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Cascadable all‑optical NAND gates 
using diffractive networks
Yi Luo1,2,3, Deniz Mengu1,2,3 & Aydogan Ozcan1,2,3*

Owing to its potential advantages such as scalability, low latency and power efficiency, optical 
computing has seen rapid advances over the last decades. Here, we present the design and analysis 
of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical 
values at the input and output planes of a diffractive NAND gate using the relative optical power 
of two spatially-separated apertures. Based on this architecture, we numerically optimized the 
design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND 
operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex 
logical functions by successively feeding the output of one diffractive NAND gate into another. 
We numerically demonstrated the cascadability of our diffractive NAND gates by using identical 
diffractive designs to all-optically perform AND and OR operations, which can be formulated as 
AND(I1, I2) = NAND(NAND(I1, I2), NAND(I1, I2)) and OR(I1, I2) = NAND(NAND(I1, I1), NAND(I2, I2)) , 
respectively. We also designed an all-optical half-adder that takes two logical values as input and 
returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND 
gates composed of spatially-engineered passive diffractive layers can serve optical computing 
platforms.

Computation forms the backbone of modern society while consuming a large amount of energy. New com-
putation hardware with a smaller carbon footprint and higher computing speed is in great need1,2. Through a 
fruitful history3–6, optical computing has gained increasing attention in the past decades owing to its potential 
advantages such as scalability, low latency, and power efficiency. For example, integrated photonic circuits have 
been designed to perform neural network-based computing as stand-alone devices7–9 or accelerate it in data 
centers10,11. Various optical implementations of task-specific non-von-Neumann computers, such as spiking 
neural networks12,13 and reservoir computers14, have been developed to solve different computational problems. 
These specialized optical circuitries or networks lit up the future of optical computing, and yet showed relatively 
limited capability in performing general-purpose computation.

An important building block for universal computing is the logical NAND gate, as it can be cascaded to 
perform any logic operation. Numerous studies have been reported so far on all-optical realizations of NAND 
gates15–26. However, none of these previous optical approaches provided sufficient levels of cascadability to 
form complex logical circuits using their designed NAND gates as the building block of an optical processor. 
Some of these earlier techniques relied on nonlinear interferometers15–18, photonic crystals19–21, and plasmonic 
devices22–24, which brought stringent requirements on the input optical signals in terms of phase, intensity, and/
or polarization states of light6, which partially complicate the hardware design, and more importantly, limit the 
cascadability of the optical NAND gates. Although various efforts have been made to reduce the required input 
power levels27,28, NAND gates based on e.g., nonlinear photonic crystals still require relatively strong optical fields 
to operate, which partially restricts their utility. Another set of implementations used micro-ring resonators25 
that encode the input and output logical values into different frequencies, also creating fundamental challenges 
for cascadability.

Diffractive deep neural networks (D2NNs) are optical computing platforms that use coherent light to process 
the information encoded in the phase and/or amplitude channels of an input field-of-view29–34. The incident 
light from an input plane (encoding the information) propagates through successive passive diffractive layers, 
each of which comprises thousands of individual modulation units (termed neurons) that alter the phase and/or 
amplitude of the light at their corresponding location. The free-space propagation and engineered light-matter 
interaction through a diffractive network collectively perform a computational task that is learned through a one-
time training process. These passive diffractive layers are designed (trained) in a computer using conventional 
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deep learning tools, e.g., stochastic gradient descent and error back-propagation. Once the design converges 
through this deep learning-based training phase, the diffractive layers are fabricated to form a passive, physical 
computing unit that does not consume computing power except for the illumination light. Other than perform-
ing statistical inference tasks such as object classification29,32,35,36 and image reconstruction37,38, enabled by their 
data-driven training process, diffractive neural networks also show great potential in designing non-intuitive, 
task-specific, deterministic optical elements, including e.g., spectral filters39 and pulse shapers40. The broad design 
space provided by diffractive neural networks was also utilized to design logic gates26; however, similar to former 
all-optical implementations discussed earlier15–25, cascadability was not feasible in this earlier work, limiting its 
use as a diffractive building block to optically perform an arbitrary logic operation.

In this paper, we present a cascadable all-optical NAND gate based on diffractive neural networks (Fig. 1a). 
We encoded the input/output optical logical values in the relative power of two spatially-separated apertures, 
where the aperture corresponding to the larger optical signal determines whether the value is 0 (the bottom 
aperture signal is larger) or 1 (the top aperture signal is larger). A four-layered diffractive network was trained 
to all-optically perform NAND operation on two optical input logical values (Fig. 1b). By projecting the output 
optical signal/wave (i.e., phase and amplitude) of one diffractive NAND gate onto the input aperture of another 
diffractive NAND gate, one can cascade these NAND gates to perform complex logical computations (Fig. 1c). 
Despite the fact that the cascadability of the presented diffractive NAND gate design is a highly desired feature 
for all-optical computing applications, there are also some limitations of this approach. The optical fields at the 
output plane of a diffractive NAND gate do not uniquely represent ones or zeros since there are (in principle) 
infinitely many different complex fields that might result from a diffractive NAND gate positioned within an 
arbitrary, complex logic circuit. Due to the field intensity decay and phase distortions that the diffracted light 
goes through within a passive network, it is not guaranteed that all possible combinations of the diffractive 
NAND output fields can successfully serve as inputs for a successive diffractive NAND operation in a given logic 
circuit. To tackle this challenge, in this work we created a design map that specifically guides the users/designers 
on cascading of the same diffractive NAND gate to perform logic operations, avoiding the output optical field 
combinations that result in false inference at the next level of a successive NAND operation. We used this design 
map as a guide to numerically demonstrate the cascadability of our diffractive NAND gate by building all-optical 
AND and OR gates, as well as a half-adder. Our analysis indicates that, despite using passive optical components 
without any optical nonlinearity, it is possible to build cascaded optical networks that share the same repeating 
diffractive gate design to perform all-optical logic operations. An important future direction of research would 
be to automate the search of the correct cascading path that satisfies the desired logic operation with the least 
number of cascaded diffractive optical gates. Similarly, exploring the limits of this design map approach in 
order to understand for what classes of logic operations it fails to find a cascadable diffractive solution would 
be a valuable future research direction. Optical signal amplification/boost and the use of nonlinearities would, 
in general, be needed to expand the utility of the presented approach and generalize over any class of functions.

Results
Diffractive NAND gate design and numerical testing.  One method to encode optical logical values 
of a NAND gate can be to use an additional pump/probe light17,21,22 in order to successfully handle the case of 
both input digits being zero, i.e.NAND(0, 0) = 1 . However, the existence of the probe light creates challenges 
in the cascadability of a NAND gate while also consuming more energy. Instead, here in this work, we encoded 
the logical states of our diffractive network into the spatial distribution of the optical power (Fig. 1a). Each opti-
cal logical value is represented by the power within a pair of encoding apertures placed in a vertical column 
(Fig. 1a). The upper/top aperture denotes True (T) and the lower one denotes False (F) signal, and the larger opti-
cal signal determines the logical state. For example, True is encoded with more power in the top aperture when 
compared with the optical power of the lower aperture. Based on this definition, either one of the logical states 
(T, F) can inject the same amount of energy into the successive NAND gate that is cascaded. In our design, each 
encoding aperture was selected to have a size of 4λ × 4λ, and the vertical separation between the two apertures 
was designed to be 2λ, where λ is the wavelength of the incidence light, which can be selected at any part of the 
electromagnetic spectrum based on the availability of sources and high-resolution fabrication methods. Ideally, 
an optical logical value has uniform intensity within the corresponding encoding aperture, while no light should 
be present in the other aperture. However, deviations from this ideal scenario in successive, cascaded diffractive 
NAND gates do not create an issue as the definition of our encoding scheme compares the total power in each 
encoding aperture regardless of the uniformity of the optical wave intensity.

A four-layered diffractive neural network was trained to perform the NAND operation. The input plane of our 
diffractive NAND gate had two ports hosting the input optical logical values, where the two columns of apertures 
were placed side-by-side, with a horizontal separation of 2λ. This 2 × 2 aperture grid was placed at the center of 
the input plane, with zero transmittance elsewhere (i.e., blocking regions surrounding the signal apertures). The 
output port of the diffractive NAND gate was designed at the center of the output field of view of the network, 
which is marked using purple squares in Fig. 1b. This diffractive NAND gate architecture was iteratively trained 
using conventional deep learning-based optimization tools in a computer, during which only ideal optical logical 
values with uniform intensity profiles were used as inputs. A training loss function was applied to the diffractive 
network’s output field-of-view, comparing the resulting optical waves within the output apertures with the ideal 
output profiles. Further details regarding the training of this diffractive NAND gate can be found in the Methods 
section. The training log of the diffractive NAND gate design is reported in Supplementary Fig. S1.

After its training/design phase, the success of the all-optical NAND computation was first demonstrated by 
numerically testing it with ideal input optical logical values. The input plane of the diffractive NAND gate with 
different input values, i.e., ( x01,x02) = (T,T), (T,F), (F,T) and (F,F), as well as the corresponding optical intensity 
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profiles at the output plane of the diffractive network (with output logical values of x1i=(F, T, T, T) respectively) 
are reported in Fig. 1b. The notation x01 ( x02 ) denotes a set of ideal optical logical values, with uniform intensity in 
each aperture, being injected into the diffractive NAND gate using the left (right) input port at the input plane. 
Similarly, the notation x1i  denotes the set of output optical logical values that result from a diffractive NAND 
gate, taking ideal optical logical values as its inputs. The subscript i indicates that the output optical signals/
waves can be projected to either input port (left or right) of another diffractive NAND gate that is cascaded. The 

Figure 1.   Schematic of cascadable all-optical NAND gates using diffractive networks. (a) Design of a 
cascadable diffractive NAND gate. (b) The input plane intensity profile of the diffractive NAND gate with all 
the possible combinations of ideal optical logical values, i.e., ( x01,x

0
2) = (T,T), (T,F), (F,T) and (F,F), as well as the 

corresponding optical intensity profiles at the output plane of the diffractive network, with output optical logical 
values of x1

i
=(F, T, T, T) respectively. (c) Schematic of cascading diffractive NAND gates.
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superscripts in both the input and output notations denote the “level” of the optical signals, where the ideal input 
values are denoted as level 0 and the output optical signals resulting from two ideal input values are denoted 
as level 1. Therefore, this notation represents a collection of all the possible optical logical values that share the 
same origin. For example, x1i  represents all four possible output optical fields generated using combinations of 
level 0 input optical logical values ((x01,x02) = (T,T), (T,F), (F,T) and (F,F)).

Cascading diffractive NAND gates to all‑optically perform logic operations.  A unique feature 
of the presented diffractive NAND gate lies in its cascadability. One NAND gate’s output optical wave can be 
injected into another diffractive NAND gate’s input ports for further computation through its diffractive layers. 
In this context, we would like to further extend the “level” definition to better describe the diverse origins of the 
optical signals/waves that are cascaded into successive diffractive NAND gates. If we assume that a diffractive 
NAND gate uses the input optical logical values from levels a and b (i.e., the input optical logical values belong to 
sets xa1 and xb2 ), then the corresponding output level shall be defined as level (a,b), i.e., the output optical wave lies 
within the set of xa,bi  . Given the fact that a diffractive NAND gate, after its training phase, does not necessarily 
possess output wave symmetry, xa,bi  and xb,ai  are different sets of optical signals/waves. For example, the output 
optical logical values calculated from input waves that belong to x11 and x02 should be denoted as x1,0i  , and it is 
different from the set of output waves defined by x0,1i .

Using this notation, next we numerically demonstrate that our diffractive NAND gate design can successfully 
perform logic operations with input values arising from different levels of cascading. Figure 2a reports all the 
possible combinations of optical wave cascading using level 0, level 1, level (1,0), level (0,1) and level (1,1) as 
inputs to our diffractive NAND gate. For example, at level 0 we have 22 = 4 different optical waves that can result 
at the output of the diffractive NAND gate using ideal uniform input waves; these four optical waves are then 
combined into the same set along with the ideal uniform optical inputs, which result in a total of (4 + 2)2 = 36 
unique optical waves at the output of the diffractive NAND. Following the same flow of logic, at the next level 
of cascading, we have in total (36 + 2)2 = 1444 different optical waves representing logical values. For these 1444 
different wave combinations represented in Fig. 2a, the calculation/inference accuracy at the output of the dif-
fractive NAND gate is measured to be 91.48%. The black squares in Fig. 2a indicate the input wave combinations 
leading to a miscalculation (i.e., an incorrect inference) at the output of the diffractive NAND gate (i.e., ~ 8.52% 
of the cases out of 1444 different combinations reported). The output plane intensity profiles of the optical waves 
that belong to sets x1i  , x

1,0
i  , x0,1i  and x1,1i  and their corresponding input waves are also shown in Fig. 2b. In fact, 

further cascading of diffractive NAND gates is also possible: using all the optical logical values and the output 
optical waves presented in Fig. 2a, the diffractive NAND gate inference accuracy over the (1444 + 2)2 = 2,090,916 
different input wave combinations is found to be 80.30%.

These random inference errors that are observed in e.g., Fig. 2a do not constitute a roadblock for synthesizing 
an all-optical logic processor using cascaded diffractive NAND gates; instead, these error maps (e.g., the black 
squares in Fig. 2a) actually serve as a design map/guide for properly cascading diffractive NAND gates to build 
a logic operator without hitting any one of these error points. Stated differently, by knowing these input–output 
maps that reveal these rare combinations of faulty diffractive computing points, one can correctly design a dif-
fractive logic processor composed of cascaded all-optical NANDs that avoid using these error points identified 
in the design guide (Fig. 2a). To shed more light on this cascadability design map, we first built basic logical gates 
(i.e., AND and OR gates) performed by cascading of our diffractive NAND gate. Mathematically, a logical AND 
operation can be formulated using NAND operations as shown in Fig. 3a, i.e.,

Therefore, an all-optical implementation of the AND operation can be realized with two diffractive NAND 
gates and a beam splitter (see Fig. 3b). x01 and x02 , with uniform optical intensity within the input apertures, were 
injected into both input ports of the first NAND gate. A beam splitter duplicated the resulting output wave with 
a 50/50 splitting ratio, and the duplicated logical values were used as the input waves for the second NAND gate 
that is cascaded. For different input logical value combinations, i.e., ( x01,x02) = (T,T), (T,F), (F,T) and (F,F), the 
correctness of the intermediate all-optical calculation steps ( x1i  ) and the output of the AND gate (O) are shown 
in Fig. 3c. The intensity profiles at the output plane of the final diffractive NAND gate are also shown in Fig. 3d, 
demonstrating the success of the cascaded diffractive NAND system for all-optically performing AND operation. 
The optical signal values within each output port are labelled in Fig. 3d.

A similar demonstration of an all-optical OR gate that is composed of cascaded diffractive NAND gates is 
shown in Fig. 4. OR operation can be formulated using NAND gates as shown in Fig. 4a, i.e.,

This all-optical OR gate implementation uses three diffractive NAND gates, as shown in Fig. 4b. In this case, 
each input optical logical value was first duplicated using beam splitters and injected into both input ports/
apertures of the corresponding diffractive NAND gate. The outputs of the two diffractive NAND gates were then 
cascaded onto the input ports/apertures of the last diffractive NAND gate, as shown in Fig. 4b. For different 
input combinations, the correctness of the intermediate calculation steps ( x1i  ) and the output of the OR gate (O) 
are shown in Fig. 4c. The intensity profiles at the output plane of the final diffractive NAND gate are also shown 
in Fig. 4d, demonstrating the success of the cascaded diffractive system for all-optically performing OR logic 
operation. The optical signal values within each output port are labelled in Fig. 4d.

As another basic logic function, NOT operation can be formulated as:

(1)AND(I1, I2) = NAND(NAND(I1, I2), NAND(I1, I2)).

(2)OR(I1, I2) = NAND(NAND(I1, I1), NAND(I2, I2)).

(3)NOT(I) = NAND(I , I).
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Therefore, NOT can be realized using a single NAND gate without the need for diffractive cascading. In fact, 
since it is solely based on the correct implementation of the NAND gate, the accuracy of the NOT calculation 

Figure 2.   Performance of cascaded diffractive NAND gates. (a) A design map for cascading diffractive NAND 
gates. The black squares indicate the input wave combinations that lead to a miscalculation, i.e., an inference 
error. (b) The output plane intensity profiles of the optical waves that belong to sets x1

i
 , x1,0

i
 , x0,1

i
 and x1,1

i
 as well 

as their corresponding input waves.
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using our diffractive NAND design has already been validated through the first and last columns of Fig. 1b as 
well as the diagonal elements of the optical logical values x1i  shown in Fig. 2b.

Other than these basic logical operations (AND, OR, NOT), we also designed an all-optical implementa-
tion of a half-adder using cascaded, five diffractive NAND gates. A half-adder adds two binary input values (I1 
and I2) and returns their sum (S) and the carry (C). Figure 5a presents an electronic realization of a half-adder 
using 5 NAND gates. The same logical circuit design can be all-optically implemented using cascaded diffrac-
tive NANDs, as shown in Fig. 5b. Based on our design map/guide shown in Fig. 2a, one can see that a correct 
calculation of the sum can only be achieved when the NAND gate IV takes the input optical logical values from 
the set of x1,0i  . The correct routing of different optical waves was accordingly optimized to avoid the inference 
errors marked in Fig. 2a. A portion of the design map reflecting this optimized optical signal routing is reported 
in Fig. 5c, showing the correctness of the intermediate calculation steps. The output intensity profiles of the sum 
(diffractive NAND gate IV) and the carry (diffractive NAND gate V) are also shown in Fig. 5d, together with the 
corresponding inputs, demonstrating the success of the cascaded diffractive system for all-optically performing 
a half-adder operation. The optical signal values within each output port are labelled in Fig. 5d.

Discussion
In our optical designs and numerical simulations reported so far, the diffractive NAND gates are cascaded to each 
other using ideal optical projection systems to map an output optical field (phase and amplitude) of a diffractive 
NAND gate onto another input aperture of a cascaded diffractive NAND gate. However, it is not critical to use 
high numerical aperture (NA) image projection systems when building complex computational units formed 
by cascaded diffractive networks. A low NA projection system applies a low pass filter to the output profile of a 
diffractive gate, which in fact makes it similar to the ideal input signals, with a more uniform intensity profile 
within each input aperture. To shed more light on this phenomenon, we simulated the cascading of different 
diffractive NAND gates with projection systems that have lower NA values, i.e., 0.9, 0.75, 0.5 and 0.25. The 
all-optical calculation accuracy using level 0, level 1, level (1,0), level (0,1) and level (1,1) inputs, i.e., represent-
ing 1444 unique combinations of input optical waves, were found to be 91.48%, 91.27%, 90.72%, and 90.86%, 
respectively. These numerical results demonstrate the robustness of the diffractive NAND gate to a reduction in 
the NA of the cascading optical projection system between successive diffractive networks.

In summary, we illustrated a cascadable all-optical NAND gate design based on diffractive networks. Suc-
cessful numerical demonstrations of basic logical gates (AND, OR, NOT), as well as a half-adder, were reported 
using cascaded diffractive NAND gates. These proof-of-concept results highlight that logic operations can be 
performed all-optically by cascading the same passive diffractive network through the use of a design map that 
helps avoid output fields that cannot be cascaded into a successive diffractive gate. Beyond these preliminary 

Figure 3.   Logical AND operator that is composed of cascaded diffractive NAND gates. (a) Digital 
implementation of an AND operator using NAND gates. (b) All-optical AND gate design that is composed 
of cascaded diffractive NAND gates. (c) A portion of the design map (Fig. 2b) showing the correctness of 
the intermediate all-optical calculation steps ( x1

i
 ) and the output of the AND gate (O) under different input 

combinations. (d) The intensity profiles at the output plane of the final diffractive NAND gate. The inserted 
numbers in white font color indicate the relative optical signal within each aperture. Each input optical logical 
value is assumed to have a relative optical signal level of 256 (a.u.), defining the ideal signal level per aperture.
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studies, future work will explore the limits of this design map approach to automatically find a viable cascad-
ing path (or prove the lack of it) to all-optically perform a given logic operation based on the complexity of the 
desired inference task. Overall, the presented cascadable all-optical NAND gates and the optical signal encoding 
schemes demonstrated in this work using spatially-engineered passive diffractive layers can potentially serve 
future optical computing platforms.

Methods
Forward propagation model.  The input plane of a diffractive NAND gate is positioned at z = 0 and pro-
vides a complex optical field u0

(

x, y, z = 0
)

 that propagates within the diffractive network. The propagation 
within a diffractive network is modeled following the Rayleigh-Sommerfeld equation29,

where n0 represents the optical wave right before the first diffractive layer and ∗ denotes 2D convolution opera-
tion. w is the complex-valued propagation kernel, which is given by,

with r =
√

x2 + y2 + z2 , j =
√
−1 and � being the illumination wavelength. The resulting optical field is fur-

ther modulated by the spatially-engineered diffractive layers. Assuming each diffractive layer (positioned at 
z = zl , l = 1, . . . , 4 ) to be a thin phase element, the wave modulation provided by the lth diffractive layer can be 
formulated as:

Therefore, the optical field right after each diffractive layer can be written as

(4)n0
(

x, y, z0
)

= u0
(

x, y, 0
)

∗ w
(

x, y, z0
)

,

(5)w
(

x, y, z
)

= z
r2

(

1
2πr +

1
j�

)

exp
(

j2πr
�

)

,

(6)tl = exp
(

jφ
(

x, y, zl
))

.

Figure 4.   Logical OR operator that is composed of cascaded diffractive NAND gates. (a) Digital 
implementation of an OR operator using NAND gates. (b) All-optical OR gate that is composed of cascaded 
diffractive NAND gates. (c) A portion of the design map (Fig. 2b) showing the correctness of the intermediate 
all-optical calculation steps ( x1

i
 ) and the output of the OR gate (O) under different input combinations. (d) The 

intensity profiles at the output plane of the final diffractive NAND gate. The inserted numbers in white font 
color indicate the relative optical signal within each aperture. Each input optical logical value is assumed to have 
a relative optical signal level of 256 (a.u.), defining the ideal signal level per aperture.
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Figure 5.   A half-adder that is composed of cascaded diffractive NAND gates. (a) Digital implementation of a 
half-adder using NAND gates. (b) An all-optical half-adder composed of cascaded diffractive NAND gates. (c) 
The correctness of the intermediate all-optical calculation steps ( x1

i
 ) and the sum (S) and carry (C) of the half-

adder using different input combinations. (d) The intensity profiles at the output plane of the diffractive NAND 
IV (representing the sum) and the diffractive NAND V (representing the carry) gates. The inserted numbers 
in white font color indicate the relative optical signal within each aperture. Each input optical logical value is 
assumed to have a relative optical signal level of 1024 (a.u.), defining the ideal signal level per aperture.
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After being modulated by all the four diffractive layers of a NAND gate design, the optical field further 
propagates to the output plane, located at z = zd , which can be written as:

Diffractive NAND gate training.  Each diffractive layer of our NAND gate design contains 80 × 80 neu-
rons (diffractive features) that provide structured phase modulation with a pixel pitch of λ/2. The axial distance 
between the input plane and the first diffractive layer, between successive diffractive layers, and between the last 
diffractive layer and the output plane of the NAND is selected to be 50λ. In the network training phase, each 
batch contained 80 pairs of ideal optical logical values (with uniform intensity profiles) as inputs to the diffrac-
tive network, and 200 batches formed one epoch. The logical state of each input value was randomly assigned to 
be True with ~ 70% probability and the rest ~ 30% to be False in order to ensure that the output of a NAND gate 
has an equal probability of being True or False during the training phase. The optical fields within the designated 
apertures for the output optical logical values were used to calculate the training loss. For example, if the output 
value should be True (False), the upper (lower) aperture should be denoted as Acorrect and the optical field within 
the corresponding aperture should be denoted as ocorrect(x, y) , while the other remaining aperture is referred to 
as Awrong , with the corresponding field denoted as owrong

(

x, y
)

 . Note that the correct and wrong subscripts in this 
notation do not represent the output logical state but instead indicate if the corresponding aperture label matches 
the logical calculation result. Based on this notation, our training loss function can be expressed as:

where Lcorrect calculates the l2 distance between the output intensity profile in the correct aperture and a plane 
wave with unit amplitude, i.e.,

Lwrong was accordingly defined to represent the optical power that resides in the wrong aperture, i.e.,

Lunif  , on the other hand, quantified the phase ( φ ) variation of the optical field within only the correct aperture, i.e.,

The relative weights α , β and γ in Eq. (9) were empirically selected to be 100, 10, and 50, respectively. After 
calculating the loss values, the phase profiles on each diffractive layer were updated using an Adam optimizer41, 
which concludes one training batch. The diffractive NAND gate model was trained using Python (v3.7.3) and 
TensorFlow (v.1.15.0, Google Inc.) for 50 epochs on a desktop computer, with a GeForce GTX 1080 Ti graphical 
processing unit (GPU, Nvidia Inc.), an Intel® Core™ i9-7900X central processing unit (CPU, Intel Inc.) and 64 GB 
of RAM. This training process of a diffractive NAND gate takes ~ 100 min to complete (50 epochs).

Data availability
All the data and methods needed to evaluate the conclusions of this work are present in the main text and figures. 
Additional data can be requested from the corresponding author.

Code availability
The deep learning models reported in this work used standard libraries and scripts that are publicly available 
in TensorFlow.
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