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Predicting vertical ground
reaction forces from 3D
accelerometry using reservoir
computers leads to accurate
gait event detection

Margit M. Bach, Nadia Dominici* and Andreas Da�ertshofer*

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences,

Amsterdam Movement Sciences and Institute of Brain and Behaviour Amsterdam, Vrije Universiteit

Amsterdam, Amsterdam, Netherlands

Accelerometers are low-cost measurement devices that can readily be used

outside the lab. However, determining isolated gait events from accelerometer

signals, especially foot-o� events during running, is an open problem. We

outline a two-step approach where machine learning serves to predict vertical

ground reaction forces from accelerometer signals, followed by force-based

event detection. We collected shank accelerometer signals and ground

reaction forces from 21 adults during comfortable walking and running on

an instrumented treadmill. We trained one common reservoir computer using

segmented data using both walking and running data. Despite being trained

on just a small number of strides, this reservoir computer predicted vertical

ground reaction forces in continuous gait with high quality. The subsequent

foot contact and foot o� event detection proved highly accurate when

compared to the gold standard based on co-registered ground reaction forces.

Our proof-of-concept illustrates the capacity of combining accelerometry

with machine learning for detecting isolated gait events irrespective of mode

of locomotion.

KEYWORDS

accelerometer, gait detection, ground reaction forces, locomotion, reservoir

computing

Introduction

Estimating the presence of a step using mobile devices can be realized with fair

accuracy and relative ease (1–5). Yet, many details of the stepping cycle remain opaque

such as foot contact and foot off moments, but also more detailed gait characteristics,

such as loading responses in (ambulant) clinical contexts. Inmost of the current literature

on wearables, event estimations are rule-based and often require searching for an area of

interest (6, 7). This is true for data from inertial measurement units but also for data

derived from only accelerometers. Algorithms are optimized for either walking (8–15)

or running (16–23) and vary depending on sensor location and type, and on speed. As it

stands, they may not generalize to other settings.
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Machine learning approaches may provide welcome

alternatives. They have been employed to predict stepping

moments and gait phases by extracting different features

recorded from inertial measurement units (24–37), 3D marker

data (38–41), electromyography (42), pressure sensors (43), and

textile sensors (44). Across the board, though, these approaches

required a priori feature extractions and are, hence, potentially

jeopardized by selection bias.

Stepping instants can readily be identified using (the shape

of) ground reaction forces (GRFs), typically obtained from force

plate signals (45, 46). With these, one can specify single/double

support and flight phases and, correspondingly, the mode of

locomotion, i.e., walking or running. As such it seems obvious to

first seek to estimate the GRF’s shape from wearable sensors and

to subsequently use these predicted waveforms to determine gait

events. Also here, machine learning has been successful. GRFs

during the stance phase, for instance, has been estimated using

only acceleration (47–50), a combination of acceleration and

angular velocity (51–54), or marker-based kinematics (55, 56).

The GRFs during double stance phase could be estimated via

marker-based kinematics (57, 58) and the GRFs during the

full gait cycle using accelerometers placed on the torso (59).

Yet, these approaches often appeared tailored to the data under

study rendering their generalizability questionable, but more

importantly, in almost all cases, they only managed to predict

GRFs for the stance phase, whereas the (duration of the) swing

phase is of great importance when investigating running.

A recent review revealed that the shape of the GRF can

most accurately be estimated from accelerometry (60) and

another found neural networks as a promising tool to do

so (61). This triggered the idea of estimating vertical GRF

waveforms from acceleration signals of the lower extremities via

reservoir computers, more specifically via echo state networks

(ESNs) (62–64). ESNs are “minimal” forms of recurrent neural

networks. Thanks to the reservoir’s “complex” structure, they

may come with great computational capacities (65, 66). In the

absence of feedback, one can train them with a very simple and

robust rule: optimizing output weights bymere linear regression.

This is particularly appealing when considering that typical data

sets on gait are fairly limited in size and that any implementation

of machine learning in wearable devices should come with low

computational costs.

In the following, we conceptually prove that a single

reservoir computer can accurately predict vertical GRF

waveforms from shank accelerometer signals, which allows

for detecting gait events during walking and running with

particularly high precision.

Abbreviations: GRF, Ground reaction forces; ESN, Echo state network;

PCA, principal component analysis.

Methods

Participants

We included data of 21 healthy young adults (13 male/8

female) in the analysis with a mean ± standard deviation

age, height, and weight of 20.8 ± 1.0 years, 181.7 ± 10.3 cm,

71.1 ± 9.8 kg, respectively. The recorded speeds were 1.24 ±

0.12 m/s for walking and 2.20 ± 0.14 m/s for running. The

participants provided written informed consent in compliance

with the Declaration of Helsinki. The experimental design

was approved by The Scientific and Ethical Review Board

of the Faculty of Behavioural and Movement Sciences, Vrije

Universiteit Amsterdam, Netherlands (File number: VCWE-

2022-008R1).

Experimental protocol

Participants walked and ran at their preferred speeds

on an instrumented dual-belt treadmill (Motek Medical BV,

Culemborg, Netherlands) in tied-belt mode wearing their

own shoes. The preferred walking and running speeds were

determined for each participant followed by a familiarization.

The preferred speeds were determined by starting at either

2 km/h or 6.5 km/h for walking and running, respectively, and

slowly increasing the speed by 0.1 km/h until the participant

felt it was comfortable (67). Subsequently, the same process was

repeated at a speed 1.5 km/h above this by now slowly decreasing

the speed by 0.1 km/h until a new or the same preferred speed

was reached. If the two speeds differed more than 0.4 km/h from

each other, a third iteration was done, and irrespective of two

or three iterations, the mean of the determined preferred speeds

was used. The participants were instructed to step with each

foot on a separate belt to be able to record the time series of

the ground reaction forces from one leg. For each participant

a walking and a running trial were recorded of each 5 mins in

length. Only consecutive strides absent of artifacts (stepping on

the wrong belt) were retained leaving an average of 72 strides per

trial for analysis (range: 49–116 strides).

Tri-axial accelerometers, built into the probe of the wireless

bipolar surface electromyography system (Mini wave plus,

Zerowire; Cometa, Bareggio, Italy), were mounted on the right

and left tibia, respectively (see Figure 1). The accelerometers

were not placed in the same exact position due to inexperienced

researchers. Accelerometer data were sampled at 2,000/14Hz

(=142.86Hz) which in the following will be referred to as

∼143Hz, with a sensitivity of ± 16 g, which was sufficient to

avoid clipping. The vertical GRFs were sampled at 1 kHz and

re-sampled to∼143 Hz.

A single reservoir computer was trained to predict ipsilateral

continuous vertical ground reaction forces based on the shank

accelerometer data recorded during walking and running.
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FIGURE 1

A reservoir computer was implemented to predict the vertical ground reaction forces. Tri-axial accelerometer data were recorded from the

shank. The accelerometer data were re-oriented using a principal component analysis (PCA). The first prinicipal component (â) was integrated

once to obtain the velocity (v̂) and position (p̂) data. The input x consisting of the normalized accelerometer (a), velocity (v), and position (p) data

were subsequently mapped onto the sparsely, randomly connected reservoir q. This reservoir generated the output y, the predicted normalized

vertical ground reaction forces (in red), via output weights W. When training, the output was compared to the target z, i.e., the measured vertical

ground reaction forces (in black). Minimizing the di�erence between generated output and target served to adjust the weights (denoted here as

Wlm). For training, data were segmented into strides, here represented by hatched and unhatched areas. Testing was conducted on continuous

data. Data from walking and running were pooled.

Figure 1 contains a schematic of the pre-processing steps and

the implementedmachine learning approach. Further details are

presented in the following.

Data processing

Accelerometer signals a were first “standardized” to their

principal axes using principal component analysis (PCA)

(68, 69):

a =
(

ax, ay, az
) PCA
−→ â

with â along the direction of maximum variance and being the

only principal component that was retained. â was integrated

twice over time (after a bi-directional high pass Butterworth

filter with cut-off at 1Hz, 2nd order) to generate likewise

standardized velocities v̂ and positional data p̂:

v̂ =

∫ t

0
â · dt and p̂ =

∫ t

0
v̂ · dt

Per subset (trial) these signals were normalized (70) by

means of

â → a =
â

range
(

â
) and

v̂ → v =
v̂

range
(

v̂
) and p̂ → p =

p̂

range
(

p̂
)

before combining them as three-dimensional input data

x =
(

a, v, p
)

∈ R
3×T

with T indicating the number of samples in time. Vertical

ground reaction forces Fz were normalized. With this, the target

signal for our machine learner (see below) could be defined as

z-score (70).

z = Fz =
(Fz − µ (Fz))

σ (Fz)
∈ R

1×T

with µ and σ denoting the mean and standard deviation over

time per trial.

Stepping moments (foot contact and foot off events) were

identified based on the measured Fz through mere thresholds:

first, the Fz was scaled to a range [0 1], then weakly filtered with

a polynomial Savitzky-Golay filter (1st order,± 30 ms= in total

9 samples) (71). The foot contact was defined as the last point

below a threshold (12.5% of the maximum of the data) nearest

the ascend of the Fz of the stance phase; similarly, the foot offwas

defined as the first point crossing the same threshold nearest the

descending Fz (46, 72).

Data were split according to the defined foot off events for

further analysis.We considered 36 samples in time on either side

of the foot off as transients when correcting for learning errors

in the beginning or end of the data. These transients also served

to ensure that data were independent of the true events as 36
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samples represent different percentage of the stride for walking

and running, respectively.

Reservoir computer

We adopted the leaky ESN implementation by Jaeger and

Haas (62) [see also (73, 74)]. In brief, we built a reservoir of N

nodes q =
(

q1, q2, . . . , qN
)

∈ R
N×T that received an input

x = (x1, x2, . . . , xK) ∈ R
K×T and generated output y =

(

y1, y2, . . . , yM
)

∈ R
M×T . During the supervised training mode

output was compared with target z = (z1, z2, . . . , zM) ∈ R
M×T

by means of the L2-norm (75) (cf. Figure 1).

The reservoir dynamics can be written as

dq = τ−1 [

−γq+ tanh
(

Cq+ Fx
)]

dt + dε

where C ∈ R
N×N denotes the connectivity of the reservoir.

Here, C was set as a sparse, random matrix specified by a

sparseness parameter; its weights were normalized for a given

spectral radius (the relative magnitude of the leading eigenvalue

of C). F ∈ R
N×K was set to be a dense matrix allowing for an

optional scaling of the input values when mapping them onto

the reservoir. The quantity ε stands for uniformly distributed,

uncorrelated noise, i.e., ε ∈ εU (−1, 1), with ε being reasonably

small. The output is given by

y = Wq

with W ∈ R
M×N , which is the matrix of the to-be-learned

output weights.

Learning was realized by ridge regression, i.e.,

∥

∥z − q
∥

∥ =
∥

∥z −Wq
∥

∥

2 → min ⇒ W = Q−1z

where Q =
[

q1, . . . , qT
]

and (·)−1 denotes the pseudo-inverse.

In the case of multiple time series, i.e., S steps (see below), we

defined Q =
[

q
(1)
1 , . . . , q

(1)
T1

; q
(2)
1 , . . . , q

(2)
T2

; . . . ; q
(S)
1 , . . . , q

(S)
TS

]

and accordingly we used z =
[

z(1); . . . ; z(S)
]

.

The network parameters were set as follows: N = 1, 000,

spectral radius = 0.5, F = [0.1; 0.5], τ = 1, γ = 0.5 and

ε = 10−4. The noise was primarily added to minimize the risk

of overfitting and we put ε = 0 after learning.

Stepping moments from the predicted vertical
ground reaction forces

Stepping moment identification of the predicted vertical

ground reaction force waveforms was implemented in the

same way as for the measured vertical ground reaction forces

(see above).

Estimation of gait events such as foot contact and foot

off from vertical GRF waveforms are considered the gold

standard in movement analysis. An example of the detection

FIGURE 2

Example of the estimation of foot contact and foot o� events

from measured and predicted ground reaction forces. Top:

Walking, bottom: Running. Left side: Measured vertical GRF

waveforms are depicted in black and the predicted ones in red.

The vertical dashed lines represent foot contact (black:

measured, red: predicted) and the dotted lines represent foot o�

(black: measured, red: predicted). Right side: Di�erences in

samples between events based measured and predicted vertical

GRF. One sample equal ∼7ms. MAE, mean absolute error; FC,

Foot contact; FO, Foot o�.

algorithm during walking and running can be found in

Figure 2. One sample difference between the events based on

the measured and predicted vertical GRF waveforms equaled

∼7ms due to the relatively low sampling frequency, common

to wearable accelerometers.

Statistical evaluation

The normalized root mean square error ǫ and the coefficient

of determination R2 served for quality assessment of the

predicted vertical ground reaction forces. We defined them

as follows:

ǫ =

〈∥

∥z − y
∥

∥

2

〉

range (z)
and R2 = 1−

〈

∥

∥z − y
∥

∥

2
2

〉

〈

‖z − 〈z〉‖22
〉

Prediction of stepping moments were validated using the

mean absolute error defined as

1

t

t
∑

i=1

∣

∣

∣
Etarget,i − Eprediction,i

∣

∣

∣

where, Etarget,i and Eprediction,i refer to target and prediction

events i = 1, . . . , t, respectively.

We evaluated the training via cross-validation with 50%

of the data segmented and subsequently used for training,

25% continuous data for validation, and the remaining 25%

continuous data for testing.We performed 100 repetitions with a

random draw each time. A continuation rule was used, such that

if the R2 of the validation data were all positive, the testing could
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FIGURE 3

Schematic of the di�erent testing scenarios used for validating the robustness of the reservoir computer. A random trace of a walking trial is

shown here. The input data (â,v̂,p̂) were first segmented into strides (we considered 36 samples in time on either side of the foot o� as transients

when correcting for any learning errors in the beginning or end of the data). The first scenario, the training is performed on segmented data and

the testing on continuous data. The continuous data (in red) represents the output of the reservoir, the vertical GRF waveforms. Secondly, the

training was performed on segmented data, testing was done on continuous, but a leave-M-out cross-validation (LMO CV) was employed (split:

50/25/25% for training, validation, and testing, respectively). The vertical GRF in red represents the output of the trained reservoir during testing.

LMO CV, Leave-M-out cross-validation.

be employed, and the training was satisfactory. A maximum of

100 repetitions were allocated for validation and in cases where

the validation criteria was not satisfied, the training was stopped.

In all cases, the number of strides used from each trial during

training was reduced to 25 to ensure a balanced design.

Two scenarios served to assess the robustness of the

reservoir computer as sketched in Figure 3.

Training on segmented data—Validating and
testing on continuous data

The applicability of our machine learning approach on

continuous data were verified by training the reservoir computer

on single strides and subsequent testing on continuous data

from each trial (see Figure 3). First, we extracted a random

50% of continuous data from each trial before segmenting the

remaining data into strides. The continuous data was split in

two so 25% of the data were used for validation and testing,

respectively. The segmented data were pooled across trials and

conditions before being used for training. Training was validated

by verifying the mean R2 over the validation set to be positive

(see above for definition).Whenever validation did not pass with

success, training was repeated using the same subset but other

randomly chosen initial conditions (here in all cases validation

was passed on first attempt). The entire process was repeated 100

times to allow for statistical evaluation as mentioned earlier.

Additionally, we estimated the minimum amount of data

needed to secure a good reconstruction quality (R2 > 0.95), so

the training data were reduced. We repeated the training 100

times from 4% of the total dataset to 50% of the total dataset.

The validation and test sets remained 25% each for all runs (here

the smaller training set sizes required re-learning but eventually

validation was passed with success).

Leave-M-out cross-validation

To test the machine learner’s ability to work as a classifier

across participants, it was first trained and validated on a

subgroup of participants and then tested on others that was

unknown to the machine learner. The cross-validation split

was performed based on trials. M trials were held out and the

remaining 42-M trials were split 75/25% of the total dataset for

training and validation. A total of 42 repetitions were performed.

In the main text we report the result for M = 1 while the range

M = 1, 2 . . . , 6 is depicted in Supplementary Figure S2.

Unless specified otherwise, means and standard deviations

are provided and were calculated as either the grand averages or

the standard deviations across the 100 repetitions.

Results

A total of 3,020 strides were included from 42 trials [1,249

walking strides (21 trials) and 1,771 running strides (21 trials)].

Here, we would like to note that we only show results of the

right-side analysis, as the left-side results were very similar.

Given this similarity one may pool data across sides to increase

the sample size but, as will become clear, this was not needed.

The performance of 100 repetitions in predicting GRF

waveforms exceeded 95% when combining walking and running

data. The coefficients of determination R2 were 0.96 ± 0.00

and the normalized root-mean squared errors ǫ were 6.8 ±

0.3% (mean ± SD) (cf. Figure 4). On average, the subsequently

extracted foot contact and foot off events deviated from those

based on the measured vertical GRF waveforms by 3 and 4

samples. This corresponds to mean absolute errors of 21.9

± 6.5ms and 29.1 ± 16.0ms for foot contact and foot off

events, respectively. Here we would like to add that the likewise

convincing results when training the network on only walking

or on only running are provided as Supplementary Figure S1.

To estimate the smallest number of strides needed for a

mean reconstruction accuracy above 95%, we changed the size

of the training set from 4 to 50% for the total dataset size (again

with maximum 25 strides per trial for the training) (cf. Figure 5).

The size of the validation and test sets were kept fixed at 25%
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FIGURE 4

Output of reservoir computer trained on segmented data and validated and tested on continuous data pooled over conditions. (A) Vertical

ground reaction force (GRF) waveforms of four randomly selected strides from each condition from a random trial and a random selected

training run out of the 100, with the measured vertical GRF waveforms in black and predicted in red. The vertical dashed lines represent the foot

contact events (black: measured, red: predicted), the vertical dotted lines the foot o� events (black: measured, red: predicted). (B) Normalized

root-mean squared error (ǫ), coe�cient of determination (R2), mean absolute error of foot contact and foot o�. The white dots in the violin-plots

illustrate the medians. Black horizontal lines represent the mean and vertical black lines the 1st and 3rd quartiles. Every dot represents one of the

100 training runs, and the width of the violins is determined by the frequency. GRF, ground reaction forces; FC, foot contact; FO, foot o�.

each to guarantee identical accuracy demands. An average of

∼222 strides, ∼17% of the total dataset sufficed to reach R2 =

0.95 ± 0.01 with ǫ = 7.2 ± 0.3% and a mean absolute error of

the foot contact (foot off) of 26.4± 9.3ms (35.8± 15.8 ms).

Finally, to test whether our approach allows for predicting

vertical GRFs in trials that in their entirety were not part of

the learning set, we performed a leave-M-out cross-validation.

Training was realized in the held-in trials using a 75–25% split of

learning and validation (in the training set we used a maximum

number of 25 strides per trial). ForM = 1, the mean R2 reached

0.91 ± 0.12, with an error ǫ of 9.1 ± 3.6%. One trial was a clear

outlier in the leave-one-out analysis, and when re-calculating

the means without this trial, the mean R2 and the error ǫ were

0.93 ± 0.04 and 8.6 ± 2.3%, respectively. The corresponding

mean absolute errors for foot contact and foot off were 63.7 ±

167.1ms and 140.9 ± 224.3ms for all included trials and 49.0 ±

138.9ms and 129.8 ± 215.1ms when not taking the outlier trial

into account. For an overview of the results ofM = 1 toM = 6,

we refer to Supplementary Figure S2.

Discussion

Reservoir computers are a promising tool to predict vertical

GRF waveforms based on accelerometer data measured at the

shank during walking and running. Accurately predicted GRF

waveforms facilitate the detection of gait phases and events.

We showed that this “simple” machine learning approach

has excellent prediction accuracy of continuous vertical GRF

waveforms independent of the type of locomotion. Put

differently, reservoir computers can be used for predicting

vertical GRF waveforms for gait of unknown type with excellent

performance. This has great potential for uses outside the lab

and for collecting large amounts of data. Without a doubt the

growing amount of data available for biomechanical analysis

in running will greatly drive the field forwards (76). Machine

learning combined with wearable sensors may be the solution

to increase the amount of data recorded.

Using machine learning for activity recognition and gait

phase recognition based on gait features extracted from

biomechanical data, which may be measured with wearable

sensors (77, 78) has become increasingly popular. The most

common techniques to classify gait events or predict GRF

waveforms using machine learning are hidden Markov models

(26, 30, 33, 34, 37, 43, 79–82), neural networks such as deep

neural networks (more than 1 hidden layer) (25, 35, 36, 44, 47,

52); feed-forward neural networks (48, 50, 53, 56–58, 83, 84);

long short-term models (24, 28, 38, 54, 83, 84); convolutional

neural networks (29, 55); support vector machines (42, 44, 85);

(multilayer) perceptron models (28, 42, 49, 51, 86), as well

as random forest classifiers (36, 42, 44), K-nearest neighbors

(42, 54, 87), and other types of machine learning using, e.g.,

Frontiers in Sports andActive Living 06 frontiersin.org

https://doi.org/10.3389/fspor.2022.1037438
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org


Bach et al. 10.3389/fspor.2022.1037438

FIGURE 5

Output of reservoir computer with training data ranging from 4-50% of the total dataset and validating and testing with 25%, respectively. Upper

left panel: Normalized root-mean squared error (ǫ), upper right panel: Coe�cient of determination (R2), lower left panel: Mean absolute error

of foot contact, and lower right panel: Mean absolute error of foot o�. Upper x-axes show the percentage of the total dataset used for training

and the lower x-axes the corresponding mean number of strides. Each dot represents the mean value for 100 repetitions. The vertical error-bars

and colored areas represent the standard deviation of the corresponding measure. The horizontal error-bars represent the standard deviation in

the number of strides across the 100 repetitions. FC, foot contact; FO, foot o�.

Bayesian models (31, 32, 82, 85), Gaussian mixture model (41),

and principal component analysis (39, 40, 51, 82). Reservoir

computers have the great advantage of low computational costs

while still showing excellent performance. They merely require a

handful of time series for training and avoid any a priori feature

extraction. Reservoir computers even seem to be promising as

a tool to successfully reproduce locomotor patterns observed

during walking and running (88).

There have been several studies conducted on predicting

GRFs based on wearables, the vast majority for the stance phase

only. Utilizing these machine learning techniques properly

requires foot contact and foot off to be known. This, however,

can only be accomplished by either co-registering footswitches

or ground reaction forces, or by implementing a rule-based

detection of the gait events. This is exactly what we sought

to circumvent. Rule-based detections based on accelerometers

during running, searching for a specific peak or valley in some

area of interest, are not as precise as an event detection based on

vertical ground reaction forces.

We did not restrict the prediction to only the stance phase—

we included the entire gait cycle and showed that this worked

well on continuous data. We also did not time-normalize the

gait cycles and did not impose any other constraints into the

timing of the signals. As such, our predictions are robust against

variations in speed and stride durations/lengths as well as the

type of locomotion. For training the reservoir computer, data

were segmented based on the ground truth events, though

when these are unknown, the data could be segmented in any

way, or they may not be segmented at all (cf. Figure 4). We

are convinced that our approach is suitable for lab as well as

outdoor use. One very recent study (89) predicted continuous

vertical GRFs from trunk accelerations using a long short-term

model network with good accuracy during sloped running. The

pre-processing involved several filtering and feature extraction
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steps. By contrast, here we succeeded to reduce the number

of pre-processing steps and applied only very weak filtering,

i.e., the inputs are by and large the time series (derived from)

vertical acceleration.

We validated the use of accelerometer data to estimate the

vertical GRF waveform. We used accelerometer data collected

by a sensor that could, in fact, also be used for electromyography

data collection. The sensors were not aligned in the same way for

all participants, which Tan et al. (90) found can negatively affect

the precision of the detection of GRFs using machine learning.

However, variability in orientation and position is likely to

occur if participants mount their own devices or in large-scale

studies. By correcting the orientation of the accelerometers using

principal component analysis we circumvent these potential

problems and underline the robustness of our method and its

applicability in many settings.

Even a small number of strides sufficed to achieve a high

reconstruction accuracy. While strides from all participants

were pooled for this analysis, it is unlikely that the strides

randomly drawn into the training sets were representative for

all trials/conditions and that this was also the case for the test

sets. We evaluate this via leave-M-out cross-validation, as the

test-set should be unknown to the machine (70). Admittedly,

the reconstruction accuracy was not as high, but we consider it

still satisfactory. The resulting event detection of the leave-M-

out cross-validation, did not perform satisfactorily because of

an introduction of jitter into the swing phase of the GRF which

led many events to be detected too early or too late. We trust

that a revision of the event detection algorithm can result in an

improved foot strike and foot off estimation compared to the

gold standard.

We would like to note that we did not optimize the

machine learner to perform the absolute best it can do. Our

primary aim was to show that even in its “simplest” form, a

reservoir computer with ridge-regression-based output weights

can perform well. Apparently, this (off-line) approach has its

limits as, during learning, one must store all network states

which can put pressure on computer memory. The alternative

online learning may be realized via recursive least squares

regression (91), that has recently be adopted by Sussillo and

Abbott (92). Along these lines one may add online feedback and

change the reservoir’s connectivity for the network’s dynamics

to reach the chaotic regime (currently we used a spectral radius

of 0.5 but values larger than 1 may accelerate online learning)

(92, 93). For our proof-of-concept, however, fine-tuning the

reservoir might be considered overfitting, which let us decide

not to progress along this direction. The most optimal settings

will probably depend on the data set under study.

Our accelerometers had a relatively low sampling rate

(2,000/14Hz ≈ 143Hz), which prevents better estimation than

7ms (i.e., one frame equals 7ms). An accelerometer with higher

sampling frequency will arguably lead to higher accuracy of the

predicted events compared to the ground truth. A sampling

frequency of 60–200Hz is not uncommon when recording

kinematics (94–97) and the accuracy is not worse than the

accuracy one could obtain using kinematic data. A frequently

employed detection algorithm for kinematic gait event detection

is the coordinate-based detection algorithm where the distance

between the sacrum and foot is used to predict foot contact and

foot off events [(96), currently cited >800 times]. A review on

this and other detection algorithms (97) during running revealed

that the coordinate-based detection algorithm has an absolute

error of 29ms for foot contact and 98ms for foot off (sampling

frequency: 200Hz) whereas the best performing algorithms has

an accuracy of 24ms for foot contact {the foot vertical position

[(98), >600 citations]} and 6ms for foot off {the peak knee

extension algorithm [(99), >600 citations)]}. For comparison,

the best estimation possible with a sampling frequency of 200Hz

is 5ms, i.e., current algorithms have an accuracy between one

and ∼20 samples. Our approach is comparable to or exceeding

this accuracy. Being cheap and easy to collect, being usable

outside the lab and for long time-periods are, hence, not

the only advantages of accelerometers—they also come with

formidable accuracy in step detection when properly combined

with reservoir computers.

Our machine learning approach performs well for a dataset

comprised of both walking and running data despite a relatively

small number of participants and a relatively small number of

strides. To investigate its ability for each condition separately, we

refer to Supplementary Figure S1, where we show that training

and testing on only one type of locomotion improves the already

excellent reconstruction accuracy. The outputs of the reservoir

computer can easily be modified to provide other outputs such

as other components of the GRF or the center-of-pressure.

By including all three components of the GRF, energetics of

the center-of-mass can be estimated during overground/track

running which in turn can provide even more information

about the locomotion type. Of course, the energetics will be in

arbitrary units given our GRF prediction rely on normalize (z-

scored) values. To expand the prediction from z-scored GRF

to GRF containing information about the body weight of the

participant, a more diverse group of participants are needed for

training data. However, despite this shortfall, we believe that this

is feasible. All data for this study were recorded on the treadmill.

The next step will be to apply reservoir-based prediction to

accelerometer data (or gyroscope data) obtained at other parts

of the body, e.g., hip mounted (e.g., activity trackers), arm

mounted (e.g., sport watches, smartphones) or head mounted

(e.g., augmented/virtual reality glasses) to broaden applicability

in daily living contexts as well as in clinical populations as

machine learning algorithms might perform worse on clinical

gait (100). This certainly calls for expanding the current

dataset with overground/outdoor locomotion. We expect our

findings to be transferable to overground settings. A large

meta-analysis suggests that neither vertical ground reaction

forces, nor peak tibial accelerations are significantly different
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between treadmill and overground running (101). However, this

might not be true when accelerations, decelerations, turns, etc.

are considered.

As a final note we would like to recall that our reservoir

computer did not include a feedback loop. Adding feedback

may allow for not only predicting the GRF accompanying tibial

accelerations but eventually also the GRF in forthcoming

strides. We trust that future studies will pursue this

generalization as it is beyond the scope of our proof-of-

concept study. Given our prediction results, however, we

can stress that all the information needed for predicting

(vertical) ground reaction forces seems to be present in

the (principal component of) accelerometer signals. The

use of the latter, hence, provides more opportunities than

commonly thought.

Our data and code are made freely available and are ready to

use on other datasets and can be extended for use in experiments

and clinic.

Conclusion

Reservoir computers are an excellent candidate to correctly

predict vertical ground reaction force waveforms from

accelerometer signals for a small number of participants and

strides. The predicted time series can serve to estimate stepping

moments with particularly high accuracy. The ease in training

procedure, which requires only a (very) limited number of steps

and without prior knowledge about the type of locomotion

lets us advocate this machine learning approach to be further

expanded to be applied on future applications in both research

and clinic.
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