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Abstract: Oxidized cholesterols, the so-called oxysterols, are widely known to regulate cholesterol
homeostasis. However, more recently oxysterols have emerged as important lipid mediators in the
response to both bacterial and viral infections. This review summarizes our current knowledge of
selected oxysterols and their receptors in the control of intracellular bacterial growth as well as viral
entry into the host cell and viral replication. Lastly, we briefly discuss the potential of oxysterols and
their receptors as drug targets for infectious and inflammatory diseases.
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1. Introduction

Cholesterol is a ubiquitous sterol that is synthesized by mammalian cells and forms
an essential component of the cell membrane [1]. It is involved in a variety of cellular pro-
cesses, ranging from controlling membrane permeability and integrity to cellular signaling.
In addition, cholesterol also serves as an important precursor for several molecules, such as
steroid hormones, bile acid, vitamin D, and oxysterols [2]. Oxysterols are formed by the
hydroxylation of cholesterol by enzymes or pro-oxidants and are important for regulating
cholesterol homeostasis. In recent years, oxysterols have also emerged as important bioac-
tive molecules in immunity and inflammation, with multiple immunoregulatory functions
across several different cell types and organs. However, the actions and implications of
oxysterols in the immune response to bacterial and viral pathogens are largely underex-
plored. Here, we review the literature and summarize the currently available knowledge on
the role of oxysterols in the immune response to infectious pathogens of both bacterial and
viral origin. Clear evidence exists that some oxysterols possess anti-microbial and anti-viral
activities, mostly through the modulation of the host immune response. Lastly, we propose
and provide evidence that this group of lipid mediators and their respective receptors may
be targeted pharmacologically to improve the treatment outcomes of infectious diseases.

2. Types of Oxysterols and Their Receptors

Structurally similar to cholesterol but with additional oxygen-containing functional
groups, oxysterols are oxidized cholesterols that can either be derived from the diet or
produced endogenously [3]. Dietary sources of oxysterols include cholesterol-rich foods
such as meats, eggs, and dairy products [4]. Endogenously, oxysterols are derived through
the oxidation of cholesterol by enzymes or reactive oxygen species (ROS) (Figure 1) [5].
The majority of enzymes involved in the synthesis of oxysterols belong to the family of
cytochrome P450 enzymes [3,5], with the exception of cholesterol 25 hydroxylase (CH25H),
which belongs to the family of enzymes that utilize oxygen and diiron cofactors for hydrox-
ylation [6].
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Figure 1. Overview of the generation of selected oxysterols from cholesterol. Oxysterols are gener-
ated from cholesterol through oxidation by pro-oxidants or enzymes. The majority of these enzymes 
involved in the synthesis of oxysterols are from the family of cytochrome P450 enzymes [3,5], with 
the exception of cholesterol 25 hydroxylase (CH25H). 

Oxysterols are present at low concentrations, up to 5-fold lower compared to choles-
terol, in circulation [7], and were initially thought to only play a role in regulating choles-
terol homeostasis. Oxidization makes cholesterol more hydrophilic, thereby facilitating its 
elimination. In addition, oxysterols act as a negative feedback control in response to high 
cholesterol concentrations [8] and can restore homeostasis [9]. Oxysterols are known to 
activate the transcriptional regulators of cholesterol synthesis—namely, the sterol regula-
tory element binding protein (SREBP) and the Liver X receptors (LXRs) [9,10]. In response 
to low cholesterol concentrations, SREBP is translated in the ER membranes and trans-
ported to the Golgi complex with the help of the SREBP cleavage activating protein 
(SCAP) for cleavage. The cleaved SREBP is subsequently able to enter the nucleus, trig-
gering the transcription of genes involved in cholesterol synthesis [11,12]. In contrast, 

Figure 1. Overview of the generation of selected oxysterols from cholesterol. Oxysterols are generated
from cholesterol through oxidation by pro-oxidants or enzymes. The majority of these enzymes
involved in the synthesis of oxysterols are from the family of cytochrome P450 enzymes [3,5], with
the exception of cholesterol 25 hydroxylase (CH25H).

Oxysterols are present at low concentrations, up to 5-fold lower compared to choles-
terol, in circulation [7], and were initially thought to only play a role in regulating choles-
terol homeostasis. Oxidization makes cholesterol more hydrophilic, thereby facilitating its
elimination. In addition, oxysterols act as a negative feedback control in response to high
cholesterol concentrations [8] and can restore homeostasis [9]. Oxysterols are known to ac-
tivate the transcriptional regulators of cholesterol synthesis—namely, the sterol regulatory
element binding protein (SREBP) and the Liver X receptors (LXRs) [9,10]. In response to
low cholesterol concentrations, SREBP is translated in the ER membranes and transported
to the Golgi complex with the help of the SREBP cleavage activating protein (SCAP) for
cleavage. The cleaved SREBP is subsequently able to enter the nucleus, triggering the tran-
scription of genes involved in cholesterol synthesis [11,12]. In contrast, when cholesterol
levels are high, cholesterol binds to SCAP, which in turns binds to insulin-induced gene 1
protein (INSIG1) and INSIG2, which are ER retention proteins, thereby preventing SREBP
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activation [12]. Oxysterols have shown to directly bind to and activate INSIGs, thereby
preventing the activation and cleavage of SREBP, leading to the downregulation of choles-
terol synthesis [8,11,12]. In addition, oxysterols are also ligands for LXRs that exist in two
isoforms, LXRα and LXRβ [8]. In response to high cholesterol concentrations, the activation
of LXR by oxysterols leads to the upregulation of the genes involved in lipid metabolism,
notably genes from the ATP-binding cassette family of membrane transporters, which
regulate cholesterol efflux and excretion, resulting in a reduction in intracellular cholesterol
accumulation [8,10]. Additionally, oxysterols have been shown to acutely regulate choles-
terol concentrations through several post-transcriptional regulatory mechanisms [9]. For
instance, several oxysterols, including 25-hydroxycholesterol (25-OHC), alter the enzymatic
activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), an important rate-limiting
enzyme involved in the synthesis of mevalonate in the cholesterol synthesis pathway [13].
Some oxysterols can also induce cholesterol esterification through the activation of acyl-
CoA cholesterol acyl transferase (ACAT) within the cell, resulting in a rapid reduction in
cholesterol [14].

The essential role of oxysterols in governing cholesterol homeostasis has long been
established [8]. More recently, several studies have shown the numerous immunological
functions of oxysterols, ranging from their involvement in chemotaxis and the develop-
ment of immune cell niches [15–18] to skewing immune cell phenotypes and coordinating
inflammatory responses [19] (Table 1). In addition, studies have also demonstrated that
oxysterols bind to a wide range of receptors, from nuclear receptors such as retinoic acid
receptor-related orphan receptors (RORs) to LXRs, estrogen receptors (ERs), and trans-
membrane G-protein coupled receptors (GPCRs) to carry out their diverse immunological
functions [20]. This review focuses on the role oxysterols play in the host response to
bacterial and viral infections.

Table 1. Selected oxysterols and their receptors. Oxysterols are known to bind to the receptors listed
in this table; however, in some cases it remains to be confirmed through which receptor the immune
modulatory effects are mediated.

Oxysterol Synthesizing
Enzyme

Molecular
Targets/Receptor Immunomodulatory Effects References

25-hydroxycholesterol
(25-OHC)

Synthesized from
cholesterol by
CH25H;
Autoxidation
from cholesterol

LXRs [21]
RORα [22]
RORγt [23]
INSIGs [11]
GPR183 [18,24]
ERα [25]

Produced by macrophages upon viral
infection to mediate antiviral functions; broad
antiviral activity against enveloped and
non-enveloped viruses.

[26–30]

Triggers cholesterol remodeling on the
plasma membrane, restricting the
intracellular dissemination of Listeria
monocytogenes and Shigella flexneri; prevents
CDC-induced pore damage.

[31,32]

Produced upon lipopolysaccharide (LPS)
stimulation in the lungs. CH25H was found
to be upregulated up to 24 h post-infection.
Pulmonary administration of 25-OHC
resulted in reduced immune cell infiltration
and inflammation in the lung.

[33,34]

Downregulated upon exposure to house dust
mites. CH25H was found to be upregulated
in contrast. Pulmonary administration of
25-OHC resulted in a more severe onset of
inflammation and airway remodeling.

[34]
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Table 1. Cont.

Oxysterol Synthesizing
Enzyme

Molecular
Targets/Receptor Immunomodulatory Effects References

7 α25-
dihydroxycholesterol
(7α,25-OHC)

Converted from
25-OHC by
CYP7B1

GPR183 [18,24]
RORγ [19]

In vitro modulation of mycobacterial growth
in primary macrophages induces autophagy
and regulated inflammatory responses,
including type 1 interferons. In RAW264.7
cells, CH25H and CYP7b1 expression was
downregulated at 24 h post-infection.

[35,36]

Mediates the proper positioning of immune
cells (ILC3s, Dendritic cells, TFH, B cells) to
their respective niches.

[15–18,37]

27-hydroxycholesterol
(27-OHC)

Synthesized from
cholesterol by
CYP27A1

INSIGs [11]
LXRs [38]
ERα [39]
ERβ [40]
RORγ [19]
GPR17 [41]

Antiviral activity against enveloped and
non-enveloped viruses; reduced in the serum
of SARS-CoV-2 patients.

[26,42–47]

7α,27-
dihydroxycholesterol
(7α,27-OHC)

Converted from
27-OHC with the
help of CYP7B1

RORγt [16]
GPR183 [18,24]

Induces IL-17 production in Th17 cells, aids in
Th17 cell differentiation. [19]

7β-hydroxycholesterol
(7β-OHC)

Autoxidation
from cholesterol

RORα [48]
RORy [48]

Antiviral activity against hepatitis B virus;
Elevated in the serum of COVID-19 patients;
Elevated in plasma of Influenza patients.

[47,49–51]

7-Ketocholesterol
(7-KC)

LXRs [21]
RORα [48]
RORy [48]
ERα [52]

Pro-inflammatory and cytotoxicity effect of
7-KC could possibility lead to cytokine
storms; promotes a pro-inflammatory
macrophage phenotype. Affects the
polarization of macrophages.

[50,53,54]

Antiviral activity in vitro against SARS-CoV-2
and ZIKV. [44,55]

Implicated in chronic diseases
(atherosclerosis, Alzheimer’s disease). [56]

Elevated in the serum of COVID-19 patients;
Elevated in the plasma of human
herpesvirus-8 and Influenza patients.

[47,50,51,57]

24S-
hydroxycholesterol
(24S-OHC)

Synthesized from
cholesterol by
CYP46A1

INSIGs [11]

Antiviral effects against murine
cytomegalovirus. [26]

Antiviral activity in vitro against
SARS-CoV-2 replication. [44]

22R-
hydroxycholesterol
(22R-OHC)

Synthesized from
cholesterol by
CYP11A1

INSIGs [11]
LXRs [21]
RORγ [23]
CXCR2 [58]
GPR17 [41]

Antiviral activity in vitro against
SARS-CoV-2 replication. [44]

3. Oxysterols in Bacterial Infections

Over the past decade, various studies have elucidated the link between oxysterols
and the innate immune response to intracellular bacteria. An increased susceptibility to
infection by Listeria monocytogenes and Mycobacterium tuberculosis was observed in LXR
knock-out (KO) models, which provided potential evidence of the involvement of oxysterols
in the immune response to these infections, given that oxysterols are ligands for LXR re-
ceptors [59,60]. Indeed, two recent studies have demonstrated an immunomodulatory role
of the oxysterol 25-OHC against intracellular bacteria and secreted bacterial toxins [31,32].
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The first study revealed a role for 25-OHC in the immunity against several intracellu-
lar bacteria. The authors demonstrated that in Listeria monocytogenes infection, CH25H
KO mice had increased bacterial dissemination compared to wild-type (WT) -infected
mice [31]. Additionally, the in vivo administration of 25-OHC reduced the bacterial burden,
supporting the immunomodulatory role of 25-OHC. Furthermore, using both L. monocy-
togenes and Shigella flexneri, the authors demonstrated that the in vitro administration of
25-OHC resulted in the downstream activation of ACAT, which in turn triggers cholesterol
remodeling on the plasma membrane and thereby restricts the cell-to-cell dissemination
of these pathogens [31]. The second study elucidated a protective role of 25-OHC against
cholesterol-dependent cytolysins (CDCs), a pore-forming toxin that is secreted by a va-
riety of pathogenic bacteria [32]. The authors demonstrated in bone marrow-derived
macrophages (BMDMs) that interferon (IFN) signaling mediates cholesterol remodeling
on plasma membranes through the CH25H/25-OHC axis [32]. The reduced availability of
cholesterol on the plasma membrane induced by 25-OHC resulted in a reduced binding
of CDCs, thereby conferring resistance to CDC-induced pore damage. These findings
were further explored in in vivo models, whereby the authors demonstrated that CH25H
deficiency resulted in ulcerative lesions and larger lesion sizes. Additionally, pre-treatment
with 25-OHC was found to be protective against CDC-mediated tissue damage [32]. Col-
lectively, both studies showed that 25-OHC modifies the cholesterol content on the plasma
membrane, thereby conferring resistance to CDCs as well as bacterial pathogens.

The role of oxysterols in the innate immune response to M. tuberculosis has also been
investigated [35,61]. IL-36, a newer family of the IL-1 family of cytokines, is produced in
macrophages upon M. tuberculosis infection to regulate the synthesis of oxysterols such
as 25-OHC and 27-hydroxycholesterol (27-OHC) [61]. The production of these oxysterols
subsequently led to downstream LXR activation, suppressing cholesterol metabolism and
reducing mycobacterial growth. More recently, our laboratory discovered an important role
for 7α,25-dihydroxycholesterol (7α,25-OHC) and its receptor GPR183 in M. tuberculosis in-
fection [35]. GPR183, also known as Epstein–Barr virus-induced G protein coupled-receptor
2, was discovered in the 1990s as one of the genes that were upregulated upon infection
with Epstein–Barr virus in Burkitt’s Lymphoma cell lines [62]. GPR183 is expressed across
several types of innate and adaptive immune cells such as dendritic cells, innate lymphoid
cells 3 (ILC3s), macrophages, and T and B lymphocytes [5]. Oxysterols are known ligands
for GPR183, with 7α,25-OHC being the most potent endogenous agonist [24]. The intra-
cellular growth of both M. tuberculosis and M. bovis BCG in primary human monocytes
was significantly restricted in the presence of 7α,25-OHC, an effect that was abrogated
by a specific GPR183 antagonist [35]. This growth inhibitory effect, which was associated
with induction of autophagy and the negative regulation of type I IFNs, was specific to
primary human monocytes [35] and was not observed by others in a murine macrophage
cell line [36]. In patients with pulmonary tuberculosis, lower GPR183 expression in the
blood correlated significantly with more severe disease on chest X-ray, and GPR183 KO
mice exhibited a higher lung mycobacterial burden and dysregulated type I IFNs in early
infection [35], highlighting the important roles of oxysterols and GPR183 in the immune
response to mycobacterial infections.

In addition to the immunomodulatory effects, a recent study provided evidence that
the enzymes produced by M. tuberculosis regulate the oxysterol metabolism to limit the effec-
tive induction of the immune response [63]. The mycobacterial enzyme 3β-hydroxysteroid
dehydrogenase (3β-HSD) can metabolize 25-OHC and 7α,25-OHC, among others, to render
them inactive. As these oxysterols have protective roles in immunity against M. tuberculosis,
it is possible that 3β-HSD, along with the other identified Mtb enzymes CYP124, CYP125,
and CYP142, targets these oxysterols to interfere with and evade the host immune response,
thereby allowing its continual persistence in host macrophages [63]. It is also possible
that M. tuberculosis produces itself antagonists against GPR183, as has been demonstrated
for other bacteria. Eubacterium rectale, for instance, produces lauroyl tryptamine, which
is able to bind to and antagonize GPR183 against its endogenous agonist 7α,25-OHC at
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a 0.98 µM half-maximal inhibitory concentration [64]. Whether M. tuberculosis is able to
produce antagonists for GPR183 or other oxysterol receptors remains to be elucidated.

Oxysterol gradients can also facilitate the migration and recruitment of cells. For
instance, 7α,25-OHC attracts GPR183-expressing immune cells to secondary lymphoid
organs [15–18]. In the host immune response to Citrobacter rodentium infection, 7α,25-
OHC production attracts GPR183-expressing ILC3s and GPR183 KO mice have a reduced
abundance of IL-22-producing intestinal ILC3s, which is associated with greater disease
severity and mortality rates as compared to WT mice [37].

In addition, the immunomodulatory function of 25-OHC against a broad range of
bacterial pathogens has been proposed in studies conducted with lipopolysaccharide
(LPS), a major component of the outer membrane of Gram-negative bacteria. In the
lung, the anti-inflammatory role of 25-OHC against acute lung inflammation through LPS
stimulation has been studied [33,34]. 25-OHC was observed to be produced upon LPS
stimulation in the lungs and bronchoalveolar lavage fluid. CH25H KO mice displayed a
delayed resolution of inflammation [33]. Additionally, alveolar macrophages from CH25H
KO mice displayed increased cholesterol accumulation and defective efferocytosis [33].
The in vivo administration of 25-OHC led to a reduction in immune cell infiltration and
inflammation [34] and accelerated the resolution of inflammation in CH25H KO mice [33].
Another study also demonstrated the anti-inflammatory role of the CH25H/25-OHC axis
in vivo in LPS-stimulated BMDMs [65]. Upon LPS stimulation, 25-OHC is produced to
prevent the cholesterol-dependent DNA sensor protein absent in melanoma 2 (AIM2)
activation and the subsequent downstream activation of IL-1β. The CH25H/25-OHC axis
prevents the translocation of SREBP2 to the nucleus for the onset of cholesterol synthesis. In
addition, CH25H KO BMDMs resulted in an increased accumulation of sterols (desmosterol,
lanosterol, and 7-dehydrocholesterol) involved in cholesterol biosynthesis. The increased
cholesterol load in CH25H KO BMDMs was associated with impaired mitochondrial
metabolism and mitochondrial dysfunction, releasing mitochondria DNA into the cytosol
for the downstream activation of AIM2 and inflammatory responses [65]. A schematic
overview of the known mechanisms of oxysterol action in the immune response to bacterial
infections is shown in Figure 2.
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Figure 2. Mechanisms of oxysterol action in bacterial infections. Several oxysterols have host pro-
tective roles against bacterial pathogens. (a) In LPS models of infection, the anti-inflammatory role 
of the CH25H/25-OHC axis has been demonstrated in several macrophage models. In murine alve-
olar macrophages, 25-OHC administration led to a reduction in inflammation markers (TNFα, IL-
6) though mechanisms yet to be elucidated. In BMDMs, 25-OHC represses cholesterol production 
by preventing SREBP2 translocation to the nucleus, preventing cholesterol-mediated mitochondrial 
dysfunction and the subsequent downstream inflammatory response. (b) 25-OHC prevents the bac-
terial entry of Listeria monocytogenes and Shigella flexneri through the ACAT-dependent remodeling 
of cholesterol on cell membranes. In addition, CH25H/25-OHC protects against CDCs-induced pore 
damage by similar mechanisms, preventing CDCs from binding to cell membranes. (c) In Mycobac-
terium tuberculosis (Mtb) infection, the GPR183/7α,25-OHC axis negatively regulates the type I IFN 
pathway and promotes autophagy, limiting mycobacterial growth in primary human monocytes. 
In addition, in human macrophages (THP-1s and monocyte-derived macrophages) Mtb-induced IL-
36 facilitates the production of 25-OHC and 27-OHC, which inhibits cholesterol synthesis by acti-
vating LXR downstream. 
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oped viruses such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
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Figure 2. Mechanisms of oxysterol action in bacterial infections. Several oxysterols have host
protective roles against bacterial pathogens. (a) In LPS models of infection, the anti-inflammatory
role of the CH25H/25-OHC axis has been demonstrated in several macrophage models. In murine
alveolar macrophages, 25-OHC administration led to a reduction in inflammation markers (TNFα,
IL-6) though mechanisms yet to be elucidated. In BMDMs, 25-OHC represses cholesterol production
by preventing SREBP2 translocation to the nucleus, preventing cholesterol-mediated mitochondrial
dysfunction and the subsequent downstream inflammatory response. (b) 25-OHC prevents the
bacterial entry of Listeria monocytogenes and Shigella flexneri through the ACAT-dependent remodeling
of cholesterol on cell membranes. In addition, CH25H/25-OHC protects against CDCs-induced
pore damage by similar mechanisms, preventing CDCs from binding to cell membranes. (c) In
Mycobacterium tuberculosis (Mtb) infection, the GPR183/7α,25-OHC axis negatively regulates the
type I IFN pathway and promotes autophagy, limiting mycobacterial growth in primary human
monocytes. In addition, in human macrophages (THP-1s and monocyte-derived macrophages) Mtb-
induced IL-36 facilitates the production of 25-OHC and 27-OHC, which inhibits cholesterol synthesis
by activating LXR downstream.

4. Oxysterols in Viral Infections

In the context of viral infections, the immunomodulatory and antiviral activities of
oxysterols have been shown by multiple studies. The majority of the literature describes
the antiviral activities of 25-OHC; however, recent studies have suggested similar an-
tiviral activities for other side-chain oxysterols such as 27-OHC and 7-Ketocholesterol
(7-KC) [28]. These oxysterols have been extensively studied in many viruses, ranging from
enveloped viruses such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2) [47,66–68], influenza A virus (IAV) [26], human immunodeficiency virus (HIV) [27], Zika
virus (ZIKV) [69], pseudorabies [70], hepatitis C virus [71], and many others [44,69,70]
to non-enveloped viruses such as Seneca valley virus [29], murine norovirus [72], rhi-
novirus [43,73], rotavirus [46], and human papillomavirus-16 [43], among others [74–76].
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4.1. Oxysterols and Viral Entry

Cellular membranes contain microdomains that are rich in cholesterols and sphin-
golipids called lipid rafts that are often exploited by viruses, both enveloped and non-
enveloped viruses, for their viral life cycle [77]. Many viruses utilize these cholesterol-rich
regions for internalization [78] and entry into the host cell through a variety of mechanisms
ranging from curvature formation to receptor clustering and binding to viral fusion proteins
to gain entry. This, hence, highlights the need for cholesterol for efficient entry into cells,
although it is noted that not all viruses depend on lipid rafts for entry [77]. In this regard,
the CH25H/25-OHC axis has shown to inhibit viral entry through modifying the choles-
terol composition on the plasma membrane, preventing membrane fusion for enveloped
viruses [27,46,49,66–70,73,79] and altering endosomal dynamics and its cholesterol compo-
sition, thereby preventing cytosolic entry for non-enveloped viruses [46,74]. The majority
of the research conducted so far has demonstrated the potent antiviral activity of 25-OHC
in inhibiting viral entry. Although other oxysterols such as 22(S)-OHC, 20α-OHC, and
7β-hydroxycholesterol (7β-OHC) can also inhibit viral entry, their molecular mechanisms
of action have not been fully characterized [49].

Several mechanisms of action for 25-OHC regarding inhibiting the viral entry of many
enveloped viruses—for instance, Porcine reproductive and respiratory syndrome virus [79];
hepatitis B virus [49]; ZIKV [69]; and, more recently, SARS-CoV-2 [30,68]—have been
suggested. The majority of these studies demonstrate that the alteration of cholesterol on
the plasma membrane is the key to restriction for viral entry, although various studies have
demonstrated that 25-OHC is able to be localized within the plasma membrane [27], directly
affecting membrane properties [31,80]. Mechanistically, infection studies with SARS-CoV-2
have elucidated that 25-OHC induces the depletion of cholesterol on the plasma membrane
through ACAT activation [68]. This observation is consistent with work on intracellular
pathogens, whereby cholesterol remodeling on the plasma membrane upon infection is
caused by the activation of ACAT [31]. Therefore, this mode of action appears to be
conserved across viral and bacterial infections [31,68]. In addition, the benefits of utilizing
25-OHC in combination with other viral inhibitors have been studied recently on human
coronaviruses [30]. The authors conjugated 25-OHC with a peptide-based viral inhibitor
with a different mode of action and tested its inhibitory efficacy against a broad range of
coronaviruses. The resulting 25-OHC-conjugated lipopeptide (EK1P4HC) demonstrated a
synergistic antiviral effect on inhibiting viral entry against SARS-CoV-2 and its variants
as well as other human coronaviruses [30]. Apart from inducing cholesterol remodeling
in plasma membranes, 25-OHC also localizes within late endosomes, where it prevents
SARS-CoV-2-mediated entry to the cytosol through inhibiting cholesterol export [67].

The antiviral effects of 25-OHC have also been studied in vivo, with studies demon-
strating that the administration of 25-OHC is protective against HIV [27], ZIKV [69], and
SARS-CoV-2 [66], and transgenic KO studies showing that CH25H deficiency results in an
increased susceptibility to murine gammaherpesvirus 68 (MHV68) [27].

Apart from 25-OHC, 27-OHC has also been gaining attention for having broad antivi-
ral activity against several viruses, such as murine cytomegalovirus [26], human papillo-
mavirus [43], rhinoviruses [43], herpes simplex-1 virus [45], rotavirus [46], and SARS-CoV-
2 [47], among others [43]. Mechanistically, in vitro studies suggest that the antiviral activity
of 27-OHC is multifactorial, including interfering with viral entry into the cell, inducing
cholesterol remodeling on plasma membranes and endosomes, and regulating adhesion
molecules [42] and pro-inflammatory cytokine production [45].

A recent study highlighted the importance of 27-OHC in SARS-CoV-2 infection. Con-
sistent with previous experiments conducted on other viruses, the in vitro administration
of 27-OHC prior to infection reduced the intracellular accumulation of SARS-CoV-2 as well
as human coronavirus OC-43. Furthermore, using mass spectrometry analysis, the authors
demonstrated that the serum 27-OHC levels of patients were inversely correlated with the
disease severity of COVID-19 [47].
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Among non-enveloped viruses, a study conducted on human rotavirus demonstrated
that 25-OHC and 27-OHC alter the endosomal dynamics in MA104 cells through preventing
the interaction between oxysterol binding protein (OSBP) and vesicle-associated membrane
protein-associated protein-A (VAP-A) [46]. This study demonstrated that these oxysterols
are able to displace OSBP from the ER to the Golgi, preventing its interaction with VAP-A.
The OSBP-VAP-A complex regulates cholesterol transport from the ER to intracellular
organelles such as the endosomes. The disruption of the complex by these oxysterols
thereby prevents cholesterol recycling between the ER and the late endosomes. This, in turn,
results in the accumulation of cholesterol within the late endosomes and inhibits rotavirus
entry into the cytoplasm [46]. Similarly, in reovirus infections 25-OHC alters endosomal
dynamics upon infection. However, the authors suggested an alternative mechanism of
restriction induced by 25-OHC on reovirus-infected cells. They demonstrated that, in HeLa
cells, 25-OHC reduces the co-localization of the viral particles with the late endosomal
marker Rab7. As reovirus entry into the cell is dependent on the timely uncoating of the
virus in the late endosomes, the authors suggested that the main mechanism of restriction is
due to this delayed trafficking of the viral particles to the late endosomes, which alters the
uncoating of the virus and its subsequent penetration efficiency into the cell cytoplasm [74].
In Seneca valley virus infection, a study highlighted that CH25H activity is inversely
correlated with viral replication and that 25-OHC inhibits Seneca valley virus replication
in a dose-dependent manner in HEK-293T and BHK-21 cells [29]. The authors further
elucidated that 25-OHC specifically inhibited the viral absorption process of the viral life
cycle, with no effect observed on the later stages of the viral replication cycle [29].

4.2. Oxysterols and Restriction of Viral Replication

In addition to the preventing viral entry, the antiviral effects of 25-OHC extend further
to modifying cholesterol content intracellularly and restricting viral replication [75]. In vitro,
both the pre- and post-treatment of Poliovirus pseudovirus-infected HEK293 cells with
25-OHC was found to reduce viral replication. The authors further demonstrated that
25-OHC interacts with OSBP, leading to the reduced accumulation of Phosphatidylinositol
4-phosphate (PI4P) at the golgi apparatus [75,81]. PI4P has been implicated in supporting
poliovirus replication partially through the recruitment of unesterified cholesterol to PV-
induced membrane structures [81]. Hence, the reduction in PI4P induced through the
25-OHC/OSBP axis might reduce the cholesterol availability on PV-induced membranes
that is required for replication.

Another mechanism of the antiviral activity of 25-OHC has been suggested to be the
upregulation of the integrated stress response pathway. Authors found that the endogenous
production of 25-OHC in BMDMs during MCMV infection leads to the induction of stress
response genes independently of LXRs [82]. Furthermore, the addition of 25-OHC in
BMDMs leads to the activation of general control nonderepressible 2 (GCN2), one of the
eIF2α kinases that senses and activates the integrated stress response pathway [82]. Thus,
the activation of the integrated stress response could lead to the suppression of protein
synthesis, which viruses depend on for viral replication [82].

A cell-based screening of oxysterols in SARS-CoV-2-infected TMPRSS2-overexpressed
VeroE6 cells identified 7-KC, 22R-hydroxycholesterol (22(R)-OHC), 24S-hydroxycholesterol
(24S-OHC), and 27-OHC as potent inhibitors of SARS-CoV-2 replication in vitro [44]. In ad-
dition to these natural oxysterols, the authors further demonstrated that the semi-synthetic
oxysterol derivatives Oxy210 and Oxy232 have a higher antiviral potency than the nat-
ural oxysterols. They further elucidated that Oxy210 inhibits the in vitro replication of
SARS-CoV-2 and HCV through reducing double membrane vesicles (DMVs)-dependent
replication [44]. These existing findings place oxysterols and their synthetic analogues in
the spotlight as novel therapeutics for infectious diseases.
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4.3. Oxysterols in Viral Assembly and Release

Another antiviral role of 25-OHC has been suggested in Lassa virus (LASV) infections,
whereby 25-OHC was able to interfere with the late stages of the LASV life cycle through
interfering with the viral glycosylation, affecting the production of infectious viruses [83].
In vitro, 25-OHC alters the glycosylation of the LASV glycoprotein 1 (GP1) in Huh-7 cells,
causing an increased presence of immature forms of N-glycans on GP1 and thereby leading
to the production of less infectious virus progeny which have defective entry. Furthermore,
the overexpression of CH25H affected GP1 glycosylation, and the infectious viral produc-
tion and knockdown of CH25H led to an increased production of infectious LASV, further
supporting the importance of the CH25H/25-OHC axis in LASV infection [83].

Through an autophagy compound screening in ZIKV-infected Vero and C6/36 cells,
one group identified an antiviral role of 7-KC in ZIKV infections [55]. The in vitro admin-
istration of 7-KC interfered with the later stages of the viral life cycle, as characterized
by a reduction in the viral budding efficiency and infectious virion production, with no
impact on viral entry or intracellular viral replication. Although the exact mechanism has
yet to be elucidated, the authors suggest that 7-KC could influence the intracellular lipid
environment in the organelles involved in ZIKV trafficking [55]. A summary overview of
the known mechanisms of oxysterol action in the immune response to viral infections is
shown in Figure 3.
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across both non-enveloped viruses (left) and enveloped viruses (right). Among non-enveloped
viruses, (a) 25-OHC inhibits the absorption of Seneca valley virus in BHK-21 cells without affecting
the other stages of the viral replication cycle. (b) 25-OHC regulates endosomal dynamics in reovirus
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infection by reducing the co-localization of viral particles with Rab7 in HeLa cells. (c) In poliovirus
pseudovirus-infected HEK293 cells, 25-OHC reduces viral replication by interacting with OSBP to
reduce PI4P accumulation on poliovirus-induced membranes. (d) In rotavirus-infected MA104 cells,
25-OHC and 27-OHC interact with OSBP to prevent its subsequent interaction with VAP-A. This
results in reduced cholesterol recycling between the ER and late endosomes, thereby sequestering viral
particles within late endosomes and preventing cytosolic entry and replication. Among enveloped
viruses, (e) the oxysterols 25-OHC, 27-OHC, 22(S)-OHC, 20α-OHC, and 7β-OHC prevent viral entry
across a broad range of viruses, some through mechanisms have not yet been elucidated. 25-OHC
has been shown to co-localize within the plasma membrane, affecting membrane properties and
preventing viral entry. (f) In HSV-1-infected, cells, 25-OHC and 27-OHC regulate the inflammatory
response by inducing NF-κB activation, promoting the upregulation of inflammatory genes involved
in antiviral control. (g) In MCMV-infected BMDMs, 25-OHC activates the integrated stress response
pathway for its antiviral functions. (h) In SARS-CoV-2-infected HEK293-hACE2 and VeroE6 cells,
27-OHC and 25-OHC induce cholesterol remodeling on the plasma membrane, preventing viral
entry. (i) Additionally, 25-OHC is also able to localize within late endosomes, where it inhibits
cholesterol export, preventing SARS-CoV-2-mediated membrane fusion for cytosolic entry. (j) In
SARS-CoV-2 and HCV infections, oxy210 displayed antiviral activities by limiting the viral-induced
DMV-dependent replication. (k) 25-OHC affects glycoprotein glycosylation and the production
of infectious virions in LASV-infected huh-7 cells. (l) In ZIKV-infected cells, 7-KC prevents viral
budding from host cells, decreasing the viral progeny production.

5. Oxysterols in Disease Pathogenesis and as Potential Biomarkers

Apart from their antiviral activities, several studies have also implicated oxysterols
such as 7-KC as being detrimental in severe viral infections. While 7-KC has been demon-
strated to have antiviral activities across several different viruses in vitro, in patients,
however, a pathological role of 7-KC has been suggested with several viral pathogens
due to its known cytotoxic properties at high concentrations [56]. 7-KC promotes a pro-
inflammatory phenotype in human macrophages [53] and may thus, together with other
oxysterols, contribute to excessive inflammation. Several studies have demonstrated the
cytotoxic effects of these oxysterols among several non-immune cells, such as endothelial
cells [84], neuronal cells [85], and mesenchymal stem cells [86,87]. Mechanistically, a study
conducted on human umbilical vein endothelial cells (HUVECs) found that 7-KC and
7β-OH drive endothelial dysfunction by inducing early lipid accumulation and lysosomal
permeabilization [84]. This results in increased oxidative stress, leading to apoptosis in these
cells [84]. Other mechanisms, such as mitochondrial hyperpolarization [85] and changes
in actin polarization, caspase activation, and autophagy, have also been described [86,87].
In viral infections, the plasma concentrations of 7-KC were elevated following human
herpesvirus 8 infection [57] in diabetes patients and patients with influenza [51], as well
as patients with COVID-19 [50]. In COVID-19, an increase in 7-KC is observed in patients
with moderate and severe COVID-19, but this rises gradually along with disease severity.
It has been proposed that the pro-inflammatory and cytotoxic effects of 7-KC contribute
to the cytokine storm and acute respiratory distress and that 7-KC is thus involved in
disease progression and poor outcomes [50]. Consequently, 7-KC may therefore serve as a
biomarker for COVID-19 severity [50]. 7-KC has also been implicated in driving disease
pathogenesis in cardiovascular diseases [56], and oxysterols have also been proposed as
potential biomarkers for chronic and neurodegenerative diseases [88]. The translational po-
tential of oxysterol research and the therapeutic application of oxysterols for viral infections
and other chronic diseases are gaining momentum [88].

6. Conclusions and Future Perspectives

In this review, we highlighted an emerging field of research: oxysterols as important
immunomodulators of infectious diseases. Initially thought to only be involved in choles-
terol homeostasis, many studies conducted throughout the past decade have described the
important role of oxysterols in both physiological and pathological conditions. Oxysterols
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are produced as part of the host immune response towards several bacterial and viral infec-
tions. In addition, the mechanisms of action induced by these immune oxysterols are broad,
ranging from chemotaxis and regulating inflammatory responses to restricting intracellular
cholesterol content, some of which are conserved across viral and bacterial pathogens.
Given the increasing prevalence of antimicrobial resistance and the emergence of novel
viruses, there is an increasing need to find new and innovative strategies to combat these
pathogens. The growing evidence of the role of oxysterols in contributing to the immune
response to infections hence presents them as novel biomarkers of disease severity and
suggests oxysterol receptors to be attractive targets for host-directed therapy for improving
bacterial and viral infectious disease outcomes.
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