleave and Pripper achieved the highest
AUC values (PoPS with AUC value of 0.744, Cascleave with AUC
value of 0.771 and Pripper with AUC value of 0.663, respectively).
Figure 4 shows the ROC curves for the prediction result of the
Cas3-homo set, for H. sapiens. SitePrediction, CAT3 and
Cascleave achieved the best AUC values (SitePrediction with
AUC value of 0.787, CAT3 with AUC value of 0.703 and Cascleave
with AUC value of 0.745, respectively).

Figure 5 shows the ROC curves on the Cas3mus set. The ROC
curves show that for the Cas3-mus set, SitePrediction, PoPS and
Cascleave achieved the best performance in terms of AUC value,
each with AUC value of 0.760, 0.712 and 0.729.

Figure 6 shows the ROC curves on the Cas3coli set. We can
see from the ROC curves that SitePrediction, PoPS and CAT3
achieved the best AUC value (SitePrediction with AUC value of
0.702, PoPS with AUC value of 0.627 and CAT3 with AUC value of
0.638, respectively).

Combining the tool evaluation results in Table 1 and per-
formance benchmarking results, we can draw the following
conclusions:

SitePrediction achieves a better performance for general pre-
diction (i.e. it provides a better performance for predicting caspase
substrates from species excluding H. sapiens). This is perhaps
because of the separation of the training sets provided by
SitePrediction. The performance results in turn show that it is bet-
ter to construct independent training sets for each species than to
mix all sequences into a single training set. Considering the faster
computing speed of SitePrediction, users are recommended to
use SitePrecition to predict species excluding H. sapiens.

While SitePrediction possesses such a merit, it is also flawed
when it has to address predictions on H. sapiens. From Table 3,
we can see that while SitePrediction achieves the highest per-
formance for caspase-3 substrate prediction, it performs poorly
for caspase-1 substrate prediction. This indicates that it is gen-
erally better to use Cascleave to achieve the best performance
on caspase-1 substrate prediction.

Although Cascleave provides the best performance on
caspase-1 substrate prediction and an acceptable performance
on caspase-3 prediction, the computational cost for Cascleave is
a little higher compared with other tools. Moreover, in addition
to the requirement of submitting fasta files, Cascleave only
allows the submission of one sequence to the server each time,
thereby limiting the batch prediction for Cascleave.

Figure 1. ROC curves of Blast, Cascleave, PCSS, PoPS, Pripper and SitePrediction on the Cas1-all set.
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If users want to perform a caspase-specific (i.e. the types of
the caspase substrate is limited) substrate prediction offline,
they are advised to use CAT3 for caspase-3 substrate prediction
and Pripper for caspase-1 substrate prediction, as these two
tools come with an implemented local package, while the other
tools with better performance such as Cascleave and
SitePrediction can only be used online.

We also notice that Blast performs poorly for almost all
the training set, and this is perhaps because that the Blast
predictions are not aiming at identifying specific cleavage
sites, but in general work by identifying homologous protein
sequences as a whole that are similar to known cleavable
sequences. The result of Blast is specifically generated
according to the following steps: for a given caspase, a

Figure 2. ROC curves of Blast, Cascleave, PCSS, PoPS, Pripper, CAT3 and SitePrediction on the Cas3-all set.

Figure 3. ROC curves of Blast, Cascleave, PCSS, PoPS, Pripper and SitePrediction on the Cas1-homo set.
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positive set and a test protein, the test protein is aligned
using Blast against all the proteins in the positive set, and
then the best E-value is taken as the Blast prediction score,
based on which Blast can predict the test protein to be a tar-
get substrate for the given caspase according to the highest
similarity to the known targets.

On the other hand, the Blast calculation steps also indicate
that Blast may perform better than specialized algorithms in
certain cases (Figure 6); however, in terms of false-positive
rates, it cannot identify the cleavage site. Furthermore, even if
not designed for identifying small motifs, Blast can find an over-
all sequence similarity, which might result from a common

Figure 4. ROC curves of Blast, Cascleave, PCSS, PoPS, Pripper, CAT3 and SitePrediction on the Cas3-homo set.

Figure 5. ROC curves of Blast, Cascleave, PCSS, PoPS, Pripper, CAT3, SitePrediction on the Cas3-mus set.
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ancestry, and therefore share a common function, such as the
whole protein being a cleavage target for caspases.

The best AUC values for each prediction tool on each test set
are summarized in Table 3. In summary, performance compari-
son analysis on the independent test indicates that
SitePrediction and Cascleave are the two best-performing tools
and generally provide an overall best performance among all
the tools compared.

Although the AUC value shows that the state-of-the-art
tools are still limited in terms of their predictive performance,
there is room to further improve the performance by including
newly discovered caspase substrates into training sets, inte-
grating new informative features and developing novel
models.

Case study: Caspase-3 and 8 substrate cleavage prediction

Selection of potential caspase substrates

To further evaluate each tool described in this research, we
selected a number of potential substrates with high scores pre-
dicted by most tools in the human proteome, and experimental-
ly validated these potential substrates for caspase-3 and
caspase-8 by performing caspase assay experiments. In the in-
dependent test step, the AUC values of caspase-1 and caspase-3
for H. sapiens showed that among all the tools tested Cascleave,
PoPS and SitePrediction achieved better performances than
other tools (Table 3). Among these three tools, Cascleave and
SitePrediction achieved the best AUC values. We further notice
that while on the Cas3-homo set SitePrediction achieved the
best AUC value but performed poorly on the Cas1-homo set
(even not included in the top three tools), suggesting that
SitePrediction might be more suitable for predicting caspase-3
substrates.

We first made a consensus-based decision for caspase pre-
diction using the predictors that are capable of discriminating
caspase substrates from non-caspase substrate based on the re-
sult described above. The predictors used for this purpose were
SitePrediction, Cascleave and PoPS. During the prediction, we
notice that it took a longer time for Cascleave to complete the
prediction process for a single protein sequence; thus, it is rea-
sonable to use SitePrediction and PoPS first to perform a rough
discrimination of the sequences in the proteome of H. sapiens
and apply Cascleave to predict specific cleavage sites within the
proteins selected out. The detailed procedures can be found in
Figure 7.

Considering the fact that Cascleave performed best in dis-
criminating caspase substrates from non-caspase substrates,
we sorted the final predicted caspase substrates based on pre-
dicted cleavage probability the score of Cascleave, and then

Figure 6. ROC curves of Blast, Cascleave, PCSS, PoPS, Pripper, CAT3, SitePrediction on the Cas3-coli set.

Table 3. Summary of the top three tools that achieved the highest
performance of AUC values for each set evaluated

Data set Top three tools
of the highest

performance of
AUC values

Cas1-all Cascleave (0.796) PoPS (0.739) Pripper (0.655)
Cas3-all SitePrediction (0.754) CAT3 (0.711) Cascleave (0.693)
Cas1-homo Cascleave (0.771) PoPS (0.744) Pripper (0.663)
Cas3-homo SitePrediction (0.787) Cascleave (0.745) CAT3 (0.703)
Cas3-mus SitePrediction (0.760) Cascleave (0.729) PoPS (0.712)

Cas3-coli SitePrediction (0.702) CAT3 (0.638) PoPS (0.627)

Note: The data sets used include are Cas1-all, Cas3-all, Cas1-homo, Cas3-homo,

Cas3-mus and Cas3-coli.
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performed the caspase cleavage assay experiments to validate
these potential caspase substrates.

Caspase cleavage assay

The caspase cleavage assay is conducted to experimentally valid-
ate the potential substrates selected out in the previous section.

Figure 8 illustrates the caspase substrate cleavage results
based on western blotting. Recombinant proteins encoding
GST-myc-GFP with IETD linker between GST and GFP (Right) or
without linker (Left) were digested by active caspase-8 (þ) or
control (�). After digestion, proteins were analyzed by western
blotting using anti-myc. Recombinant GST-mycGFP, 75 kDa
band, was detected in both conditions with and without
caspase-8 treatment. In the recombinant GST-IETD-mycGFP
protein case, a 75 kDa band was detected in caspase-8 nontreat-
ment condition, and in contrast, a 50 kDa protein band was
detected in caspase-8 treatment recombinant GSTIETD-
mycGFP, indicating that IETD linker was cleaved by caspase-8.

Caspase assay result discussion

Caspase cleavage assay results are summarized in Tables 4
and 5. As we can see, the experimental results clearly show that

the majority of predicted potential substrates were cleaved.
These results indicate that the tools tested in the evaluation
step demonstrate an excellent performance for predicting both
caspase-3 and 8 target substrates. In addition, there also exist a

Figure 7. A flowchart of the procedures for caspase-3 and caspase-8 substrate cleavage site prediction of the human proteome.

Figure 8. Western blotting of caspase assay analysis. Recombinant GST-mycGFP,

75 kDa band, was detected in both conditions with and without caspase-8 pro-

tein treatment. In the recombinant GST-IETD-mycGFP protein case, a 75 kDa

band was detected in caspase-8 nontreatment condition, while in contrast a

50 kDa protein band was detected in caspase-8 treatment recombinant

GSTIETD-mycGFP, indicating that the IETD linker was cleaved by caspase-8.
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number of cleavage sites, which cannot be identified by most of
the tools, highlighting that it remains a challenging task to de-
velop more reliable and accurate caspase cleavage site predic-
tion methods. See Supplemental Information for details of
protein expression.

From the result, we can also see that some predicted sub-
strates are both cleaved by caspases in the Group II and Group
III, such as DETD—SGAG (both cleaved by caspase-3 and
caspase-6) and DDTD—GLTP (both cleaved by caspase-2 and
caspase-6). This is the reason why many substrates cleaved by

Table 4. The caspase cleavage assay results of predicted potential caspase-3 substrates by PoPS, SitePrediction and cascleave

Predicted caspase-3
substrate cleavage site

PoPS score SitePrediction
score

Cascleave
score

Experimental
result

Corresponding annotations
in MEROPS

DVVD—GADT 21.32 1560.39 1.578 � –
EEVD—GSSP 20.08 1515.922 1.461 � –
EEVD—GSQG 20.08 1515.922 1.461 � C14 homologue
DETD—SGAG 21.77 3400.88 1.345 � C14.003: caspase-3, C14.005: caspase-6
EEVD—GAPR 20.08 1888.277 1.307 � C14.005: caspase-6
DSVD—GSLT 21.26 1909.074 1.21 � –
DDTD—GLTP 17.79 791.345 1.157 � C14.005: caspase-6, C14.006: caspase-2
AEVD—GVDE 19.93 295.25 1.061 � C14 homologue
DDPD—SAYL 18.08 680.822 1.058 � –
SEVD—GNDS 20.05 449.294 1.039 � C14.004: caspase-7, C14.006: caspase-2
AEVD—GATP 19.94 623.306 1.034 � –
EEPD—GGFR 16.97 414.973 0.969 � –
TEPD—SPSP Non-cleavage Non-cleavage 0.961 � –
SEID—GLKG 18.7 220.873 0.911 � –
EEPD—SANS 17.14 761.635 0.82 � C14.005: caspase-6, C14.006: caspase-2, C14 homologue
NEVD—GSNE 20.01 223.501 0.766 � –
EETD—GLDP 16.86 886.89 0.747 � C14.001: caspase-1, C14.005: caspase-6, C14.006:

caspase-2, C14 homologue
EETD—GLHE 16.86 886.89 0.747 � –
GEVD—GKAI 19.85 271.729 0.691 � –
TEMD—SETL Non-cleavage Non-cleavage 0.632 � –
LESD—SESL Non-cleavage Non-cleavage 0.585 � –

Note: ‘�’ indicates the sequence is cleaved in the cleavage assay experiment, while ‘�’ indicates the sequence is not cleaved in the cleavage assay experiment.

Table 5. The caspase cleavage assay results of predicted potential caspase-8 substrates by PoPS, SitePrediction and Cascleave

Predicted caspase-8
substrate cleavage site

PoPS
score

SitePrediction
score

Cascleave
score

Experimental
result

Corresponding annotations
in MEROPS

DVVD—GADT 17.9 206.97 1.578 � –
EEVD—GSSP 21.24 771.98 1.461 � –
EEVD—GSQG 21.24 771.98 1.461 � C14 homologue
DETD—SGAG 17.77 3194.444 1.345 � C14.003: caspase-3, C14.005: caspase-6
EEVD—GAPR 21.24 1621.17 1.307 � C14.005: caspase-6
DEVD—GAND 22.46 3371.648 1.261 � –
DETD—SPTV 21.14 4921.875 1.236 � C14.005: caspase-6, C14.006: caspase-2
DSVD—GSLT 17.59 525.68 1.21 � C14 homologue
AEVD—GVDE 22.46 1010.936 1.061 � –
SEVD—GNDS Non-cleavage Non-cleavage 1.039 � C14.004: caspase-7, C14.006: caspase-2
AEVD—GATP 21.21 1268.26 1.034 � –
TETD—SVGT 20.01 854.701 0.999 � –
EEPD—GGFR Non-cleavage Non-cleavage 0.969 � –
TEPD—SPSP 17.38 92.307 0.961 � –
LEMD—SVLK 19.27 412.088 0.935 � C14.005: caspase-6, C14.006: caspase-2, C14 homologue
EEPD—SANS Non-cleavage Non-cleavage 0.82 � –
EETD—GLDP 22.17 559.69 0.747 � C14.001: caspase-1, C14.005: caspase-6, C14.006:

caspase-2, C14 homologue
EETD—GLHE 22.17 559.69 0.747 � –
TEED—SVSV 18.61 275.71 0.714 � –
TEMD—SETL 19.27 167.993 0.632 � –
LESD—SESL 18.58 526.556 0.585 � –

Note: ‘�’ indicates the sequence is cleaved in the cleavage assay experiment while ‘�’ indicates the sequence is not cleaved in the cleavage assay experiment.
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caspase-3 are also cleaved by caspase-8. The result also indi-
cates that there is a tendency that PoPS, SitePrediction and
Cascleave prefer to predict substrates cleaved by caspases from
the Groups II and III rather than Group I.

Conclusion

Owing to the functional significance of caspase substrate identi-
fication problem, computational biologists are motivated to de-
velop more accurate and reliable predictors for caspase
substrate prediction. Aiming at providing a comprehensive
review of the status quo of caspase substrate predictors to non-
bioinformaticians, this article describes and compares a num-
ber of widely used caspase substrate predictors in terms of their
input/output, model construction and development, model per-
formance evaluation as well as predictor utility. Benchmarking
analysis on the independent test data sets revealed that
Cascleave and SitePrediction achieve the overall highest AUC
value when used for predicting caspase substrates in different
species, especially for H. sapiens. In particular, SitePrediction
achieved the highest AUC value when used for predicting cas-
pase substrates for species other than H. sapiens. Detailed case
studies of 21 caspase-3 substrate sequences and 21 caspase-8
substrate sequences demonstrate that while Cascleave, PoPS
and SitePrediction achieved acceptable performance, there still
exist some sequences that most currently available tools failed
to predict. We conclude that caspase substrate prediction
remains a challenging task, and we expect that more powerful
next-generation algorithms with improved prediction perform-
ance will emerge with the increasing availability of caspase sub-
strate cleavage data that can be used as high-quality training
data for constructing the prediction models.

Key Points

• We tested and evaluated 12 state-of-the-art tools for
caspase cleavage site prediction according to their in-
put/output, model construction strategies, predictive
performance and predictor utility.

• We constructed a series of testing data sets and per-
formed independent data set testing.

• We performed a case study and experimentally
validated the cleavage prediction results by conducting
caspase assay to verify whether sequences with high
predicted scores can be cleaved in vitro.

Supplementary Data

Supplementary data are available online at https://academ
ic.oup.com/bib.
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