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Abstract
Background: Contemporary deep learning approaches show cutting-edge performance in a variety of complex
prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited since deep learning
methods are often considered as non-interpretable black-box models. However, the machine learning community
made recent elaborations on interpretability methods explaining data point-specific decisions of deep learning
techniques. We believe that such explanations can assist the need in personalized precision medicine decisions via
explaining patient-specific predictions.
Methods: Layer-wise Relevance Propagation (LRP) is a technique to explain decisions of deep learning methods. It is
widely used to interpret Convolutional Neural Networks (CNNs) applied on image data. Recently, CNNs started to
extend towards non-Euclidean domains like graphs. Molecular networks are commonly represented as graphs
detailing interactions between molecules. Gene expression data can be assigned to the vertices of these graphs. In
other words, gene expression data can be structured by utilizing molecular network information as prior knowledge.
Graph-CNNs can be applied to structured gene expression data, for example, to predict metastatic events in breast
cancer. Therefore, there is a need for explanations showing which part of a molecular network is relevant for
predicting an event, e.g., distant metastasis in cancer, for each individual patient.
Results: We extended the procedure of LRP to make it available for Graph-CNN and tested its applicability on a large
breast cancer dataset. We present Graph Layer-wise Relevance Propagation (GLRP) as a new method to explain the
decisions made by Graph-CNNs. We demonstrate a sanity check of the developed GLRP on a hand-written digits
dataset and then apply the method on gene expression data. We show that GLRP provides patient-specific molecular
subnetworks that largely agree with clinical knowledge and identify common as well as novel, and potentially
druggable, drivers of tumor progression.
Conclusions: The developed method could be potentially highly useful on interpreting classification results in the
context of different omics data and prior knowledge molecular networks on the individual patient level, as for
example in precision medicine approaches or a molecular tumor board.
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Background
Gene expression profiling by microarrays or next-
generation sequencing has played a significant role in
identifying predictive gene signatures and discovering
individual biomarkers in cancer prognosis [1]. High-
throughput sequencing produces huge amounts of gene
expression data that can potentially be used for deriving
clinical predictors (e.g., predicting occurrence of metas-
tases) and identifying novel drug targets. Breast cancer
is one of the paradigmatic examples of the utility of
high-throughput data to derive prognostic molecular sig-
natures (PAM50, MammaPrint, OncotypeDX) [2, 3] that
predict clinical outcome. Based on the expression of 50
genes, the PAM50 classifier is widely used to divide breast
cancers into four main molecular subtypes: luminal A,
luminal B, triple-negative/basal-like, and HER2-enriched
[4]. While the two luminal subtypes are characterized
by high hormone receptor expression and generally have
a better prognosis, the basal-like breast cancers are a
heterogeneous group of hormone receptor- and HER2-
negative breast cancers that are highly proliferative and
often metastasize early. MammaPrint and OncotypeDX
are 70- and 21-gene expression signatures that strat-
ify patients according to the likelihood of metastasis.
Although molecular signatures have prognostic impact,
a more complete analysis of the molecular characteris-
tics in the individual patient is required for personalized
breast cancer therapy [2]. We hypothesize that molecular
signatures can differ from one patient to another due to
the heterogeneity of breast cancers. Such molecular sig-
natures can be depicted as patient-specific subnetworks
that are parts of a molecular network representing back-
ground knowledge about biological mechanisms. Present-
ing interpretable patient-specific subnetworks to clini-
cians and researchers enables better interpretability of the
data for further medical and pharmaceutical insights, and
possibly, for extended treatment options.
From a machine learning (ML) perspective, the pre-

diction of a clinical outcome is a classification task, and
molecular signatures can be identified as discriminative
features. One drawback is that the search for molecular
signatures is based on high-dimensional gene expression
datasets, where the number of genes is much higher than
the number of patients. The “curse of dimensionality”
leads to instability in the feature selection process across
different datasets. Stability can be improved including
prior knowledge of molecular networks (e.g., pathways)
into ML approaches [5]. ML methods benefit from path-
way knowledge since neighboring genes are not treated
as independent but instead similarities among adjacent
genes, which should have similar expression profiles, are
captured [6].
The essence of our classification task is to predict

an occurrence of distant metastasis based on gene

expression data structured by a molecular network
(encoded as a graph) representing connections between
genes. The patients are represented as graph signals (gene
expression data) on a single graph. Since each vertex of a
molecular network has a corresponding gene expression
value as an attribute, we perform a graph signal clas-
sification task. Patients’ gene expression profiles create
different graph signal patterns that can be learned by the
means of deep learning.
In recent years, deep learning has been widely applied

on image data using convolutional neural networks
(CNNs). The CNNs exploit the grid-like structure of
images and cannot directly process data structured in
non-Euclidean domains. Examples of non-Euclidean data
domains include networks in social sciences and molec-
ular networks in biology. Recently, deep learning meth-
ods extended to domains like graphs and manifolds [7].
Graph-CNN [8] learns graph signal patterns and can be
applied to our graph signal classification task.
Deep neural networks are able to model complex inter-

actions between the input and output variables. This com-
plexity does not allow to track what role a particular input
feature plays in the output; thus, a neural network itself
as a black-box ML model does not provide interpretable
insights.
On the other hand, decisions proposed by neural net-

works have to be explained before they can be taken
into account in the clinical domain [9]. The Euro-
pean Union’s recent General Data Protection Regulation
(GDPR) restricted automated decision making produced
by algorithms [10]. Article 13 of [10] specifies that clin-
ics should provide patients with “meaningful information
about the logic involved”. Article 22 of [10] states that
a patient shall have the right not to be subject to an
automated decision unless the patient gives a consent
with it (paragraph 2.c). Therefore, the explainability of
deep neural networks becomes an imperative for clinical
applications.
Explanation methods aim at making classification deci-

sions of complex ML models interpretable in terms of
input variables. These methods use one of two avail-
able approaches [11]: functional or message passing. The
first group of methods produces explanations out of local
analysis of a prediction. It includes the sensitivity anal-
ysis, Taylor series expansion, and the model agnostic
approaches LIME [12] and SHAP [13]. The second group
[14, 15] provides explanations by running a backward
pass in a computational graph, which generates a predic-
tion as its output. The Layer-Wise Relevance Propagation
(LRP) method [15] combines through the framework of
deep Taylor decomposition [11] functional and message
passing approaches to generate relevances of each input
feature. For a fixed input feature, the relevance shows
how much this feature influences the classifier’s decision.
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The relevances are generated for each data point (in our
application each patient) individually.
In image data, LRP exhibited promising results and has

been applied in cancer research to identify prognostic
biomarkers: Klauschen et al. [16] applied LRP for visual
scoring of tumor-infiltrating lymphocytes (TIL) on hema-
toxylin and eosin breast cancer images. Binder et al. [17]
used LRP to identify spatial regions (cancer cell, stroma,
TILs) on morphological tumor images that explained
predictions of molecular tumor properties (like protein
expression).
There are also some interpretation methods special-

ized for Graph Neural Networks (GNN). In [18–20], the
authors provided explanationmethods that are exclusively
based on and crafted only for Graph Convolutional Net-
work [21] utilizing a convolutional architecture which is a
simplified version of that of Graph-CNN [8] we use. Ying
et al. [22] suggested the model-agnostic GNNExplainer
that is suitable for node classification, link prediction, and
graph classification, but the authors did not consider an
application of their approach to graph signal classifica-
tion [23, 24], which is the problem at hand. The GNN-
LRP method [25] proposes explanations in the form of
scored sequences of edges on the input graph (i.e., rele-
vant walks). Such a sequence represents a path extracted
from the input to the output of GNN that brings insights
for GNN’s decision strategy. This is useful especially for
graph classification tasks, where each data point is rep-
resented as an individual graph. In our task, patients are
represented as graph signals on a single graph, so that this
method is not applicable.
Hence, there is still a lack of methods explaining individ-

ualized predictions in the context of graph signal classifi-
cation task. Here, we adapted an existing LRP technique
to graph convolutional layers of Graph-CNN [8] incor-
porating prior knowledge of a molecular network. Our
approach generates explanations in the form of relevant
subgraphs for each data point and allows to provide inter-
pretable molecular subnetworks that are individual for
each patient. According to the knowledge of the authors,
an explanation method that benefits from prior knowl-
edge and provides patient-specific subnetworks has not
been shown before. The novelty of our work consists
of two parts. First, we present the Graph Layer-wise
Relevance Propagation (GLRP) method delivering data
point-specific explanations for Graph-CNN [8]. Second,
we train Graph-CNN on a large breast cancer dataset to
predict an occurrence of distant metastasis and show how
patient-specific molecular subnetworks assist in personal-
ized precision medicine decisions: We interpret the clas-
sifier’s predictions by patient-specific subnetworks that
explain the differential clinical outcome and identify ther-
apeutic vulnerabilities.

Methods
Gene expression data andmolecular network
Protein-protein interaction network
We used the Human Protein Reference Database (HPRD)
protein-protein interaction (PPI) network [26] as the
molecular network to structure the gene expression data.
The database contains protein-protein interaction infor-
mation based on yeast two-hybrid analysis, in vitro and
in vivo methods. The PPI network is an undirected graph
with binary interactions between pairs of proteins. The
graph is not connected.

Breast cancer data
We applied our methods to a large breast cancer patient
dataset that we previously studied and preprocessed [27].
That data is compiled out of 10 public microarray datasets
measured on Affymetrix Human Genome HG-U133 Plus
2.0 and HG-U133A arrays. The datasets are available from
the Gene Expression Omnibus (GEO) [28] data repository
(accession numbers GSE25066, GSE20685, GSE19615,
GSE17907, GSE16446, GSE17705, GSE2603, GSE11121,
GSE7390, GSE6532). The RMA probe-summary algo-
rithm [29] was used to process each of the datasets, and
only samples with metadata on metastasis-free survival
were selected and combined together on the basis of HG-
U133A array probe names. Quantile normalization was
applied over all datasets. In the case of several probes
mapping to one gene, only the probe with the highest aver-
age value was considered. After pre-processing the dataset
contained 12,179 genes in 969 patients. The patients were
assigned to one of two classes: 393 patients with distant
metastasis within the first 5 years and 576 patients with-
out metastasis having the last follow-up between 5 and
10 years. Breast cancer molecular subtypes for the patient
samples were predicted in [27] utilizing genefu R-package
[30].
After mapping of 12,179 genes to the vertices of the

PPI, the resulting PPI graph consisted of 7168 vertices
(mapped genes) in 207 connected components. The main
connected component had 6888 vertices, and each of the
other 206 components had from 1 to 4 vertices. For fur-
ther analyses, we utilized only the main connected com-
ponent since the Graph-CNN requires the graph to be
connected. The preprocessed data is provided in [31].

Expression data of HUVECs before and after TNFα stimulation
For validation purposes, we analyzed gene expression data
from human umbilical vein endothelial cells (HUVECs)
treated or not treated with tumor necrosis factor alpha
TNFα [32]. The data, provided by the same authors
(GEO database series: GSE144803), containing 39 sample
pairs (treated and untreated), were suitable for a binary
classification task and balanced. The expression data were
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quantile normalized and mapped to vertices of HPRD
PPIs resulting in 7798 genes in the main connected com-
ponent.

Problem formulation
We focus on explaining classifier decisions of Graph-CNN
adapting existing LRP approaches for graph convolutional
layers. LRP should be applied as a postprocessing step
to a model already trained for the ML task. The task is
formulated as a binary classification of gene expression
data X ∈ Rn×m to a target variable Y ∈ {0, 1}n. n is the
number of data points (patients) and m is the number of
features (genes). The information of the molecular net-
work is presented as an undirected weighted graph G =
(V ,E,A), where V and E denote the sets of vertices and
edges respectively and A denotes the adjacency matrix.
The Graph-CNN was designed to work with weighted
graphs. We define weighted adjacency matrix A of dimen-
sionality m × m since in general molecular networks can
be weighted. For the unweighted HPRD PPI network, the
matrix A has only “0s” and “1s” as its elements. A row x
of the gene expression matrix X contains data from one
data point (patient) and can be mapped to the vertices of
the graph G. In such a way, values of x are interpreted as a
graph signal.
A trained neural network can be represented as a func-

tion f : Rm+ → [0, 1] mapping the input to the probability
of the output class. The input x is a set of gene expression
values x = {

xg
}
where g denotes a particular gene. The

function f (x) computes the probability that a certain pat-
tern of gene expression values is present w.r.t to the output
class. LRP methods apply propagation rules from the out-
put of the neural network to the input in order to quantify
the relevance score Rg(x) for each gene g. These relevances
show how much gene g influences the prediction f (x) :

∀x : f (x) =
∑

g
Rg(x). (1)

Equation (1) [11] demonstrates that the relevance scores
are calculated w.r.t every input data point x.

Graph Convolutional Neural Network and Layer-wise
Relevance propagation
Usual CNNs learn data representations on grid-like struc-
tures. The Graph-CNN [8] as a deep learning technique is
designed to learn features on weighted graphs. The con-
volution on graphs is used to capture localized patterns of
a graph signal. This operation is based on spectral graph
theory. The main operator to investigate the spectrum of
a graph is the graph Laplacian L = D − A, where D
is a weighted degree matrix, and A is a weighted adja-
cency matrix. L is a real symmetric positive semidefinite
matrix that can be diagonalized such that L = U�UT ,
where � = diag ([ λ1, . . . , λm] ) is a diagonal non-negative

real valued matrix of eigenvalues, matrix U is composed
of eigenvectors. Matrices U and UT define the Fourier
and the inverse Fourier transform respectively. Accord-
ing to the convolution theorem, the operation of graph
convolution can be viewed as a filtering operation:

y = hθ (L)x = hθ

(
U�UT

)
x = Uhθ (�)UTx, (2)

where x, y ∈ Rm, and the filter hθ (�) is a function of eigen-
values (graph frequencies). To localize filters in space, the
authors in [8] decided to use a polynomial parametriza-
tion

hθ (�) =
K−1∑

k=0
θk�

k , (3)

where θ ∈ Rk is a vector of parameters. The order of the
polynomial, which is equal to K−1, specifies the local K−
1 hop neighborhood. The neighborhood is determined by
the shortest path distance. The polynomial filter can be
computed recursively, as a Chebyshev expansion, which is
commonly used in graph signal processing to approximate
kernels [33]. The Chebyshev polynomial Tk(x) of order k
is calculated as Tk(x) = 2xTk−1(x) −Tk−2(x) with T0 = 1
and T1 = x. The Chebyshev expansion applies for val-
ues that lie in [−1, 1]; therefore, the diagonal matrix of
eigenvalues � has to be derived from a rescaled Laplacian
L = (D − A)/λmax − In. Thus, the filtering operation can
be rewritten as

y = hθ (�)x =
K−1∑

k=0
θkTk(L)x = [x̄0, . . . , x̄K−1] θ , (4)

where x̄k = 2Lx̄k−1 − x̄k−2 with x̄0 = x and x1 = Lx.
The transition in Eq. 4 is done according to the obser-
vation

(
U�UT)k = U�kUT . The filtering at the con-

volutional layer boils down to an efficient sequence of
K − 1 sparse matrix-vector multiplications and one dense
matrix-vector multiplication [8].
LRP is based on the theoretical framework of deep Tay-

lor decomposition. The function f (x) from Eq. (1) can be
decomposed in terms of the Taylor expansion at some
chosen root point x∗ so that f (x∗) = 0. The first order
Taylor expansion of f(x) is:

f (x) = f (x∗) +
m∑

g=1

∂f
∂x

∣∣∣
x=x∗ ·

(
xg − x∗

g

)
+ ε

= 0 +
m∑

g=1
Rg(x) + ε

(5)

where the relevances Rg(x) are the partial differentials of
the function f (x). The details of how to choose a good
root point are described in [11]. The f (x) represents an
output neuron of a neural network which consists of mul-
tiple layers and each layer consists of several neurons. A
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neuron receives a weighted sum of its inputs and applies a
nonlinear activation function. The idea of the deep Taylor
decomposition is to perform a first order Taylor expansion
at each neuron of the neural network. These expansions
allow to produce relevance propagation rules that com-
pute relevances at each layer in a backward pass. The rules
redistribute the relevance from layer to layer starting from
output until the input is reached. The value of the output
represents the model’s decision which is equal to the total
relevance detected by the model.
LRP is commonly applied to deep neural networks con-

sisting of layers with rectified linear units (ReLU) nonlin-
earities. In our experiments, we use only this activation
function. Let i and j be single neurons at two consecutive
layers at which the relevance should be propagated from j
to i. The activation function has this form:

aj = max
(

0,
∑

i
aiwij + bj

)

(6)

where ai, aj are neurons’ values, wij are weights, and bj is
bias. Noticeably, the layers of this type always have non-
negative activations. The relevance propagation rule is the
following:

Ri =
∑

j

aiw+
ij

∑
i aiw

+
ij + ε

Rj, (7)

where w+
ij corresponds to the positive weights wij and ε

stabilizes numerical computations [9]. We set ε to 1−10.
Equation (7) depicts the z+ rule coming from deep Tay-
lor decomposition [11]. The z+ rule is commonly applied
to the convolutional and fully connected layers. It favors
the effect of only positive contributions to the model deci-
sions. The first input layer can have other propagation
rules that are specific to the domain [34]. In our work, we
used the rule (7) for the input layer as well since the gene
expression data has positive values.
In order to propagate relevance through the filtering (4),

we rewrite it as follows:

y =
K−1∑

k=0
θkTk(L)x = [

L̄0, . . . , L̄K−1
]
θx = Wx, (8)

where matrix W ∈ Rm×m connects nodes y and
x. The computation of matrix W is done as: W =[
L̄0, . . . , L̄K−1

]
θ , where L̄k = 2LL̄k−1 − L̄k−2 with L̄0 =

I and L̄1 = L are the Chebyshev polynomials of the
Laplacian matrix.
Each convolutional layer has Fin channels

[
x1, . . . , xFin

] ∈ Rm×Fin+ (9)

in the input feature map and Fout channels
[
y1, . . . , yFout

] ∈ Rm×Fout (10)

of the output feature map. We consider the values of out-
put feature maps before applying ReLU non-linearities on
them. The Fin × Fout vectors of the Chebyshev coeffi-
cients θi,j ∈ Rk are the layer’s trainable parameters. The
input feature map can be transformed into a vector x̂ =[
xT1 , . . . , x

T
Fin

]T ∈ Rm·Fin+ . We adapt Eq. (8) to compute the
jth channel of the output feature map based on the input
feature map:

yj = [
L̄0, . . . , L̄K−1

] · [
θ1,j, . . . , θFinj

] ·
[
xT1 , . . . , x

T
Fin

]T

=
[
L̂1,j, . . . , L̂Fin,j

]
·
[
xT1 , . . . , x

T
Fin

]T

= Ŵj × x̂ ∈ Rm

(11)

where L̂i,j = [
L̄0, . . . , L̄K−1

]
θi,j ∈ Rm×m, Ŵj =[

L̂1,j, . . . , L̂Fin,j
]

∈ Rm×m·Fin

Since the jth channel of the output feature map is con-
nected through the matrix-vector multiplication with the
input featuremap, Ŵj can be treated as amatrix of weights
joining two fully connected layers. Therefore, the rele-
vance Rj

y ∈ Rm+ from the jth output channel can be
propagated to the input feature map relevance Rj

x̂ ∈ Rm·Fin+
according to the rule (7). Overall, the relevance propa-
gated from the output feature map to the input feature
map is:

Rx̂ =
Fout∑

j=1
Rj
x̂ ∈ Rm·Fin+ . (12)

For running LRP on graph convolutional layers, one
needs to compute huge and dense matrices Ŵj. It requires
K − 2 sparse matrix-matrix multiplications and one
sparse to dense matrix-matrix multiplication. The com-
putations for relevance propagation are heavier and much
more memory demanding compared to the filtering (4).
The code implementing our GLRP approach is available
in [35].

GLRP on gene expression data
To demonstrate the utility of GLRP, the Graph-CNNs
were trained on two gene expression datasets described
in the “Gene expression data and molecular network”
section. In our previous study [23], the gene expression
data were standardized for the training. But in this paper,
we did not standardize the data. The argument for it is
the following. For the non-image data, to standardize the
input features is the usual practice. However, in case of
standardization, the input features are treated indepen-
dently. For an image, the neighboring pixels are highly cor-
related. If the pixels as features are standardized across the
dataset, then this can distort the pattern of the image quite
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significantly and lead to misinterpretation. Analogically,
feature wise standardization of microarray data changes
expression patterns of genes located in the same neighbor-
hood of amolecular network (HPRD PPI in our case). This
might affect the explainability of the Graph-CNN that we
aim at. Therefore, we trained the Graph-CNN directly on
the quantile normalized data avoiding the additional stan-
dardization step. Instead, we subtracted theminimal value
(5.84847) of the data from each cell of the gene expression
matrix to keep the gene expression values non-negative.
If initially, GE data was lying in [5.84847, 14.2014], now it
is in the interval [0.0, 8.3529]. This transformation allows
Graph-CNN to converge faster, to apply the LRP prop-
agation rule (7) suitable for non-negative input values,
and to preserve original gene expression patterns in local
neighborhoods of the PPI network.
For each of the two gene expression datasets structured

by the same prior knowledge (HPRD PPI), we used a
10-fold cross validation over a whole dataset to estimate
the predictive performance of Graph-CNN. The hyper-
parameters such as the number of filters, the presence
of pooling, the learning rate, and decay were tweaked
manually on this 10-fold cross validation.
The architecture of the Graph-CNN trained on the

HUVECs dataset and its performance are given in the
“Comparison of subnetworks derived by GLRP to gene-
coexpression networks identified by WGCNA” section.
For the breast cancer dataset, the Graph-CNN architec-

ture consisted of two graph convolutional layers following

maximum pooling of size 2, and two hidden fully con-
nected layers with 512 and 128 units respectively. Each
graph convolutional layer contained 32 filters covering
the vertex’ neighborhood of size 7. For the performance
comparison, we trained a “glmgraph” method [36] imple-
menting network-constrained sparse regression model
using HPRD PPI network, and Random Forest without
any prior knowledge as baselines. The results on 10-fold
cross validations are presented in the “GLRP to deliver
patient-specific subnetworks” section.
Further we generated the patient-specific (data point

specific) subnetworks via GLRP. For that, each of the gene
expression datasets was randomly split again: 90% train-
ing and 10% test. We retrained the Graph-CNN on 90%
of data using manually selected hyperparameters from 10-
fold cross validation, and propagated relevances on test
data which was not “seen” by the model during train-
ing to make it more challenging. Since the LRP rule (7)
propagates only positive contributions, our Graph-CNN
had two output neurons for binary classification tasks
that showed the probability of these two classes. For each
patient in the test set, relevance was propagated by GLRP
from the predicted output neuron to the input neurons
representing genes (vertices) of the underlying molecu-
lar network. The workflow to deliver the patient-specific
subnetworks is depicted on Fig. 1. A patient-specific sub-
network explaining the prediction was constructed from
the 140 most relevant genes. Selecting more than 140 top
relevant vertices entailed visualization issues. The single-

Fig. 1 The workflow to obtain a data point-specific subnetwork. For clarity, a data point represented by a gene expression profile of a patient from
the breast cancer dataset. The molecular network (HPRD PPI) structures the genes and is the same for every patient. Patient’s gene-expression
values are assigned to every vertex of the HPRD PPI so that the patient is represented as a graph signal. Trained Graph-CNN performs graph
convolutions and as output classifies the patient as metastatic or non-metastatic. GLRP is applied as a post hoc processing, propagating the
relevance from the predicted label up to the input features (vertices of the molecular network). Top 140 highly relevant vertices constitute a
molecular subnetwork. Molecular subnetworks differ from one patient to another
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tons were deleted so that the subnetwork consistedmainly
of around 130 vertices. The same workflow was applied
to generate data-point-specific subnetworks for the data
described in the “Expression data of HUVECs before and
after TNFα stimulation” section.

Pathway analysis
Enrichment of signal transduction pathways annotated
in the TRANSPATH� database version 2020.1 [37] in
genes prioritized by GLRP were analyzed using the gen-
eXplain platform version 6.1 [38]. The analysis based on
the Fisher’s exact test [39] was carried out for gene sets
obtained for individual patients from the breast cancer
dataset as well as for their combination into subtype gene
sets.
The following calculations were applied to investigate

differences in pathway hits. Let P denote a set of path-
way genes and Si and Sk two subnetwork gene sets, so that
Pi = P ∩ Si and Pk = P ∩ Sk are the sets of pathway
genes matched by the two subnetworks. The difference
�Pi,k in matched pathway genes was then calculated as
|(Pi ∪Pk) \ (Pi ∩Pk)|/|Pi ∪Pk| with |Pi ∪Pk| > 0. For each
selected pathway, we calculated �Pi, k for each pair of
subnetworks and reported the median of examined pairs.

Comparison of subnetworks derived by GLRP to
gene-coexpression networks identified byWGCNA
To further examine the biological relevance of subnet-
work genes prioritized by GLRP and for the purpose
of comparison to an already available method that uses
expression and network information to prioritize gene
sets, we analyzed the gene expression data described
in “Expression data of HUVECs before and after TNFα
stimulation” section. We compared gene sets identified
in our subnetworks to gene modules and differentially
expressed genes in response to TNFα identified by Rhead
et al. [32]. Rhead et al. [32] reported gene modules
obtained by weighted gene co-expression network anal-
ysis (WGCNA). The method has been applied in many
studies and constructs a gene network based on expres-
sion measurements from which it can derive modules
of co-expressed genes [40]. We trained a Graph-CNN
on the gene expression data to classify the TNFα treat-
ment status of HUVECs. The Graph-CNN architecture
consisted of 2 convolutional layers with 4 and 8 filters
respectively followed by one hidden fully connected layer
with 128 nodes. The vertex’s neighborhood covered by
graph convolutions was of size 7. No pooling was used.
The performance of the Graph-CNN in 10-fold cross val-
idation: mean 100*AUC, accuracy, and F1-weighted were
99.49, 96.25% and 96.06%, respectively. A random for-
est achieved the same performance. We generated the
subnetworks according to the “GLRP on gene expression
data” section, retrained the Graph-CNN on 70 randomly

selected samples, and applied GLRP on 8 test samples
(4 treated and 4 not treated). The test samples were
predicted correctly. For each of the 8 test samples, we
constructed a subnetwork. Associations between subnet-
work genes sets and 16 gene modules defined by Rhead et
al. [32] as well as 589 upregulated genes (log-fold change
> 0.5, FDR < 0.01), 425 downregulated genes (log-fold
change <− 0.5, FDR < 0.01), and the combined set of 1014
DE genes were analyzed using the Functional classifica-
tion tool of the geneXplain platform [41]. Fisher test cal-
culations were carried out with a total contingency table
count corresponding to the number of genes in [32, file S1
of] after mapping to Ensembl [42] gene ids (10022 genes).
Rhead et al. [32] assigned a color code to the 16 gene
co-expression modules and denoted them as black, blue,
brown, cyan, green, greenyellow, grey, magenta, midnight-
blue, pink, purple, red, salmon, tan, turquoise, and yellow
which is maintained in results reported here.

Results
Sanity check of the implemented graph LRP
To initially validate our implemented LRP, we applied
Graph-CNN on the MNIST dataset [43] in the same way
as described in the paper [8]. The MNIST dataset con-
tains 70,000 images of hand-written digits each having a
size of 28 by 28 pixels. To apply Graph-CNN on the image
data, we constructed an 8 nearest-neighbors graph sim-
ilarly to the schema proposed in [8], with the exception
that all the weights are equal to 1. The weight 1 is more
natural for the graph connecting neighboring image pix-
els. Thus, each image is a graph signal represented by
node attributes—pixel values.We achieved high classifica-
tion accuracy (99.02%) on the test set for the Graph-CNN,
which is comparable to the performance of classical CNN
(99.33%) reported in [8]. The number of parameters was
the same for both methods.
Usually, to manage box-constrained pixel values, the

special pixel-specific LRP rule is applied for the input
layer. This pixel-specific rule highlights not only the digits
itself, but also the contours of the digits [34, Fig. 13 of]. In
contrast, the rule (7) highlights only those positively rel-
evant parts of the image where the signal of the digit is
present.We kept the propagation rule (7) for the input and
all other layers in all our experiments. Further, we visually
compared on the same digits how the heatmaps generated
by implemented GLRP correspond to the heatmaps gen-
erated by usual LRP procedure applied on classical CNN
(Fig. 2).
The heatmaps were rendered only for the classes pre-

dicted by classical CNN and Graph-CNN. In this case,
the classes are “6” and “3”. For the Graph-CNN, a bigger
part of the digit is relevant for the classification since the
covered neighborhood can be expanded up to 24 hops.
Graph-CNN’s filters are isotropic; thus, they tend to cover
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Fig. 2 From left to right: initial image, LRP on classical CNN and GLRP on Graph-CNN

roundish areas that concern rounded patterns (curves) of
the digit (Additional file 1: Fig. S1).

Genes selected by GLRP correlate with modules identified
by gene co-expression network analysis
In the analysis of TNF-induced gene expression changes
in HUVECs, our procedure prioritized in total 168 genes
of which 105 genes were found in subnetworks of all eight
test samples (Additional file 2). Remarkably, the green
gene module, which was the most strongly correlated one
with TNFα upregulation [32], showed significant associ-
ation (adjusted p value < 0.05) with the combined set of
subnetwork genes, with genes found in the majority of
subnetworks and also with 5 of the 8 subnetworks (Addi-
tional file 2). At the same significance level, the turquoise
gene module described in [32] was strongly associated
with 2 of 8 subnetworks and with genes found in all 8 sub-
networks. In addition, both the green and the turquoise
modules showed moderate association (adjusted p value
< 0.1) with the majority of gene sets defined on the basis
of the test subnetworks. Furthermore, we found strong
(adjusted p value < 0.05) or moderately (adjusted p value
< 0.1) significant overlap between upregulated genes and
some subnetwork gene sets. The gene modules cyan,
greenyellow, andmidnightblue did not overlap with GLRP-
derived subnetworks. These results demonstrate partial
agreement between gene sets suggested by GLRP, another
gene network analysis and classical differential expression
analysis. Hence, the GLRP-based subnetworks gathered
biologically meaningful genes and may even complement
other approaches in revealing important properties of
the underlying biological systems. Additionally, another
two gene sets were compared with WGCNA modules:
the intersection of subnetworks genes and genes that
occurred in more than in 4 test samples subnetworks.
Notably, the individual subnetworks shared more genes
with the green and turquoise WGCNA modules than

those described gene sets, pointing out the ability of GLRP
to identify sample-specific genes.

GLRP to deliver patient-specific subnetworks
We applied the GLRP to the Graph-CNN trained on gene
expression data from the “Breast cancer data” section. The
gene expression data was structured by a protein-protein
interaction network. The standardization of features was
not performed as described in the “GLRP on gene expres-
sion data” section. The prediction task performed by
the Graph-CNN was to classify patients into 2 groups,
metastatic and non-metastatic. The results of a 10-fold
cross validation are depicted in Table 1. While Graph-
CNN and glmgraph utilized the HPRD PPI network topol-
ogy, a random forest did not use any prior knowledge.
glmgraph was not evaluated on non-standardized data,
since it had convergence issues in this case. The metrics
were averaged over folds and the standard errors of their
means were calculated.
The GLRP was applied as described in the“GLRP on

gene expression data” section. We retrained the Graph-
CNN on 872 patients and generated relevances for 97
test patients. The relevances were propagated from the
Graph-CNN’s output node corresponding to the cor-
rectly predicted class. The most frequently selected fea-
tures are summarized in Additional file 1: Table S1. The
eukaryotic translation elongation factor EEF1A1, which
is overexpressed in the majority of breast cancers and
protects tumor cells from proteotoxic stress [44], was
the sole factor that was selected in all of the 97 test set
patients. Other frequently selected features in both non-
metastatic as well as metastatic patients included genes
such as the epithelial-to-mesenchymal-transition (EMT)-
related gene VIM (46/58 non-metastatic, 30/39metastatic
patients), the extracellularmatrix protein FN1 (43/58 non-
metastatic, 22/39metastatic patients), the actin cytoskele-
ton regulator CFL1 (7/58 non-metastatic, 7/39 metastatic
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Table 1 Performance of Graph-CNN on metastatic event
prediction, depending on normalization

Method Std 100*AUC Accuracy, % F1-weighted, %

Graph-CNN - 82.57±1.25 76.07±1.30 75.82±1.33

Random Forest - 81.27±1.66 74.23±1.73 73.47±1.84

Graph-CNN + 82.16±1.25 76.18±1.36 75.86±1.35

Random Forest + 81.40±1.76 74.74±1.67 74.00±1.82

glmgraph + 80.88±1.37 75.14±1.30 74.73±1.39

Std stands for standardization of features (genes)

patients), and the estrogen receptor ESR1 28/58 non-
metastatic, 10/39 metastatic patients) that are all known
to be linked with breast cancer development and progres-
sion [45–48]. This indicates that our method successfully
identified relevant key players with a general role in breast
tumorigenesis.
Additionally, we show individualized PPI subnetworks

delivered for four correctly predicted breast cancer
patients (Table 2) from the microarray data set. Two of
them had been assigned with the most common subtype
luminal A (LumA), while the other two suffered from the
highly aggressive basal-like subtype. In each group, one
patient with early metastasis was picked and one who did
not develop any within at least 5 years of follow-up.
The generated PPI subnetworks are displayed in Fig. 3.

The sequence of pictures in order ABCD is the same as in
the table.
Interestingly, the networks of both LumA patients con-

tained ESR1 which fits well since this subtype is con-
sidered as estrogen receptor positive [49]. In contrast,
genes often associated with the basal-like subtype and
a poor prognosis such as MCL1, CTNNB1, EGFR, or
SOX4 were found in the basal-like patient GSM519217
suggesting that the generated networks are capable of
extracting breast cancer subtype-specific features. The
comparison of the subnetworks of the non-metastatic
and the metastatic patients furthermore revealed some
patient-specific genes which might give valuable infor-
mation about specific mechanisms of tumorigenesis and
therapeutic vulnerabilities in the respective patient. In
general, it seemed that the subnetworks of the non-
metastatic patients contained more genes that have been

Table 2 Patients that the PPI subnetworks are generated for

Patient’s
ID

Subtype Metastatic
event

Time of
metastases,
years

Last
follow-up,
years

GSM519217 Basal 1 0.9 -

GSM615233 LumA 1 0.79 -

GSM615695 Basal 0 - 5.38

GSM150990 LumA 0 - 9.93

linked to better prognostic outcomes such as JUP, PCBP1,
and HMGN2 in GSM615695 [50–52] or RASA1, IL6ST,
KRT19, and RPS14 in GSM150990 [53–56], while the net-
works of both metastatic patients harbored genes that are
known to be involved in aggressive tumor growth or ther-
apy resistance which might explain the early metastatic
spread in these patients. Some examples are CDK1, SFN,
and XPO1 in GSM519217 [57–59] or CAV1, PTPN11, and
FTL in GSM615233 [60–62].
However, not only the presence of specific genes might

be important, but also their overall expression level. Our
analyses identified, e.g., the EMT-related gene VIM as
one of the most relevant nodes in the subnetworks of
both metastatic patients in which the gene was highly
expressed (> 75% quantile based on the gene expression
throughout the whole patient cohort). In contrast, VIM
was also present in the subnetworks of the two non-
metastatic patients, however, with a lower relevance and
a particularly low expression (< 25% quantile). VIM is an
importantmarker for EMT and high expression levels cor-
relate with a motile, mesenchymal-like cancer cell state,
thus making VIM an essential effector of metastasis [45].
A comparison of subnetwork genes of 79 correctly pre-

dicted test set patients to a database of signal transduction
pathways confirmed significant enrichment of pathways
that have previously been associated with cancer disease
mechanisms such as the EGF, ER-alpha, p53, and TGFbeta
pathways as well as Caspase and beta-catenin networks.
Comparisons were performed for each patient as well
as for subtype gene sets formed by combining subnet-
work genes of patients associated with a breast cancer
subtype. Results for the 238 signaling pathways from the
TRANSPATH� database that were significantly enriched
with subtype genes are visualized in Fig. 4. Differences in
enrichment significance may suggest that the importance
of some signaling pathways detected this way is subtype-
specific, e.g., for YAP ubiquitination or the VE-cadherin
network (orange heatmap, Fig. 4, see also Additional
file 1: Table S2 for details). The pattern of enrichment
found on the level of cancer subtypes coincided well with
the findings for subnetwork genes of individual patients
revealing several molecular networks with elevated sig-
nificance in both subtype and patient gene sets such as
the EGF pathway, although the patient-level visualiza-
tion did not suggest subtype-specific enrichment (green
heatmap, Fig. 4). One source of these observations can
be that patient subnetworks tend to be associated with
certain pathways but cover different pathway components
(genes). We therefore compared pathway genes in pairs
of patient subnetworks for the 33 largest pathways. In 18
pathways, the median pair of patient subnetworks differed
in 33% or more of the genes matched within a pathway
(see also Additional file 1: Table S3 for details). These
results demonstrate that the subnetworks obtained by
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Fig. 3 The PPI subnetworks for (1) metastatic patients a (GSM519217) and b (GSM615233) and (2) non-metastatic patients c (GSM615695) and d
(GSM150990). The coloring of the node is based on gene expression levels by 25% and 75% quantiles (blue=LOW, yellow=NORMAL, red=HIGH),
based on the gene expression throughout the whole patient cohort. The size of vertices corresponds to the relevance scores within one
subnetwork. All the subnetworks are highly relevant compared to the rest of the PPI network. Green circles highlight targetable genes

Graph-CNN were enriched with common signaling path-
ways relevant for the respective disease and can assign
patient-specific priorities to pathway components.
Finally, we tested whether the subnetworks can also

be used for finding potentially targetable genetic vulner-
abilities that could open new options for personalized
treatment decisions. We applied the “MTB report”

methodology described in [63] to identify actionable
genes present in the subnetworks. For that, we extended
the algorithm to match high expression with gain of func-
tion alterations, and low expression with loss of function
alterations. The results are summarized in Table 3.
Although information about the presence of actionable

genetic variants is missing from our patient microarray
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Fig. 4 Signal transduction pathway analysis of subnetwork genes reported for 79 patients in 5 subtypes. (From left to right) Blue heatmap: 238
signaling pathways clustered according to proportion of shared subnetwork genes; Orange heatmap: Enrichment significance of pathways in
subnetwork genes combined from patients of given subtype. Darker orange indicates higher significance; Purple heatmap: Median difference in
matched pathway genes observed in pairwise comparisons of subnetwork gene sets from patients mapped to 33 pathways. Darker purple indicates
higher tendency of pairs of subnetwork gene sets to coincide with different pathway genes; Green heatmap: Enrichment significance of pathways
in subnetwork genes of 79 patients. Darker green indicates higher significance. Corresponding subtypes and metastatic status are shown by the
annotation above the heatmap. A detailed version of this figure capturing pathway and sample names is provided in Additional file 1: Fig. S2

data, the information generated by the PPI subnetworks
could be used to define specific panels for subsequent
sequencing. Indeed, the MTB reports highlighted spe-
cific genes that could be targeted therapeutically in each
of the four patients: In the non-metastatic LumA patient
GSM150990 ESR1 was proposed as therapeutic target

which is in line with current treatment regimens that use
hormone therapy as themain first-line treatment of choice
for this patient subgroup. In contrast, in the metastatic
LumA patient GSM615233 FOS and PTPN11 were iden-
tified as novel actionable alterations. In the often rapidly
relapsing basal-like patients HSPB1 and ERBB2 were

Table 3 Actionable genes identified by the MTB report workflow

Patient Gene Expression Known Var Predicts

615695 HSPB1 Normal expression Response to gemcitabine

ABL1 High GoF Response to ABL TK inhibitors (imatinib, desatininb, ponatinib, regorafenib. . .)

AKT1 High GoF Response to PI3K, AKT, MTOR inhibitors; resistance to BRAF inhibitors

ERBB2 High GoF Response to ERBB2, EGFR, MTOR, AKT inhibitors

MAPK3 High GoF Resistance to EGFR inhibition

519217 HSPB1 Normal expression Response to gemcitabine

CTNNB1 High GoF Response to everolimus + letrozole; resistance to Tankyrase inhibitors

EGFR High GoF Response to EGFR, ERBB2, HSP90 and MEK inhibitors

ERBB2 High GoF Response to ERBB2, EGFR, MTOR, AKT inhibitors

JUN High overexpr Response to irbesartan (angiotensin II antagonist)

MCL1 High GoF Resistance to anti-tubulin agents

PTPN11 High GoF Response to MEK inhibitors

615233 FOS High overexpr Response to irbesartan (angiotensin II antagonist)

PTPN11 High GoF Response to MEK inhibitors

150990 HSPB1 Normal expression Response to gemcitabine

ESR1 High GoF Response to novel ER degraders, fulvestrant, tamoxifen

Genes from the PPI subnetworks were matched to known genomic alterations (Known Var) that predict either response or resistance to drugs (Predicts). High and low gene
expression were matched to gain of function (GoF) and loss of function (LoF) genomic variants, respectively
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identified as common targets as well as MAPK3, AKT1,
and ABL1 for the non-metastatic patient GSM615695
or EGFR, MCL1, CTNNB1, PTPN11, and JUN for the
metastatic patient GSM519217, thereby suggesting novel
possibilities for combinatory or alternative treatments.
Taken together, GLRP provides subnetworks centered
around known oncogenic drivers that seem reasonable
in the context of cancer biology and can help to iden-
tify patient-specific cancer dependencies and therapeutic
vulnerabilities in the context of precision oncology.

Discussion
In our work, we focused on the interpretability of a deep
learning method utilizing molecular networks as prior
knowledge. We implemented LRP for Graph-CNN and
provided the sanity check of the developed approach on
the MNIST dataset. Essentially, the main aim of the paper
was to explain the prediction of metastasis for breast
cancer patients by providing an individual molecular sub-
network specific for each patient. The patient-specific
subnetworks provided interpretability of the deep learn-
ing method and demonstrated clinically relevant results
on the breast cancer dataset.
Supposedly, the performance of Graph-CNN can be

improved. The batch normalization technique [64] that is
used to accelerate the training of deep neural networks is
not seen to be available for the Graph-CNN, so this can
be the way to enhance its performance. The LRP rule for
batch normalization layers is yet another procedure to be
adapted for Graph-CNN.
Another possibility to identify genes (and construct sub-

networks out of them) influencing classifier decisions is
to apply model-agnostic SHAP and LIME explanation
methods. LIME method provides explanations of a data
point based on feature perturbations. The method sam-
ples perturbations from a Gaussian distribution, ignoring
correlations between features. It leads to the instabil-
ity of explanations that is not favorable for personalized
medicine. SHAP provides Shapley values for each fea-
ture of a data point as well but does not have such an
issue, so we attempted to derive patients-specific subnet-
works applying TreeExplainer and KernelExplainer from
SHAP python module on Random Forest and Graph-
CNN respectively. The subnetworks were build on the
basis of HPRD PPI utilizing positive Shapley values,
which were pushing prediction to a higher probability of
corresponding class (metastatic or non-metastatic). The
subnetworks obtained were mostly consisting from sin-
gle vertices. In contrast, the subnetworks from GLRP
and Graph-CNN were mostly connected. The SHAP’s
DeepExplainer approach suitable for convenient deep
learning models is not applicable for Graph-CNN. The
model-agnostic KernelExplainer computes SHAP values
out of a debiased lasso regression. Reevaluating the model

happens several thousands numbers of times specified by
a user as well as a small background dataset is needed for
integrating out features. Hence, the KernelExplainer is not
scalable and application of it on Graph-CNN resulted in
not connected subnetworks as well.
Furthermore, the sensitivity of Graph-CNN to the

changes of prior knowledge is still to be investigated.
Authors in [8] showed that for the MNIST images a ran-
dom graph connecting pixels significantly decreases the
performance destroying local connectivity. In our case,
the permutation of the vertices of the PPI network does
not influence the classifier performance on standardized
gene expression data. Yet, PPI network is a small world
network and its degree distribution fits to the power law
with the exponent α = 2.70. It implies great connectiv-
ity between proteins and means that any two nodes are
separated by less than six hops. The filters of convolu-
tional layers cover a 7-hop neighborhood of each vertex,
so we assume it still might be enough to capture the gene
expression patterns. In our future work, we will investi-
gate how the properties of the prior knowledge influence
the performance and explainability of Graph-CNN.
The subnetworks generated by GLRP contained com-

mon potential oncogenic drivers which indicates that
they can extract the essential cancer pathways. Indeed,
our analyses identified genes associated with hormone
receptor-positive breast cancer (e.g. ESR1, IL6ST, CD36,
GLUL, RASA1) in the networks from the patients with
estrogen receptor positive, LumA breast cancer and genes
associated with the basal-like subtype (e.g., EGFR, SOX4,
AKT1 as well as high levels of HNRNPK) in the basal-
like patients, underlining the biological relevance of the
networks. Next to subtype-specific genes, the networks
contained several oncogenes that were found in all four
patients and could thus represent common drivers of
breast cancer initiation and progression. One example
is the actin-binding protein cofilin (CFL1) that regulates
cancer cell motility and invasiveness [46]. Another inter-
esting candidate is STAT3 which is activated in more
than 40% of breast cancers and can cause deregulated
cell proliferation and epithelial-to-mesenchymal transi-
tion (EMT) [65]. Our graphs not only displayed patient-
specific PPI subnetworks, but also concisely visualized
the relevance of each node and its expression levels. This
information is potentially relevant to judge the biological
significance of the gene in a patient-specific context.
Next to the common genes found in all four net-

works, each network was characterized by several special,
cancer-associated genes which are of high interest because
they might represent patient-specific central signaling
nodes and therapeutic vulnerabilities. Some examples are
PTPN11 that is known to activate a transcriptional pro-
gram associated with cancer stem cells or the EMT-related
genes SOX4 or VIM that might be responsible for the high
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invasive capacity of the tumors and their early metasta-
sis formation [45, 61, 66, 67]. Interestingly, the network
of the metastatic patient GSM615233 harbored the genes
FABP4 and LPL which both have been shown to interact
with CD36, another highly expressed node in the net-
work, to support cell proliferation and counteract apop-
tosis [68–70]. In contrast, in the non-metastatic patient
GSM150990 especially the interleukin receptor IL6ST and
the Ras GTPase-activating protein 1 (RASA1) seem to be
interesting because for both high expression levels have
been linked with a favorable prognosis [53, 54]. In the
other non-metastatic patient GSM615695 high levels of
HMGN2 and PCBP1 were identified which both have
been shown to be able to inhibit cell proliferation [51, 52].
Although the experimental validation for the networks is
still missing, it is tempting to speculate that these genes
might contribute to the benign phenotype of the tumor in
these patients.
All patient-specific subnetworks contained relevant

drug targets that have been largely studied in breast cancer
(e.g., ERBB2, ESR1, EGFR, AKT1). Yet, resistance mecha-
nisms in breast cancer targeted therapies represent a big
challenge; many of the identified therapeutic approaches
have failed [71] due to the highly interconnected nature of
signaling pathways and potential circumvents. A promis-
ing way forward could involve the molecular character-
ization of the tumor with transcriptomics and a parallel
culture of patient-derived organoids. PPI networks could
elucidate the right combination strategy by identifying
central signaling nodes. Different therapeutic strategies
could be tested on organoids and confirm the best strat-
egy that synergistically blocks cancer cell escape routes
and minimizes the emergence of survival mechanisms.
Only the identification of relevant mechanisms of action
for cell survival as well as of the factors involved in resis-
tance for each patient, together with a more precise and
personalized characterization of each cancer phenotype,
may provide useful improvements in current therapeutic
approaches.

Conclusions
We present a novel Graph-CNN-based feature selec-
tion method that benefits from prior knowledge and
provides patient-specific subnetworks. We adapted the
existing Layer-wise Relevance Propagation technique to
the Graph-CNN, demonstrated it on MNIST data, and
showed its applicability on a large breast cancer dataset.
Our new approach generated individual patient-specific
molecular subnetworks that influenced the model’s deci-
sion in the given context of a classification problem. The
subnetworks selected by the developed method utiliz-
ing general prior knowledge are relevant for prediction
of metastasis in breast cancer. They contain common
as well as subtype-specific cancer genes that match the

clinical subtype of the patients, together with patient-
specific genes that could potentially be linked to aggres-
sive/benign phenotypes. In the context of a breast cancer
dataset GLRP provides patient-specific explanations for
the Graph-CNN that largely agree with clinical knowl-
edge, include oncogenic drivers of tumor progression,
and can help to identify therapeutic vulnerabilities. We
therefore conclude that our method GLRP in combina-
tion with Graph-CNN is a new, useful, and interpretable
ML approach for high-dimensional genomic data-sets.
Generated classifiers rely on prior knowledge of molec-
ular networks and can be interpreted by patient-specific
subnetworks driving the individual classification result.
These subnetworks can be visualized and interpreted in
a biomedical context on the individual patient level. This
approach could thus be useful for precision medicine
approaches such as for example the molecular tumor-
board.
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