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Abstract: In this study, in order to solve the difficulty of the inversion of soil arsenic (As) content
using laboratory and field reflectance spectroscopy, we examined the transferability of the prediction
method. Sixty-three soil samples from the Daye city area of the Jianghan Plain region of China were
taken and studied in this research. The characteristic wavelengths of soil As content were then
extracted from the full bands based on iteratively retaining informative variables (IRIV) coupled
with Spearman’s rank correlation analysis (SCA). Firstly, the IRIV algorithm was used to roughly
select the original spectral data. Gaussian filtering (GF), first derivative (FD) filtering, and gaussian
filtering again (GFA) pretreatments were then used to improve the correlation between the spectra
and soil As content. A subset with absolute correlation values greater than 0.6 was then retained as
the optimal subset after each pretreatment. Finally, partial least squares regression (PLSR), Bayesian
ridge regression (BRR), ridge regression (RR), kernel ridge regression (KRR), support vector machine
regression (SVMR), eXtreme gradient boosting (XGBoost) regression, and random forest regression
(RFR) models were used to estimate the soil As values using the different characteristic variables.
The results showed that, compared with the traditional method based on IRIV, using the characteristic
bands selected by the IRIV-SCA method can effectively improve the prediction accuracy of the models.
For the laboratory spectra experiment stage, the six most representative characteristic bands were
selected. The performance of IRIV-SCA-SVMR was found to be the best, with the coefficient of
determination (R2), root-mean-square error (RMSE), and mean absolute error (MAE) in the validation
set being 0.97, 0.22, and 0.11, respectively. For the field spectra experiment stage, the 12 most
representative characteristic bands were selected. The performance of IRIV-SCA-XGBoost was found
to be the best, with the R2, RMSE, and MAE in the validation set being 0.83, 0.35, and 0.29, respectively.
The accuracy and stability of the inversion of soil As content are significantly improved by the use of
the proposed method, and the method could be used to provide accurate data for decision support
for the treatment and recovery of As pollution over a large area.

Keywords: soil arsenic content; hyperspectral remote sensing; characteristic bands; iteratively
retaining informative variables; random forest regression; eXtreme gradient boosting regression

1. Introduction

As a result of the increased use of heavy metals in industrial, agricultural, domestic, and technological
applications, human exposure to heavy metals has risen dramatically. Heavy metals are difficult to
degrade, easy to accumulate, and toxic. They can have an impact on crop growth, yield, and quality,
and can be absorbed into food, thereby entering the food chain and posing a threat to human health [1].
The traditional approach to the monitoring of heavy metals in soil is laboratory monitoring, with the
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aid of atomic absorption spectroscopy [2], atomic fluorescence spectrometry [3], spectrophotometry [4],
and other analytical methods based on optical instruments, which are time-consuming and costly on
a large-area application. Although these methods have a high precision, the common conventional
and laboratory-based techniques for determination are nonfield-portable, expensive, and need extra
time for sample extraction and analysis [5]. The development of hyperspectral analysis technology has
made it possible to use continuous, high-resolution spectral bands to predict the arsenic (As) content
in soil, and efficient and rapid detection can be achieved.

Laser-induced breakdown spectroscopy (LIBS) is a fast and convenient method of field detection [6].
However, there are strict requirements for the collection, storage, transportation, and determination
of samples, and any mistake in any one of the stages can cause errors in the measurement results.
Secondary pollution of the samples can also easily occur [7]. Because hyperspectral data have a
high resolution and multiple and continuous spectral bands, hyperspectral analysis technology can
realize large-scale and rapid determination of soil heavy metal content, which saves human, material,
and financial resources. This method avoids complicated sampling steps, and through the combination
of sampling and comparison, it can greatly improve the reliability of the measurement of heavy metals in
soil. At the same time, the development of remote sensing technology, especially hyperspectral remote
sensing technology, provides us with a new way to realize large-scale monitoring [8,9]. Real-time
on-line monitoring and the early warning of soil heavy metal pollution can effectively meet the
requirements of precision agriculture. Therefore, it is of great practical significance to study the use of
soil spectral analysis techniques, to quantitatively estimate the content of heavy metals in soil.

A number of researchers have achieved remarkable results using hyperspectral techniques
to study soil heavy metals. Gholizadeh et al. [10] demonstrated that the support vector machine
regression (SVMR) method for visible and near-infrared (Vis-NIR) spectra could be used directly for
an accurate assessment of potentially toxic elements (PTEs), including copper (Cu), manganese (Mn),
cadmium (Cd), zinc (Zn), iron (Fe), lead (Pb), and As concentrations. Moros et al. [11] combined
NIR and attenuated total reflectance (ATR) mid-infrared (MIR) spectra with a multivariate partial
least squares (MPLS) method, and simultaneously monitored 14 trace elements in the estuary of the
Nerbioi-Ibaizabal River.

Zhang et al. [12] studied the statistical properties of different heavy metal elements and their
correlation with different spectral transformation forms. The stepwise regression algorithm and the
best fitness function F were used as indices to select the optimal bands, and the partial least squares
regression (PLSR) method was used to construct the inversion model between the spectral reflectance
in the different transformation forms and the heavy metal content. Zheng et al. [13] used the PLSR
method to establish a model between the reflectance spectrum and the soil As content. Cross-validation
was then used to prove the feasibility of using the reflectance spectra to invert the soil As content.
Wang et al. [14] tested and analyzed the spectral curves in the range of 350 to 2500 nm, and established
a multiple regression relationship model between the different soil spectral variables and the Cu
content of the soil. Sun et al. [15] set the spectral bands associated with organic matter and clay
minerals as the characteristic bands, with genetic algorithm based partial least squares regression
(GA-PLSR) used to build the model, and the results of this study confirmed the huge potential of soil
reflectance spectroscopy in estimating Zn concentration in soil. However, at present, the models used
for regression in the literature are mostly linear models, and research combining machine learning
models such as XGBoost is rare. Most of the studies of As content inversion are based on laboratory
measurements, which cannot truly reflect the spectral response of soil in the field environment.

The purpose of this study was to explore the possibility of quantitatively detecting the As content
in soil by laboratory and field reflectance spectroscopy, in order to find an efficient and convenient
method. The specific objectives were to: (1) explore the characteristic bands of laboratory and field
reflectance spectroscopy in As prediction; (2) model and analyze the different soil spectra by two
characteristic band selection methods (iteratively retaining informative variables (IRIV) and IRIV
coupled with Spearman’s rank correlation analysis (IRIV-SCA) and seven modeling methods; and (3)
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compare the performance of linear (Partial least squares regression (PLSR), bayesian ridge regression
(BRR), ridge regression (RR)) and nonlinear ( kernel ridge regression (KRR), support vector machine
regression (SVMR), eXtreme gradient boosting (XGBoost) regression, and random forest regression
(RFR)) models for predicting As, attempting to achieve high feasibility and reliability.

2. Materials and Methods

2.1. Study Area

The city of Daye (114◦31′−115◦20′ E, 29◦40′−30◦15′ N) is located in the southeast of Hubei
province, China, on the south bank of the middle reaches of the Yangtze River. Daye features a
subtropical humid monsoon climate characterized by adequate sunlight, abundant rainfall, and mild
temperature, the annual average temperature is 16.9 ◦C, and the average annual precipitation is
1385.8 mm. The city area is mainly hilly, with an altitude of 120–200 m. The administrative area covers
1566.3 km2. The Daye area is rich in mineral resources, and features a number of copper, iron, coal,
and limestone mines [16], However, in recent years, the mining has greatly damaged the ecological
environment, and the farmland soil (the main soil types are cinnamon soil and brown soil) near the
mining area has been seriously polluted. Regarding field size (1 ha), the selected sample size had
sufficient coverage of the predictor space and it was a suitable indicator of the population in which the
models were applied [17]. The location of the study area and the locations of the sampling are shown
in Figure 1.
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Figure 1. The location of the study area and the locations of the sampling (the unmanned aerial vehicle
(UAV) image was taken by a DJI Matrice 600 Pro drone).

2.2. Research Methods

2.2.1. IRIV-SCA Characteristic Band Selection Algorithm

IRIV is a feature variable selection algorithm based on the binary matrix shuffling filter (BMSF) [18],
in which a partial least squares model is established based on each row of the matrix, and the effects
of different random variable combination models are evaluated using root-mean-squared error
cross-validation (RMSECV) [19,20]. The IRIV algorithm requires multiple iterations. The purpose
of each iteration is to retain the strongly informative variables and weakly informative variables,
eliminate the uninformative variables and interfering variables, and finally identify the best variable
set by backward elimination. The specific process is as follows:



Sensors 2019, 19, 3904 4 of 21

Step 1: The raw data of m samples of p variables are formed into a matrix A containing only the
numbers 0 and 1, where the number 1 represents a variable used for modeling, and the number 0
means that the variable was not used for the modeling. The RMSECV value obtained by five-fold
cross-validation was used as the evaluation standard, and the vector of m× 1 size was recorded
as RMSECV0. Substitute 1 in the ith column (i = 1, 2, . . . , p) of matrix A for 0, and 0 for 1 to
obtain matrix B. The partial least squares (PLS) model is also established in each row of matrix B,
and the vector of m× 1 size is recorded as RMSECVi.
Step 2: Define ϕ0 and ϕi to evaluate the importance of each variable as follows:

ϕ0k =

{
kthRMSECV0Aki = 1
kthRMSECViBki = 1

;ϕik =

{
kthRMSECV0Aki = 0
kthRMSECViBki = 0

(1)

where kth represents the kth line in the vector, and the kthRMSECV0 and kthRMSECVi represent
the values of the kth row in the vectors RMSECV0 and RMSECVi, respectively. The mean values
of ϕ0 and ϕi are denoted as Mi,in and Mi,out, respectively, and the two mean values are subtracted
to obtain DMEANi. If DMEANi < 0, it is a strongly informative variable or a weakly informative
variable; if DMEANi > 0, it is an uninformative variable or an interfering variable.

DMEANi = Mi,in −Mi,out (2)

P = 0.05 was defined as the threshold for the Mann–Whitney U test [19,21], where the p value,
denoted as pi, is computed by the Mann–Whitney U test with the distribution of ϕ0 and ϕi.
The smaller the pi value, the more significant the difference between the two distributions. Finally,
the variables were divided into the four categories (strongly informative variables, weakly
informative variables, uninformative variables, and interfering variables).
Step 3: Strongly informative variables and weakly informative variables are retained for each
iteration, and uninformative variables and interfering variables are eliminated, so that a new
subset of variables is generated. Return to step 1 for the next iteration until there are only strong
and weak informative variables left. The defined variable types are listed in Table 1.
Step 4: The backward elimination of the reserved variables is undertaken as follows:

(a) Denote t as the number of reserved variables.
(b) For all the reserved variables, obtain the RMSECV value with five-fold cross-validation

using PLS, which is denoted as θt.
(c) Leave out the ith variable and apply five-fold cross-validation to the remaining t − 1

variables to obtain the RMSECV valu θ−i. Conduct this for all variables i = 1, 2, . . . , t.
(d) If min{θ−i, 1 ≤ i ≤ t} > θt, step (g) is performed.
(e) When excluding the ith variable with the minimum RMSECV value, remove the ith

variable and change t to be t− 1.
(f) Repeat steps (a) to (e).
(g) The remaining variables are the final informative variables.

Step 5: The final informative variables are selected to form the matrix set S = [x1, x2, . . . , xn].
S = [x1, x2, . . . , xn] are subject to Gaussian filtering (GF), first derivative (FD) filtering,
and Gaussian filtering again (GFA), and the processed data and the soil samples are respectively
subject to SCA. All the results are combined, and the top k numbers with the highest absolute values
(
∣∣∣rxy

∣∣∣ > 0.6) of correlation coefficients are selected. The corresponding data of GF, FD, and GFA
are combined to obtain the k result sets with the best correlation as the characteristic bands.
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(a) The Gaussian filter (GF) [22] is a kind of linear smoothing filter which chooses weights
according to the shape of a Gaussian function. It is very effective for suppressing noise
obeying a normal distribution. The GF is expressed as shown in Equation (3):

g(χ) =
1
√

2πσ
exp

[
−

(
χ
2σ

)2
]

(3)

where χ is the distance of the weight function from the maximum point, and the
scale parameter σ represents the width of the Gaussian function, which determines the
smoothness of the filtering.

(b) First derivative (FD) filtering can eliminate some baseline and other background noise,
while improving the spectral resolution and sensitivity. It is widely used in spectral
analysis [23].

S(λi) =
[λi+1 − λi]

2∆λ
(4)

where λi represents the reflectance value of the ith band, ∆λ represents the reflectance
value of the next band, and ∆λ is the wavelength interval.

(c) Spearman’s rank correlation analysis (SCA) is used to describe the relationship between
the soil spectral characteristics and the soil As content [24]. It evaluates the correlation
of two statistical variables using a monotonic equation. SCA is expressed as shown in
Equation (5):

rxy =

∑N
i (xi − x)(yi − y)[∑N

i−1 (xi − x)2∑N
i−1 (yi − y)2

] 1
2

(5)

where xi is the reflectance of the ith band, yi is the ith soil As content, x is the average of
the band reflectance, and y is the average As content of the soil.

Step 6: StandardScaler [25] is used to calculate the mean and standard deviation of the training
set so that the test data set can use the same transformation. The features are standardized by
removing the mean and scaling to unit variance. Centering and scaling happen independently
on each feature by computing the relevant statistics on the samples in the training set. The mean
and standard deviation are then stored to be used on the test data using the transform method.

S =
x− µ
σ

(6)

where x is the spectral matrix, µ is the standard deviation of the spectral matrix data, and σ is the
mean of the spectral matrix data.

Table 1. Variable classification rules.

Wavelength Variable Type Classification Rules

Strongly informative DMEANi < 0, Pi < 0.05
Weakly informative DMEANi < 0, Pi > 0.05

Uninformative DMEANi > 0, Pi > 0.05
Interfering DMEANi > 0, Pi < 0.05

2.2.2. Partial Least Squares Regression (PLSR)

PLSR is a new multivariate regression analysis method that can simultaneously achieve regression
modeling [26], simplify the data structure, and analyze the correlation between two groups of
variables, which brings great convenience to multivariate statistical analysis. The main difference
with ordinary least squares regression is that PLSR adopts data dimension reduction, information
synthesis, and screening techniques in the regression modeling process, and it can extract new
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integrated components that have the best explanatory power for the system, so that the model has
better robustness.

2.2.3. Bayesian Ridge Regression (BRR)

BRR assumes that the prior probability, the likelihood function, and the posterior probability
are all normally distributed [27,28]. The prior probability is that the model output Y is a normal
distribution with mean Xθ, and the regularization parameter α is regarded as a random variable that
needs to be estimated from the data. The prior distribution law of the regression coefficient θ is a
spherical normal distribution with a hyperparameter λ. BRR estimates the hyperparameters α and λ
and the regression coefficient θ by maximizing the marginal likelihood function.

2.2.4. Ridge Regression (RR)

RR involves correcting the calculation formula of the estimated regression coefficients based on the
“least squares principle” when constructing multiple linear regression models [29]. By abandoning the
unbiased characteristic of the least squares method, it is more realistic and reliable to obtain regression
coefficients at the cost of losing part of the information and reducing the accuracy.

2.2.5. Kernel Ridge Regression (KRR)

KRR is a nonlinear regression method [30,31]. Using the nonlinear mapping function, the sample
is mapped to the high-dimensional feature space, and the kernel function of the original space is used
to replace the dot product operation of the high-dimensional feature space. The linear ridge regression
is then conducted in the high-dimensional feature space.

2.2.6. Support Vector Machine Regression (SVMR)

SVMR is the application of support vectors in the field of function regression [32,33]. There is
only one class of sample point in SVMR, and the optimal hyperplane is not to divide the two types of
sample points into the most open ones, but to minimize the total deviation of all the sample points
from the hyperplane, when the sample points are between the two boundary lines.

2.2.7. EXtreme Gradient Boosting Regression (XGBoost)

XGBoost is an optimized version of the gradient boosting algorithm. It can be applied to tasks
such as classification, regression, sorting, etc. [34]. XGBoost uses the loss function to describe the
second derivative of the function to be solved, adding a regular term to prevent overfitting. Attributes
are sampled when building each tree, and the training speed is fast and the effect is good. The interior
contains a large number of classification and regression trees, and the residuals are used to enhance
the model.

2.2.8. Random Forest Regression (RFR)

RFR is an integrated statistical learning classification and regression algorithm that combines
multiple decision trees to produce similar predictions for different features for the same
phenomenon [35,36]. The output is the average of all the decision tree results in a random forest.
Assume that the training set is extracted independently from the distribution of the random vectors.
The prediction result of the model is the mean of the k regression trees.

2.2.9. Technical Process

The IRIV method and the IRIV-SCA method were both used to select the characteristic bands,
and the seven different regression methods were used to establish the As content prediction model.
The specific algorithm flow is shown in Figure 2 and is summarized as follows. (1) The laboratory and
field spectra were collected, respectively. (2) The characteristic bands were selected using the IRIV
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and IRIV-SCA methods. (3) Sample set partitioning based on joint x–y distances (SPXY) was used to
partition the calibration set and validation set. Then, to avoid the importance of a feature being too
large or too small, StandardScaler was used to standardize each column of the data. (4) The two sets of
characteristic bands were modeled by the seven regression methods (PLSR, BRR, RR, KRR, SVMR,
XGBoost, and RFR), and the best accuracy was obtained by comparative analysis.Sensors 2019, 19, 3904 8 of 23 
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2.3. Accuracy Evaluation

The prediction accuracy of the models was determined by the parameters of the coefficient of
determination (R2), the root-mean-square error (RMSE), and the mean absolute error (MAE). R2 reflects
the stability of the model establishment and verification. A larger R2 and a smaller RMSE and
MAE indicates that the accuracy of the modeling, verification, and estimation, respectively, is higher.
If R2 > 0.9, the prediction is excellent; if 0.82 ≤ R2

≤ 0.9, the effect is good, and the established model
can be used for actual detection; if 0.66 ≤ R2 < 0.82, the model can be used for approximate quantitative
prediction; if 0.5 ≤ R2 < 0.66, the model is feasible to use but the prediction accuracy needs to be further
improved; if R2 < 0.5, it is difficult to perform quantitative analysis of this component [37,38].

R2 = 1−

∑n
i−1 (ŷi − yi)

2∑n
i−1 (yi − y)2 (7)

RMSE =

√∑n
i−1 (yi − ŷi)

2

n
(8)

MAE =
1
m

n∑
i=1

∣∣∣yi − ŷi
∣∣∣ (9)

where n is the number of samples, yi is the measured value, ŷi is the predicted value, and y is the
average of the measured values.
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2.4. Software

GF, FD, and SCA were programmed in MATLAB Version 2017b. SPXY, StandardScaler, and the
regression models were written in Python/Jupyter Notebook. The machine learning algorithms in the
scikit-learn packages were also used.

3. Experiments and Analysis

3.1. Experimental Procedure

3.1.1. Soil Spectral Reflectance Measurement

In this paper, the soil of Daye, Hubei province, China, is taken as the research object. In this
study area, field soil sampling, physicochemical analyses, and spectral collection and processing
were conducted and two different methods of obtaining the soil spectra were used, one of which was
laboratory based and the other was conducted in the field. In the field spectral measurement stage,
an SVC HR-1024 field spectrometer was used to measure the spectra of the soil. The spectral resolution
of this field spectrometer is as follows: 350 to 1000 nm is 1.5 nm, 1000 to 1900 nm is 3.8 nm, and 1900
to 2500 nm is 2.5 nm. The total number of bands is 990. Field spectral measurements were carried
out on July 13, 2018, on a sunny day with a temperature of 36 ◦C, between 12:00 and 13:00 to ensure
sufficient solar altitude angle, and the field of view angle of the probe was 25 degrees. Soils at relatively
flat and open sites (avoiding plants, stones, etc.) were chosen as the target soils, and white-board
calibration was performed on the spectrometer. Debris was removed from the soil surface before each
measurement. The fiber optic probe was placed vertically at approximately 20 cm above the target and
in the opposite direction to solar radiation. In order to eliminate the instability of the measurements,
a 10 times average value was used as the average reflectivity of the soil sample. Three spectral curves
(with each curve being the result of an average of 10 times) were saved for each soil sample, and the
actual reflection data were obtained after arithmetic averaging.

In the laboratory spectral measurement stage, an ASD FieldSpec 3 field spectrometer was used
to measure the spectra of the soil samples. The wavelength range of the ASD FieldSpec 3 field
spectrometer is 350 nm to 2500 nm, with a spectral resolution of 1 nm. The total number of bands
is 2151. The light source was a 1000-W halogen lamp with a 25-degree field of view angle, with the
irradiation direction being 15 degrees from the vertical direction. The light source was set about
30 cm from the surface of the soil sample, with the probe perpendicular to the soil surface and about
10 cm away from the soil sample. White-board calibration was performed on the spectrometer before
measurement. A 10 times average value was used as the average reflectivity of the soil sample, three
spectral curves were saved for each soil sample, and the actual reflection data were obtained after
arithmetic averaging.

3.1.2. Soil Collection and Preparation

For the laboratory spectroscopy experiments, collection of the soil samples was necessary, but in
the field experiments, this step was not needed. Sixty-three yellow-brown ploughed soil samples
were collected by the method of chessboard-shaped sampling. The sampling depth was 0–15 cm.
The foreign matter such as stones was removed during the collection, and the soil sample was collected
by a four-point method, after being mixed well. Foreign bodies such as stones and plant roots in the
dried soil were removed, and the soil was then crushed. The crushed soil was then passed through a
2-mm aperture sieve. The soil that passed through the 2-mm sieve was taken out by quartering and
was roller-compacted to pass it through a 0.15-mm aperture sieve [39]. Each soil sample was then
divided into two parts for spectral information collection and physical and chemical analysis.
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3.1.3. Chemical Analysis

A total of 63 samples were obtained for the physical and chemical analyses. The soil samples
were digested with nitric acid/hydrochloric acid/perchloric acid and then measured with potassium
borohydride/silver nitrate spectrophotometry. Each soil sample was measured three times, and the
arithmetic mean was taken as the final As content in the soil.

3.2. Preprocessing of the Spectral Data

Due to the inevitable influence of factors such as the test environment, the instrument itself,
the background of the sample, and stray light in the process of spectrum acquisition, wavelengths on
the fringe of the Vis-NIR spectrometers contain relatively high noise. In order to reduce the external
noise, the noisy edge bands of 350 to 399 nm and 2400 to 2500 nm were removed, and the 400 to 2399 nm
wavelength was retained for the modeling analysis [40,41]. The soil reflectance spectra (with fringe
noise removed) used to predict the As concentration in the soil are shown in Figure 3a,b.
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3.3. Calibration Set and Validation Set

Before modeling, the samples needed to be grouped. One group was used for the establishment of
the model, and is referred to as the calibration set, and the other group was used to test the predictability
of the model, and is called the validation set. In this study, the gradient concentration method does not
take into account the influence of spectral vectors, while the Kennard-Stone (KS) method does not
take into account the concentration vectors [42]. In order to effectively cover the multidimensional
vector space and improve the predictive ability of the established model, both the spectral vectors and
concentration vectors were taken into account when partitioning the calibration set and validation
set of samples. Therefore, the SPXY algorithm [43] was used to select 42 samples as the calibration
set, and the remaining 21 samples were used as the verification set. As shown in Table 2, referring to
the Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land
(GB15618-2018) in China, the average value for the Daye area is lower than the risk screening value for
soil contamination of agricultural land, and so the Daye area belongs to the unpolluted area category.

Table 2. Statistics of As concentrations for the collected soil samples.

Study
Area Dataset Sample

Size
Minimum

(ug/g)
Maximum

(ug/g)
Mean
(ug/g) SD CV

(%) Skewness Kurtosis

Daye Entire 63 7.04 12.84 9.28 1.11 11.97% 0.58 0.41
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4. Results

4.1. IRIV Characteristic Band Selection Algorithm

The purpose of the IRIV algorithm is to eliminate irrelevant variables and retain variables
associated with soil As content. The algorithm uses the five-fold cross-validation method to establish
the PLS model selection feature variables. The maximum principal factor in the PLS model is
10. In the laboratory spectra experiment stage, the IRIV algorithm was carried out for a total of
seven rounds. As shown in Figure 4, the number of iterative variables in the first three rounds
decreased rapidly, from 2000 variables to 489, and then the rate of variable reduction slowed down
after this point. After the sixth iteration, the uninformative variables and interfering variables were
completely eliminated. Generally speaking, only the strongly informative variables are selected as
the optimal variable set. Although they have a significant positive effect, they are not always the
optimal ones, because of the fact that the positive effect of the weakly informative variables is ignored.
Thus, the weakly informative variables should be retained. The IRIV strategy is thus used to search
for the significant variables through many rounds until no uninformative or interfering variables exist.
The backward elimination operation was then carried out, and after the backward elimination of the
seventh round, 15 characteristic bands related to soil As content were finally selected: 486 nm, 527 nm,
740 nm, 769 nm, 849 nm, 1033 nm, 1147 nm, 1184 nm, 1185 nm, 1241 nm, 1359 nm, 1365 nm, 2233 nm,
2336 nm, and 2382 nm.

In the field spectra experiment, the IRIV algorithm was performed for a total of seven rounds.
As shown in Figure 5, the number of iterative variables in the first three rounds decreased rapidly,
from 990 variables to 170. After six rounds of iteration, the uninformative variables and the interfering
variables were completely eliminated, and the backward elimination operation was performed.
After the backward elimination in the seventh round, nine characteristic bands related to soil As
content were finally selected: 619.6 nm, 621 nm, 1186.8 nm, 1422.1 nm, 1871.7 nm, 1896.8 nm, 1907.5 nm,
2348.2 nm, and 2383.4 nm.
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4.2. IRIV-SCA Characteristic Band Selection Algorithm

Considering that IRIV selects more characteristic variables, and IRIV also fails to change the
original data, there may be cases where the unrelated variables are not completely eliminated and the
original correlation is low. IRIV-SCA can not only eliminate all the irrelevant variables of the original
full spectrum, but can also greatly reduce the number of independent variables, which can achieve the
dual purpose of improving the accuracy of the algorithm and the efficiency of the execution. The GF,
FD, and GFA preprocessing can effectively improve the correlation, and then SCA is used to find the
correlation between the spectral data of each preprocessing and the As content of the soil. It can be seen
from Figure 6 that the correlation coefficients of the original bands of the IRIV screening are generally
below 0.6, but after the GF, FD, and GFA preprocessing, the correlation coefficients are improved to
different degrees. The bands with an absolute value of correlation coefficient of greater than 0.6 after
each pretreatment were extracted as the characteristic bands. The correlation of each feature band is
shown in Table 3. For the laboratory spectra, a total of six characteristic bands (all the variables outside
of the gray area) were selected. For the field spectra, a total of 12 characteristic bands were selected.

Table 3. The feature bands and the correlation coefficients.

Algorithm Spectral
Type Spectral Set (nm) Correlation Coefficients

IRIV

Laboratory
spectra

486, 527, 740, 769,849, 1033, 1147, 1184,
1185, 1241, 1359, 1365, 2233, 2336, 2382

−0.509, −0.490, −0.278, −0.279, −0.296,
−0.287, −0.271, −0.264, −0.264, −0.259,
−0.264, −0.264, −0.205, −0.194, −0.204

Field
spectra

619.6, 621, 1186.8, 1422.1, 1871.7,
1896.8, 1907.5, 2348.2, 2383.4

−0.437, −0.448, −0.320, −0.364 −0.383,
−0.391, −0.383, −0.431, −0.427

IRIV-SCA

Laboratory
spectra

GF486, GF527, GFA849–769,
GFA1147–1033, GFA1184–1147,
GFA2382–2336

−0.821, −0.792, −0.743, 0.822,
0.663, −0.609

Field
spectra

GF619.6, GF621, GF1186.8, GF1422.1,
GF1871.7, GF1896.8, GF1907.5, GF2348.2,
GF2383.4, GFA1871.7–1422.1,
GFA1896.8–1871.7, GFA2348.2–1907.5

−0.870, −0.885, −0.868, −0.901, −0.913,
−0.921, −0.919, −0.931, −0.929, −0.632,
−0.892, −0.806

1 GF = Gaussian filtering; GFA = Gaussian filtering again
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4.3. Analysis of the Results of the IRIV Feature Selection Algorithm

The characteristic bands obtained by the IRIV feature selection method were used for the modeling,
and the data from the calibration set were used to build the model. To evaluate the prediction, the three
parameters of coefficient of determination for prediction (R2

p), root-mean-square error of prediction
(RMSEp), and mean absolute error of prediction (MAEp) can be obtained by using the data of the
verification set for prediction. The closer R2

p is to 1, the better the fit of the model and the better the
stability of the model; the closer the values of RMSEp and MAEp are to 0, the higher the accuracy of the
model and the better the predictive ability of the model [44]. Table 4 compares the accuracy of the
seven different regression models in the laboratory and field conditions, respectively. The accuracy
of the regression models based on the laboratory spectra is generally higher than that based on the
field spectra. This is because the spectrometer is affected by the light source, water content, particle
size, and other debris in the process of collecting data in the field, resulting in a messy spectral curve.
For the laboratory spectra, BRR shows the highest accuracy; for the field spectra, RFR shows the highest
accuracy. Overall, the accuracy of the models constructed using the characteristic bands selected by
the original IRIV algorithm are generally low and cannot meet the actual needs.

4.4. Analysis of the Results of the IRIV-SCA Feature Selection Algorithm

It can be seen from Table 5 that the regression model constructed using IRIV-SCA to select the
characteristic bands achieves a high inversion accuracy. For the laboratory spectra, SVMR obtains
the highest prediction accuracy, with the R2

p, RMSEp, and MAEp of the validation set being 0.97, 0.22,
and 0.11, respectively. For the field spectra, XGBoost obtains the highest prediction accuracy, with the
R2

p, RMSEp, and MAEp of the validation set being 0.83, 0.35, and 0.29, respectively. This confirms that
the IRIV-SCA feature selection algorithm can not only effectively improve the correlation between the
spectral reflectance and soil As content, but it also greatly improves the inversion accuracy.
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Table 4. Prediction accuracies of the As concentration obtained using laboratory spectra and field
spectra based on IRIV.

Algorithm Spectral
Type Models

Calibration Set Validation Set

R2
c RMSEc MAEc R2

p RMSEp MAEp

IRIV

Laboratory
spectra

PLSR 0.29 0.94 0.73 0.52 0.67 0.49
BRR 0.91 0.34 0.26 0.79 0.44 0.36
RR 0.49 0.80 0.62 0.49 0.69 0.56

KRR 0.55 0.76 0.59 0.48 0.70 0.56
SVMR 0.99 0.11 0.10 0.59 0.62 0.49

XGBoost 0.87 0.40 0.31 0.57 0.63 0.49
RFR 0.78 0.53 0.39 0.27 0.82 0.69

Field
spectra

PLSR 0.27 1.00 0.75 0.37 0.74 0.62
BRR 0.16 1.07 0.85 0.20 0.84 0.73
RR 0.28 1.00 0.75 0.37 0.75 0.63

KRR 0.29 0.99 0.75 0.42 0.72 0.60
SVMR 0.75 0.59 0.32 0.23 0.83 0.64

XGBoost 0.99 0.14 0.10 0.29 0.79 0.69
RFR 0.83 0.49 0.34 0.49 0.67 0.56

Table 5. Prediction accuracies of the As concentration obtained using laboratory spectra and field
spectra based on IRIV-SCA.

Algorithm Spectral
Type Models

Calibration Set Validation Set

R2
c RMSEc MAEc R2

p RMSEp MAEp

IRIV-SCA

Laboratory
spectra

PLSR 0.93 0.31 0.22 0.91 0.23 0.21
BRR 0.94 0.30 0.19 0.92 0.33 0.18
RR 0.93 0.31 0.19 0.92 0.14 0.17

KRR 0.92 0.33 0.20 0.91 0.25 0.20
SVMR 0.98 0.15 0.11 0.97 0.22 0.11

XGBoost 0.98 0.13 0.01 0.93 0.25 0.14
RFR 0.97 0.30 0.12 0.96 0.18 0.15

Field
spectra

PLSR 0.77 0.56 0.40 0.76 0.42 0.35
BRR 0.78 0.55 0.38 0.75 0.43 0.36
RR 0.77 0.56 0.37 0.75 0.43 0.35

KRR 0.75 0.58 0.38 0.74 0.44 0.35
SVMR 0.87 0.42 0.24 0.78 0.40 0.31

XGBoost 0.99 0.12 0.10 0.83 0.35 0.29
RFR 0.88 0.41 0.30 0.66 0.50 0.36

4.5. Model Performance

Using the characteristic bands selected by IRIV-SCA, the relationship between the estimated and
predicted values of the model validation set samples is shown in Figures 7 and 8. The closer the scatter
plots of the predicted and measured values are, the higher the accuracy of the model. By comparing
the scatter plots of the different regression methods in the modeling process, the following conclusions
can be drawn:

(1) Compared with the field spectra, the laboratory spectra are generally closer to the y = x line,
which indicates that the laboratory spectra have better stability and predictive ability for the
As content in soil. IRIV-SCA was used to intelligently select the characteristic bands, and the
modeling accuracy and prediction accuracy of the model are both relatively high.

(2) For the laboratory spectra, SVMR obtains the highest R2 and the lowest RMSE and MAE values.
This is shown in Figure 7e, where the black scatter points are located closest to the y = x line, and
the trend is the most consistent with the y = x line. PLSR obtains the lowest R2 and the highest
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RMSE and MAE values. This is shown in Figure 7a, where the black scatter points are located
close to the y = x line, but a few points exhibit slight deviations. For the field spectra, XGBoost
obtains the highest R2 and the lowest RMSE and MAE values. This is shown in Figure 8f, where
the black scatter points are located close to the y = x line and the trend is more consistent with the
y = x line. RFR obtains the lowest R2 and the highest RMSE and MAE values. This is shown in
Figure 8g, where the black scatter points exhibit large differences.
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5. Discussion 

Because the energy level transitions of the different functional group components in soil are 
different, the soil spectral curves also have different absorption and reflection characteristics. 
Therefore, it is possible to quantitatively analyze the soil As content by using spectral techniques. 
However, the soil spectra in the field environment are complex, and the soil parent material and 
external environmental influence parameters (soil moisture content, soil surface roughness, particle 
size factor, temperature factor, etc.) all have an effect on the spectral reflectance of the soil [45,46]. 
Lamine et al. [47] studied the potential effects of combining field and laboratory spectra with the 
data of Pb, Zn, Cu, and Cd in soil on the quantification and simulation of heavy metal soil pollution 
in floodplains. The results further demonstrated the feasibility of combining geochemistry analyses 
with field spectroradiometric data to generate models that can predict heavy metal concentrations. 
This finding is consistent with the conclusions of our study. 

On the basis of the different measured spectra, a variety of soil As hyperspectral prediction 
models were established using different modeling methods. Compared with PLSR, both XGBoost 
and SVMR showed good modeling accuracy. This is mainly because PLSR is a linear method, and it 
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5. Discussion

Because the energy level transitions of the different functional group components in soil are
different, the soil spectral curves also have different absorption and reflection characteristics. Therefore,
it is possible to quantitatively analyze the soil As content by using spectral techniques. However, the soil
spectra in the field environment are complex, and the soil parent material and external environmental
influence parameters (soil moisture content, soil surface roughness, particle size factor, temperature
factor, etc.) all have an effect on the spectral reflectance of the soil [45,46]. Lamine et al. [47] studied the
potential effects of combining field and laboratory spectra with the data of Pb, Zn, Cu, and Cd in soil
on the quantification and simulation of heavy metal soil pollution in floodplains. The results further
demonstrated the feasibility of combining geochemistry analyses with field spectroradiometric data
to generate models that can predict heavy metal concentrations. This finding is consistent with the
conclusions of our study.

On the basis of the different measured spectra, a variety of soil As hyperspectral prediction models
were established using different modeling methods. Compared with PLSR, both XGBoost and SVMR
showed good modeling accuracy. This is mainly because PLSR is a linear method, and it does not
perform well in solving nonlinear problems, while XGBoost and SVMR can better solve the problem of
complex nonlinear relationships between independent variables and dependent variables.
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When estimating soil As content using the original spectral reflectance obtained in the field,
the results often vary greatly, due to factors such as soil moisture content, soil surface roughness, particle
size, temperature, etc. After eliminating the influence of sample inconsistency by pre-treating the soil
sample by air drying and sieving, the accuracy of estimating soil As content using laboratory spectral
characteristics can be slightly improved. However, it is still impossible to accurately estimate soil As
content. A large number of studies have proved that the correlation between spectral characteristics
and soil properties can be significantly improved by transforming the original spectral values using
FD and GF [48–50]. A combined preprocessing algorithm was used in this study. After the GF, FD,
and GFA preprocessings, the correlation coefficients were improved, to different degrees. From the
results, it can be concluded that this is a practical way to improve the estimation accuracy of soil As
content. At the same time, more spectral transformations could be attempted in future research to find
a better inversion index of soil As content.

The rapid and non-destructive estimation of the As content in soil is of great significance for
soil pollution monitoring and precision agriculture. However, in hyperspectral full-band data,
the band information is often redundant [51]. Spectral variable screening is a key step in soil
hyperspectral research, which not only simplifies the model structure, but also eliminates irrelevant
and low-contribution wavelength variables [52,53]. Although the traditional IRIV model can select the
characteristic bands, in the face of the more complex environment in the field, it is affected by natural
factors, and the problem of poor correlation of the original bands is apparent. Compared with the
results of IRIV, both the laboratory and field accuracy are greatly improved. It is speculated that there
are two reasons for this phenomenon: (1) A large number of studies have shown that different forms
of spectral reflectance transformation can help to eliminate background interference and improve
spectral sensitivity and correlation. In the process of spectral transformation of GF, FD, and GFA, some
hidden spectral information in the original spectrum is exposed. Thus, the correlation between the
spectrum and As content can be improved [49,50,54]. (2) SCA is a common way to extract sensitive
bands, and the use of the higher correlation bands can significantly improve the stability and predictive
ability of the model [53,55]. The IRIV-SCA feature selection algorithm combines the advantages of
these two factors, has a strong generalization ability, it is able to effectively remove the influence of
these factors, and can achieve better inversion results.

6. Summary and Conclusions

In this study, based on the spectral analysis of soil samples in both the laboratory and the field
using hyperspectral techniques, 63 soil samples were collected. Based on the two different methods
of selecting characteristic bands (IRIV and IRIV-SCA), seven different modeling methods were used
(PLSR, BRR, RR, KRR, SVMR, XGBoost, and RFR). As a result, the best method for the inversion of the
soil As content in this area was established, which will be of great significance for the monitoring of
soil As content in this study region. The main conclusions are as follows:

The spectral reflectance of soil was measured in both the laboratory and in the field. In the field
experiment, the soil was not air-dried, sieved, ground, etc., which was closer to the real application
environment. The accuracy of the field-based model was lower than that of the model based on
laboratory-measured spectra. The reason for this is that the acquisition of the measured spectral data
is affected by the natural environment; however, the model based on field-measured spectral data has
good stability and actual predictive ability, and has strong practicability.

IRIV and IRIV-SCA were both used to screen the characteristic bands. It was found that IRIV-SCA
can effectively improve the correlation between the bands and soil As content, and can greatly improve
the modeling accuracy. For the laboratory spectra experiments, the best experimental accuracy
was improved from IRIV-BRR to IRIV-SCA-SVMR. For the field spectroscopy experiments, the best
experimental accuracy varied from IRIV-RFR to IRIV-SCA-XGBoost. These results confirmed that the
characteristic bands can be better extracted by the use of IRIV-SCA. The characteristics of soil spectral
reflectance are the integrated effects of various physical and chemical properties, such as soil organic
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matter, acidity–alkalinity, moisture, salinity, and oxides. The results of this study will provide a basis
for the large-scale retrieval of As in the soil of the Daye region in the future, and the approach could
also be extended to other regions.
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