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Abstract

Human disease studies using DNA microarrays in both clinical/observational and experimental/controlled studies are having
increasing impact on our understanding of the complexity of human diseases. A fundamental concept is the use of gene
expression as a ‘‘common currency’’ that links the results of in vitro controlled experiments to in vivo observational human
studies. Many studies – in cancer and other diseases – have shown promise in using in vitro cell manipulations to improve
understanding of in vivo biology, but experiments often simply fail to reflect the enormous phenotypic variation seen in
human diseases. We address this with a framework and methods to dissect, enhance and extend the in vivo utility of in vitro
derived gene expression signatures. From an experimentally defined gene expression signature we use statistical factor
analysis to generate multiple quantitative factors in human cancer gene expression data. These factors retain their
relationship to the original, one-dimensional in vitro signature but better describe the diversity of in vivo biology. In a breast
cancer analysis, we show that factors can reflect fundamentally different biological processes linked to molecular and
clinical features of human cancers, and that in combination they can improve prediction of clinical outcomes.
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Introduction

Microarray technology allows the capture of diverse aspects of

genetic, environmental, oncogenic and other factors as reflected in

global mRNA expression and opens the possibility of personalizing

treatment of disease [1,2]. Multiple studies have taken a ‘‘top-

down’’ approach to profiling gene expression in human cancers,

and this has led to the identification of tumor subtypes

unrecognized previously as well as gene signatures predicting

various clinical phenotypes [3–7]. Alternatively, other studies have

taken a ‘‘bottom-up’’ approach to determine the change of gene

expression caused by specific manipulations of cultured cells in

vitro. In these studies gene expression serves as a common

phenotype to recognize similar features in human cancers in vivo

and to provide a direct linkage between the known biological

perturbation and the clinical contexts [8–12].

Though many such studies have shown promise in using in vitro

cell manipulations to understand in vivo biology, this approach

cannot fully reflect the enormous phenotypic variation seen in

human cancers. From such studies, one can derive signatures. These

we define to be lists of genes that are differentially expressed along

with their associated levels of differential expression (which we call

weights). However, there is nearly always a poor match between

these signatures and expression patterns of the same genes in vivo.

Therefore, a conceptual framework is needed to further dissect,

enhance and extend the in vivo utility of the in vitro derived

signature. Here, we present a technique for achieving this purpose.

We propose deriving multiple factors, based on human cancer

gene expression studies, from an experimentally defined signature.

These derived factors will retain their relationship to the original

signature but represent distinct biological processes. Importantly,

we show that different derived factors can be combined to provide

much better predictive values for the clinical outcomes. Different

factors also reflect different biological processes and are linked to

various aspects of molecular and clinical features of human

cancers.

There are a number of possible approaches to this problem.

One popular approach has been to compare the identities of the

differentially expressed probes to databases of pre-defined

pathways. Descriptions of such approaches can be found in [13–

15]. While these approaches are appealing for their interpretabil-

ity, they rely on the appropriately pre-defined pathways rather

than the structure of the data under study. Alternatively, one may

simply define the signature activity level for a sample as the

weighted average of in vivo expression levels (where the genes over

which to compute the weights and the weights themselves are

drawn from the original signature). Although some studies have

shown the power of this concept, it is clear that one can not hope

to capture the heterogeneity of in vivo biology from the one-

dimensional controlled biological response the in vitro signature

reflects.

The inherent heterogeneity of environment and cell type in

tissue samples means that the genes in a signature may potentially

involve many additional activities not evident in vitro. Further,

experiments on cloned cell lines of a single cell type grown under

tightly controlled conditions for a fixed (and relatively short) length
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of time may contrast starkly with clinical samples extracted from

living organisms containing multiple cell types that have been in a

dynamic environment for months or years. There is no clearly

‘‘correct’’ method for taking what is learned by microarray

experiment in culture and applying it to assess pathway activity in

tissue samples. Some genes may be poorer representatives of pathway

activity in vivo because they are more likely to be involved in other

pathways, because they react to environmental conditions that are

not present in vitro, or for a myriad of other reasons. It is, therefore,

important to provide a statistical and conceptual framework which

can allow us to use the in vivo expression data to further dissect, refine

and enhance the in vitro-derived gene signatures.

Signature Factor Profiling Analysis (SFPA), based on sparse statistical

factor models, [16,17] is a framework for mapping in vitro

signatures to a collection of in vivo factors. While this sounds

similar to hierarchical clustering (which has become the default

method for this type of problem), there are important distinctions.

First, while hierarchical clustering can be used to break a set of

samples into groups, within which expression patterns are similar

in some way, it does not quantify that similarity. Second,

hierarchical clustering requires that each observation (gene) be a

member of just one cluster. This precludes assigning clusters to

biological pathways, because many combinations of pathway

activity are possible. Lastly, because the factors are generated

within a statistical model, it is possible to identify the levels of

activity in each of the factors on a newly measured sample without

redoing the statistical analysis. While there are techniques other

than hierarchical clustering which address some of these issues, for

example soft-clustering [18] and k-means clustering [19], our

algorithm addresses them all within a single coherent statistical

framework. SFPA provides:

N Robust statistical modeling of both experimental gene

expression and tissue sample expression.

N Identification and correction of assay artifacts, which are

known to be a significant issue associated with the use of

microarray technologies.

N A mapping from a single signature, generated in vitro, to a

collection of factors that retain the pertinent characteristics of

the signature while better reflecting heterogeneity in vivo

associated with the biological perturbation the signature

represents.

N A model for imputing the values of factors in new collections of

tissue samples even though these samples may originate from

different groups and at different times.

We explore this analysis approach in translating a collection of

gene signatures reflecting cellular response to five known tumor

microenvironmental factors, discovered in vitro [8], with particular

emphasis on the signature associated with response to lactic

acidosis. We demonstrate that multiple factors arising in a breast

cancer context remain representative of the individual microen-

vironmental pathway responses from which they are derived.

Furthermore, these factors differentiate key biological phenotypes

in breast cancer, are able to improve clinical predictions across

multiple cancer data sets, and retain their predictive ability even

when applied to samples taken at vastly different times or at

different study centers.

Results

Context, Data and Analysis Strategy
We begin with five signatures defined by the transcriptional

responses of cultured human mammary breast epithelial cells to

five microenvironmental perturbations: hypoxia, lactic acidosis,

hypoxia plus lactic acidosis, lactosis, and acidosis. Each of these is

seen in human cancers and carries prognostic information with

respect to clinical outcomes [8]. The signatures represent changes

in expression of genes between a set of control observations and

cells grown in the presence of lactic acidosis (25 mM lactic acid,

pH 6.7), hypoxia (2% O2), lactic acid plus hypoxia, lactosis

(25 mM sodium lactate, neutral pH), and acidosis (pH 6.7 without

lactate). Expression assays used Affymetrix U133+ 2.0 microarrays

and signatures reflecting each of the microenvironmental factors

have been described [8]. As shown in [8], hypoxia, lactic acidosis

and acidosis have strong prognostic significance in several studies

of breast cancers. Our aim here is to explore the various

components of the original gene signatures to evaluate the

opportunity for further enhancing their prognostic values and

dissecting them into distinct biological pathway-relevant factors

with clinical relevance.

We use Bayesian Factor Regression Modeling (BFRM) [20] to

define and estimate factors based on a given signature. This begins

with a small collection of genes that are highly responsive to the

original intervention (highly differentially expressed between

control and experimental groups in cell culture) and then

iteratively refines the gene set, based on co-expression in an in

vivo data set, in the context of a statistical factor analysis. First,

common patterns of expression (factors) are discovered within

the subset of genes currently under consideration. Next, the

association between these factors and the full set of genes on the

array allows us to identify additional genes to be included in a

revision of the factor analysis. The rationale for this is that, while

evaluating factors underlying the initial selected signature genes

allows us to elucidate in vivo variability that is not present in vitro,

adding genes from outside the original signature can improve the

characterization of these factors while providing linkages to other

relevant pathways. Running SFPA on each of the five signatures

independently, we obtain 11 hypoxia factors, 10 lactic acidosis

factors, 20 hypoxia plus lactic acidosis factors, 17 lactosis factors

and 9 acidosis factors. SFPA stops discovering factors once most of

the variability in the original gene set has been explained.

Signature-Factor Relationships
We will focus, for now, on the ten lactic acidosis factors.

Examining the genes in each of the factors (Figure 1a) shows that

all factors have representatives from the original signature in

addition to genes added during the process of fitting the factor

model. It is important to be sure that in the discovery of these ten

factors, we have not lost our original signature. We check this by

regressing the 10 sets of derived factor scores on the lactic acidosis

signature scores. (Calculation of a signature score is described in

the Methods section.) Witin a single multivariate regression model,

we find that 7 of the 10 are significant at the .01 level, and that

when we eliminate the remaining three factors from the

multivariate regression, those seven remain significant. Thus, at

least seven of the factors show a significant association to the

original signature.

Figure 1b shows the fitted values from the regression of the

lactic acidosis signature score on the lactic acidosis factors from the

analysis of the 251 tumor sample data set from [21]. The r2 for this

regression is high (.74), but it is possible these ten factors might be

able to explain many different signatures. In order to show that

this is not a spurious association, we test the hypothesis that this r2

level is independent of which genes are assigned which weights.

We re-sampled the weights 10,000 times, each time regressing the

signature score vector computed from these weights on the 10

lactic acidosis factors and computing an r2 value. Of the 10,000

Cross-Study Projections
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values of r2 so computed under the null hypothesis, the maximum

was .48 ensuring that the p-value %1024. If we approximate the

distribution of r2 values by a beta distribution (calculated by

method of moments) we get a very close fit (see Figure S1) and

estimate the p-value to be <10213. Because only the list of highly

differentially expressed genes from the lactic acidosis signature,

Figure 1. Factor associations. (a) Connections between genes and the 10 lactic acidosis factors in the statistical factor analysis of the breast cancer
data from [21]. The genes include the initial selected signature genes (black) and those added through the iterative enrichment analysis (red), with
black or red indicating that a gene (row) is highly associated with a factor (column), and white indicating little or no association. Cross-talk between
putative pathway-related factors and genes is evident. (b) Lactic acidosis signature (vertical axis) is predicted by a linear regression fit (horizontal axis)
on the seven factors significantly associated with the lactic acidosis signature. (c) Image of thresholded correlations between 67 factors (vertical) and
the 10 lactic acidosis factors (horizontal), with black indicating pairs of factors whose pairwise sample correlation exceeds 0.9 in absolute value.
doi:10.1371/journal.pone.0004523.g001
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and not the weights, are used in the factor discovery, and because

the weights are critical for the computation of the lactic acidosis

signature scores, the ability to recover signature scores from factors

is strong evidence of the relationship between the two.

The three factors derived from the lactic acidosis signature that

were not important in the prediction of signature scores may still

represent activity relevant to the presence of lactic acid, but they

are not strongly predictive of the original signature. They may also

simply represent the activity of biological pathways that involve

very large sets of genes, and are thus discovered from many

different possible starting points. Nonetheless, they represent

significant structure in expression of the expanded signature gene

set in tumor data, and none of these factors would be detectable

from studying the signature alone as a phenotype.

Factors can reflect distinct aspects of biological activity.

Figure 1c shows which of the 67 factors (all factors discovered

from each of the five starting signatures) have high correlation with

the 10 lactic acidosis factors from the Miller breast data analysis

[21]. Notice that no two of the lactic acidosis factors are highly

correlated, thus these factors seem to describe distinct processes.

Some of the 10 factors, such as lactic acidosis factor 8 for example,

are highly correlated with multiple other factors, indicating that

these factors have been identified from multiple initial signatures.

Most, however, show low levels of pairwise correlation. Among the

67 factors, 40 principal components are required to account for

95% of the observed variability (supplementary figure S2) implying

that a relatively high biological ‘‘dimension’’ underlies the 67

factors – they reflect a diverse set of biological activities, and

presumably pathways altered in the cellular responses to lactic

acidosis within human breast tumors. Figure 1a shows the

connections between genes and the 10 lactic acidosis factors in

the analysis. The genes include the initial selected signature genes

and those added through the iterative enrichment analysis. The

SFPA-derived factors retain a high percentage of genes that have

been shown to exhibit a change in expression when cells are

exposed to the presence of lactic acid in vitro, showing in another

way that these factors still maintain their connection with the

original signature. The cross-talk between factors, in terms of

genes defining more than one factor, is also evident.

Factors Predict Molecular Features
SFPA-derived factors can represent distinct aspects of biological

processes associated with clinical phenotypes. To evaluate this, we

explored subset regression models to predict a number of clinical

phenotypes in the Miller data set [21] - the phenotypes including

ER and PgR status, p53 status and survival times. The molecular

status indicators were modelled with binary probit regressions on

the factors, and survival with standard Weibull survival models.

We utilized the Shotgun Stochastic Search (SSS) method [22,23]

to identify small subsets of the factors showing predictive value

with respect to each of these phenotypes. SSS is a variable

selection model which allows the use of model averaging (based on

posterior likelihood) for prediction. Model averaging has been

shown to perform better than algorithms which use the single best

model for prediction (such as AIC or BIC) because it gives a truer

estimation of uncertainty [24]. This analysis was performed on the

data set from [21], and then the resulting fitted/trained regression

models were used to predict phenotypes in each of five separate

and biologically diverse breast cancer data sets [25–28]. All data

sets are available from the Gene Expression Omnibus (GEO).

Factors predict ER status. The analysis indicates that

highly scoring regression models for the prediction of ER status

utilize one of the factors – Acidosis 1, Hypoxia 4, Lactic Acidosis 2,

or Lactosis 5. From Figure 2a, one can see that the correlation

between any two of these factors is high, so we will refer to them

collectively as the ER factors. Figure 3a demonstrates the ability of

this factor to predict ER status on the training set [21] and 3b

shows prediction on a distinct and completely unrelated test set

[27]. To examine the gene ontology (GO) composition of the list of

genes involved in the ER factors, we applied the GATHER

analysis [29] and find that GO terms associated with cell cycle,

proliferation and and mitosis are greatly enriched in these factors

(Table 1), corroborating well-known connection between cell

progression and ER. It is also expected that the presence of lactic

acid or hypoxia acts to shut down the cell cycle and the ER factor

appears to directly link the two processes.

Factors predict PgR status. Estrogen and progesterone are

known to be antagonists, so it is expected that ER factors can

predict progesterone receptor status. Using SSS we find that the

highly scoring regression models for PgR status involve the ER

factor in addition to Lactic Acidosis factor 10 – we label this the

PgR specific factor. Figures 3c and 3d show the fitted and

predictive ability of these two factors used in a binary regression

model fit to progesterone receptor status. There is no significant

correlation in tumor expression between the PgR and ER factors

(Figure 2b). Gene ontology for the genes in the PgR specific factor

(Table 2) bear out some of the known links between progesterone

and RNA metabolism in breast cancer [30].

Factors predict p53 status. The third binary phenotype,

wild type versus mutant p53 gene, is present in only the data set

from [21]. SFPA was re-run on a randomly selected 50% of these

data and used to predict the other 50% (Figure 3). Highly scored

models for p53 involve the ER factor, the PgR specific factor, and

one of either Hypoxia 1 or Lactic Acidosis 3. The correlation

between these latter two factors is 99%, so we label them

collectively as the p53 specific factor. Gene ontology for this factor

is identical to that for the ER factor with the exceptions that ‘‘cell

proliferation’’ and ‘‘DNA replication initiation’’ are replaced by

‘‘nuclear division’’ and ‘‘M phase’’. For all gene ontologies listed in

the top eight for these two factors, the Bayes factors are $10.

Because of the high degree of similarity in the gene ontology, it is

tempting to try to equate these two factors. Figure 2c shows a

scatterplot of the activity of the tumors in the data from [21] on

each of the two factors. The p53 factor is significantly bimodal,

and the mild correlation one can see is due entirely to this

bimodality, as tumor samples with high ER factor activity are

more likely to be in the second mode of the p53 factor. We

theorize that this bimodality is associated with a particular subtype

of the p53 mutation. However, there is no evidence of

multimodality in the ER factor, and the p53 specific factor

predicts ER status poorly. Because of these differences, and

because cell replication is a complex process, it is likely that these

two factors are related to distinct features of cell development.

We stress that, if we restrain ourselves to considering the

original in vitro lactic acidosis signature, we have no ability to fit or

predict any of these biological phenotypes (Table 3). Additionally,

these factors were generated entirely without regard to the ER

status, PgR status, or p53 status of the samples. This is in contrast

to a more typical design in which signatures associated with

phenotypes are defined strictly based on genes with expression

profiles that match those phenotypes (for example [21]). This type

of design is plagued with difficulties that arise from the large

number of genes, out of the tens of thousands on an array, with

expression patterns that match any arbitrary phenotype. With

SFPA, we search for genes that are expressed together without

regard to phenotype, and we are therefore much less likely to be

plagued by false discovery (as proven by our out of sample

predictive accuracy).

Cross-Study Projections
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Factors Predict Clinical Phenotypes
SFPA offers a technique for interrogating a single independent

tumor sample against any number of biologically determined

signatures, and then consequent linking of factors to phenotypes

may include clinically relevant outcomes such as patient survival

outcomes and drug response.

Factors improve prediction of breast cancer

survival. Subsets of the 67 factors were evaluated in Weibull

survival regression models using the SSS method to identify and

score models predicting survival. Each model in a resulting set of

highly scoring models produces fitted survival curves and also may

be used to predict survival for new samples. Bayesian analysis

mandates averaging predictions from such a set of models, and this

was done to result in Figure 4a. This shows fits of survival curves

for the training data set [21], together with out of sample

predictions in four of the other data sets for which information

regarding survival exists. Recall that these are data sets from quite

distinct and diverse studies, so we are assessing a model fitted to

one data set on four quite challenging out of sample validation

data sets. Though not described further here, the BFRM statistical

model analysis used by the SFPA also addresses issues of gene-

sample-study specific effects within the analysis and is able to

correct enough of the idiosyncracies and bias inherent in

microarray assays to retain predictive accuracy [19,31]. The

results demonstrate that the factorprofiles of these in vitro

environmental signatures can improve survival prediction

significantly across several test data sets. Similar results are

obtained for the prediction of metastasis-free survival.

Factors predict Tamoxifen response. Four of the breast

cancer data sets have clinical annotation pertaining to treatment

with Tamoxifen. Though the 67 factors are in no way specifically

targeted at Tamoxifen, we do know they are associated with

relevant biological pathways. From our 67 factors, we found that

Lactic Acidosis 1 is predictive of Tamoxifen resistance. It

differentiates metastasis-free survival in patients who received the

drug and shows no predictive ability in patients who did not

(Figure 4b; the analysis underlying this followed the same

approach as for survival discussed above). Because all of the

patients who received Tamoxifen were ER positive, drug

resistance associated with this factor must be independent of the

antagonistic action of the drug on estrogen receptors. Since none

of these data sets were used in the training of the factor model, the

ability of these factors to distinguish resistance to Tamoxifen is

remarkable and demonstrates that they are robust to the collection

biases often seen in microarray experiments. We again used

GATHER to study the ontology of the genes included in this

factor (Table 4). This connects with the known association of

Tamoxifen with phosphate transport [32,33] as well as cell

adhesion [34,35]. In particular, Cowell et al. report that p130Cas/

BCAR1 is a cell adhesion molecule that promotes resistance to

Tamoxifen via a particular phosphorylation pathway. In addition

to these connections to the secondary effects of Tamoxifen is the

well-known connection between survival of patients on Tamoxifen

and toxicity associated with blood coagulation [36]. Further study

of the genes in this factor may lead to insight into the mechanism

behind Tamoxifen resistance in ER positive breast cancer.

Discovery of organ-specific factors from lactic acidosis

signatures. While the same biological processes may contribute

to tumor phenotypes in different cancers, the process by which this

happens may be entirely different given the particular cellular

context, tissue-specific gene expression and epigenetic influences.

Since SFPA can utilize in vivo cancer gene expression to dissect the

in vitro-generated gene signature, it offers the possibility of

identifying tissue and organ-specific factors associated with the

same gene signatures. This application has the potential to

distinguish sub-pathways that are conserved across many tissue

types from those that are organ-specific. To illustrate this point, we

utilize the lung cancer data set published in [11] and the ovarian

cancer data set from [10]. We obtained the lung cancer data from

GEO and the ovarian cancer data from the Duke Integrative

Cancer Biology Program (ICBP) web site (http://data.cgt.duke.

edu/platinum.php). We performed SFPA analysis of the same

lactic acidosis signature as a starting point for factor discovery

from the lung and ovarian cancer data sets.

In the case of the lung cancer, the analysis discovered 20 factors

associated with lactic acidosis. When we compared the expression

levels of the 10 lactic acidosis factors in the breast cancer data with

the 20 lactic acidosis factors discovered in the lung cancer data, we

found that several factors are highly conserved, including the

tamoxifen factor, the p53 specific factor, as well as factors 7 and 8.

In contrast, the ER and PgR factors are only found in breast

cancers. If we look specifically at standardized raw expression

levels for the genes in the ER factor in the breast data (figure S3a)

as compared to that for the lung data (figure S3b) we see that there

is consistent variation in the breast data which is not present in the

lung data. In contrast, the standardized raw expression for the

conserved tamoxifen factor shows a coherent expression pattern in

both breast (Figure S3c) and the lung cancers (Figure S3d).

Additionally, within this data set, our newly discovered factors also

possess significant prognostic value, being able to distinguish

between the two types of cancers (Figure S4a) as well as distinguish

between high and low risk patients (Figure S4b). Similar

observations are also present in ovarian cancer since the model

averaged survival using the 8 lactic acidosis factors discovered in

the ovarian cancer dataset can clearly differentiate high versus low

acuity patients (Figure S4c). Additionally, we see the same patterns

of loss of the ER factor (Figure S5(a,b)) and conservation of the

tamoxifen factor (Figure S5(c,d)). Finally, we find that the exact

same three factors, the p53 specific factor, factor 7, and factor 8,

have analogous factors in the ovarian cancer data with greater

than 90% correlation (as computed on the 251 breast cancer

samples).

Discussion

It is increasingly common for investigators to use gene

expression signatures directly as phenotypes to link various

biological processes and perturbations to disease phenotypes and

chemical agents. Although these signatures derived in vitro offer a

way to understand the in vivo biology, there is still considerable

limitation due to the differences between these two settings. Here,

we have exemplified a statistical approach to further improve the

in vitro gene signatures based on the gene expression in in vivo

Figure 2. Estrogen receptor factor: Derivation and associaions. Each point in these plots represents a single patient from the dataset in [21].
(a) Pairwise scatterplots of factors Acidosis 1, Hypoxia 4, Lactic acidosis 2, and Lactosis 5 of the sixty-seven factors. Each of these factors is derived
from a different starting signature and they are important and exchangeable in the prediction of ER status. The plots on the diagonal axis show
histograms of the scores on the respective factors. (b) Three is no significant correlation between the ER and PgR factors. (c) The ER and p53 factors
show some evidence of a relationship, but have clearly different structures (values shown are for activity of the respective factors in the data from
[21]).
doi:10.1371/journal.pone.0004523.g002
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cancer samples. Elaborating the factor profile underlying the

original signatures can, as we have seen, improve the in vivo

relevance by more fully describing the diversity of in vivo expression

patterns. This may enhance prognostic value and provide

mechanistic insights into how biological processes affect clinical

phenotypes. As an example, we have found direct links between

factors generated by the use of SFPA on the lactic acidosis

signature. Such links are intriguing, and open questions regarding

causation as well as questions about the biological associations of

the remaining factors. However, regardless of links to known

biology, this strategy and analysis seem to provide an advance in

our ability to obtain consistent results across many different data

sets collected at different times by different groups. This is a

significant advance, as data collection inconsistencies are one of

the main roadblocks to the use of microarrays in a clinical setting.

There are several possible explanations for the enhancement of

the prognostic values achieved with SFPA. It is possible that

certain genes or pathway components in the original gene

signatures are simply noise or artifact due to their in vitro origins.

These genes may offer no or even negative prognostic values for in

vivo biology. By using SFPA to separate different components, it is

possible to enhance the prognostic value by selecting only the

relevant components or genes for predictive purposes. By so doing,

it is also possible to examine the genes comprising those factors

with strong links to clinical phenotypes which will lead to

biological insights into this association.

Another opportunity this analysis raises is the ability to uncover

the pathways which would be ‘‘hidden’’ in the in vitro signature. In

our current study, factor one was not immediately recognizable as

a clinically relevant list of genes, but the ability of this factor to

predict patient resistance to Tamoxifen points to an important

connection which would not have been possible to discern

otherwise. This observation will lead to efforts in investigating

the biological roles of this factor and how it is related to Tamoxifen

treatment and cellular response to lactic acidosis. For example, it is

well known that tumor hypoxia negatively impacts clinical

outcomes, but the actual mechanism by which this occurs is

complex and may include radiation resistance, increased tumor

invasion, migration, increased survival and decreased drug

sensitivities [37]. Although these hypoxia-induced effects occur

in cancer patients, many of these events cannot be replicated or

modeled in any particular in vitro setting. It is possible to uncover

these processes via of the use of SFPA for the cancer gene

expression. In a similar fashion, it is unclear how lactic acidosis

responses are linked to good prognosis [8], and SFPA will allow us

to explore in vivo gene expression to dissect this response and

develop testable biological hypotheses. Equally importantly, the

mechanisms by which hypoxia and lactic acidosis link to different

clinical outcomes may vary among different cancer types, and the

use of SFPA can specifically pinpoint the relevant biological

processes to target or intervene to modulate clinical courses of

cancer patients.

Tremendous resources continue to be expended on the

discovery of biomarkers for drug susceptibility. The ability to

predict susceptibility to a given drug has the potential to

significantly increase efficacy while decreasing morbidity and

mortality in the relevant patient population. Additionally, it opens

the possibility of facilitating the process of bringing new drugs to

market. We have demonstrated the efficacy of SFPA for

translating signatures discovered in vitro into factors which are

clearly related to specific biological processes and which can be

used to assess important clinical outcomes. The factors may be

Figure 3. Factor – phenotype relationships. ER and PgR factors predict progesterone receptor status: (a) training data set [21]; (b) projected into
the Wang data. Outcomes are PgR2 (blue, obs = 0) and PgR+ (red, obs = 1). The ER factors (Acidosis 1, Hypoxia 4, Lactic Acidosis 2, or Lactosis 5): (c)
training set [21], strongly associated with ER status; (d) projected into the tumor expression data from a completely different study – the Wang data
set in this case 25 – are able to predict ER status. Outcomes are ER2 (blue, obs = 0) and ER+ (red, obs = 1). (e) p53 status prediction, with outcomes
p53 wild type (blues, obs = 0) and mutant (reds, obs = 1) split between training (dark blue and red) and test/validation (light blue and pink) samples.
doi:10.1371/journal.pone.0004523.g003

Table 1. Gene Ontology of the ER Factor.

Gene Ontology # Genes p-value Bayes Factor

Cell Cycle 34 ,.0001 28

Cell Proliferation 39 ,.0001 25

Regulation of cell cycle 21 ,.0001 17

Mitotic cell cycle 15 ,.0001 16

We use GATHER to identify the collection of probes that have .99% probability
of inclusion in the ER factor. There is, not surprisingly, a high level of enrichment
of cell cycle genes in this factor. Bayes Factors and p-values are reported by
GATHER, see [29] for details.
doi:10.1371/journal.pone.0004523.t001

Table 3. Phenotype Associations with Factors and Signature.

LA Factors LA Signature

P53 Mutant P53 Wild P53 Mutant P53 Wild

.50% 63 5 23 10

,50% 9 174 49 169

ER+ ER2 ER+ ER2

.50% 202 17 212 31

,50% 11 17 1 3

PgR+ PgR2 PgR+ PgR2

.50% 180 33 185 54

,50% 10 28 5 7

Cross tabulation for prediction of three pheontypes by lactic acidosis factors
(left) and by the lactic acidosis signature (right). There is a mild correspondence
between lactic acidosis signature score and P53 status, while the best model for
predicting ER or PgR status from the lactic acidosis signature involves assuming
that all samples are positive (essentially the null model).
doi:10.1371/journal.pone.0004523.t003

Table 2. Gene Ontology of the PgR Factor.

Gene Ontology # Genes p-value Bayes Factor

Nucleotide Metabolism 6 .0004 4

RNA Processing 8 .0008 4

RNA Splicing 5 .003 2

Nulcear mRNA splicing 5 .003 2

RNA metabolism 8 .003 2

The gene ontology from GATHER for the probes with .99% probability of
inclusion in the PgR factor.
doi:10.1371/journal.pone.0004523.t002
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applied to just one observation (an important consideration for use

in a clinical setting), and remain consistent across many different

data sets. We do view this as a useful step ahead in thinking about

how gene expression genomics will advance us towards the goals of

personalized medicine.

Methods

A total of five signatures were derived from two different

experiments on Human Mammary Epithelial Cells (HMEC). The

details of the collection of gene expression data from these cell lines

are in [8]. Signatures from these experiments were derived using

the Bayesian Factor Regression Modeling (BFRM) software

detailed in [19], and that has been used in multiple previous

analyses of similar data [31,38]. The workspaces used for BFRM

are available in the supplementary materials S1, S2, and the

software is publicly available [20].

In designed experiments such as [8], BFRM provides a sparse

ANOVA framework for studying changes associated with

environmental stresses. It includes functionality for correcting

systematic laboratory bias which come about due to differences in

conditions under which the microarray data is collected. These

systematic differences are reflected in the doping control genes,

which are used to construct the correction factors.

Sparse Regression for Experiments with Known Variation
BFRM is a Bayesian modeling framework. As such, we assume

that all of the parameters of our model are random variables. In

order to learn more about the values of these parameters, we

specify prior distributions, which are subsequently updated based

on the data. The result of fitting the model to data in this way is a

joint posterior distribution for all of the model parameters. In our

case, the parameters of interest are the coefficients of the

regression.

The general model implemented in BFRM is as follows. Let x
be a matrix of expression values where (row g, column i) xg,i is the

expression of gene g from sample i where 1ƒiƒn. Denote the

design matrix (describing known sources of variability) by H
having elements hi,j on sample i and design or regression variable

j. The model may be written as a separate linear regression for

each probe on the array:

xg,i*N
X

j

bg,jhi,j ,yg

 !

Or alternatively in matrix notation

X*BHzY

where B is a matrix of regression coefficients having elements bg,j

and Y is a diagonal covariance matrix with non-zero diagonal

elements yg. We allow the regression coefficients to vary across

both genes and design vectors ,but assign them a sparsity prior,

bg,j* 1{pð Þd0zpN 0,tð Þ. We define b̂bg,j to be the posterior mean

for bg,j , p�g,j to be the posterior probabilities on non-zero values of

the bg,j , and ŶYg to be the posterior mean of Yg. All of these

parameters are computed automatically by BFRM (along with

many others).

We have used a prior distribution for the coefficients of the

regression that has a point mass at zero. This reflects our belief

that, for any particular intervention, there will be relatively few

genes (of the over ten thousand that are measured in a microarray

experiment) that are affected. For the case outlined in this paper,

we argue that growing mammary epithelial cells in the presence of

mild lactic acidosis has led to changes in the expression of some of

the genes on the array, but that most remain unchanged. Thus our

posterior distribution for each bg,j will consist of a probability that

the parameter is non-zero (corresponding to a probability that the

gene is differentially expressed in the lactic acidosis experimental

group versus the control group), along with a distribution on the

magnitude of that possible change.

The prior on t is assumed to be a diffuse inverse gamma

distribution (which is a standard conjugate prior), and the prior on

p is also given a point mass mixture prior, reflecting the belief that

we must maintain significant mass around the extremes (zero and

one) even after updating with all of the probes on the chip

(50,000+). The precise values of all hyper-parameters are available

in the parameter files in the supplementary section.

We define a signature to be a list of genes and associated

weights. Using the posterior parameters from above we define the

weight of gene g for experimental group (design variable) j to be

sg,j~p�g,j b̂bg,j

.
ŶYg. Calculation of the level of activity of a known

signature within a tumor sample requires that we initially subtract

Figure 4. Predicting survival and drug response. (a) Predicted survival times from an average of Weibull survival models where used to split the
251 samples from [21] according to above/below median predictions, and the resulting empirical survival curves (Kaplan Meier curves) are shown.
The red/blue stratification of patients is from the analysis using subsets of the 67 factors (red - high risk 50%, blue low risk 50%); the grey curves are
from the same analysis using all of the original five signatures (thus there is no compensation for over-fitting here). The p-values in each of the plots
correspond to stratification by factor analysis (top, black) and stratification using the signatures (bottom, grey). Data from [21] was used to identify
the survival models, therefore this plot represents fitted values. The four additional plots represent prediction in the four different breast tumor
samples based on the analysis of only the training data. The predictive relevance, and importance, of the factors is evident and consistent across
studies, and consistently improves on that achieved by use of signatures alone. (b) The first Lactic Acidosis factor predicts survival in patients who
were treated with Tamoxifen (left half), but shows no predictive value in patients who did not receive the drug (right half). In all of these figures, p-
values represent significance in a cox proportional hazards model.
doi:10.1371/journal.pone.0004523.g004

Table 4. Gene Ontology of the Tamoxifen Factor.

Gene Ontology # Genes p-value Bayes factor

Phosphate transport 6 ,.0001 8

Inorganic anion transport 6 .0002 5

Cell adhesion 11 .0002 5

Anion transport 6 .0003 4

Response to abiotic stimulus 8 .0008 4

Response to external stimulus 15 .001 3

Blood coagulation 4 .002 3

The gene ontology from GATHER for the probes with .99% probability of
inclusion in the Tamoxifen specific factor.
doi:10.1371/journal.pone.0004523.t004
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mean expression levels and laboratory biases. These are computed

with BFRM exactly as above with the exception that the design

matrix contains only the intercept vector and correction factors (no

design vectors). If ym is a p-dimensional vector of corrected

expression values associated with tumor sample m, then the

signature score of signature sj in sample m is the weighted averageP
g

sg,jyg,m.

Analysis of Breast Cancer Data Sets
We use six cancer data sets with Affymetrix U133+ expression

samples available on the Gene Expression Omnibus (GEO) web

site. Details of the collection and measuring are contained in

[21,25–28]. For all but Wang, Affymetrix .CEL files were

available, and we computed RMA normalized values in these

cases. For the data set from [27], we used MAS5 normalized data

which was obtained from the authors.

Statistical factor analysis using BFRM estimates latent factors

that represent common, underlying aspects of covariation of

subsets of genes, typically representing expression gene-by-gene in

terms of contributions from possibly several factors. The iterative

analysis to expand on an initial set of signature genes that we used

here then revises the gene list by adding in genes apparently

associated with estimated factors, and then refitting the model. Full

details of this algorithm are available in [19,20]. To choose a

collection of seed genes associated with experimental group j, we

identify all genes, g, such that p�g,jw:99. From this list of genes, we

take the 25% with the highest absolute change in expression level

between the control group and the corresponding experimental

group (as measured by the posterior b̂bg,j ). Following this

procedure, we obtain between 20 and 200 ‘‘seed’’ genes for factor

analysis.

Given a signature, we must choose a collection of tissue samples

on which to train the factor model. Because of its relatively large

size, the availability of CEL files, and the wealth of clinical and

phenotypic information, we chose the data set from [21] for the

identification of factors. We have five sets of seed genes, obtained

as described above, from experiments on HMEC’s. For each of

these five sets of genes, we independently use BFRM to obtain the

factors that are represented. We limited the number of genes to

recruit into factors to a total of 500.

To fit our binary regression and survival models, statistical

analysis used Shotgun Stochastic Search (SSS) routines from

[22,23]. Initialization files used by SSS for these searches are

included in the supplementary materials S1, S2. All Kaplan-Meier

curves showing differential survival are drawn by separating

samples at the median of the score that is relevant for that figure.

Statistical Factor Models for Tumor Expression Data
Factor models are structured as in [16]. If xi represents the

column vector of gene expression measures on p genes as assayed

in a single tumor, xi is regressed linearly on a combination of an

overall intercept term and assay correction factor, plus a set of

latent (i.e., to be estimated) factors. If hi is the column vector of

known regressors (the intercept and assay correction terms) on

tumor i, the model is of the form

xi~AlizBhizni, ni*N 0,Yð Þ

where li is a column vector of unknown latent factor values on

tumor i, and A,B are coefficient matrices. In the BFRM context,

both A and B are large ‘‘tall and skinny’’ matrices with many more

rows (genes) than columns (the number of regressors and factors),

and are described by the same sparsity probability

models introduced above for the elements of B (inducing many

zeros).

Implicit in this formulation is the assumption that there is a set

of vectors, equivalent to design vectors, which describe some part

of the variation observed in the matrix of expression values, X .

This leads to the grouping of probes in a way that is comparable to

clustering, whereby we assign genes corresponding to non-zero

values in any particular column of A to the same group. This is

exactly parallel to sparsity in the coefficients associated with the

design vectors in that we are assuming that most genes are not

differentially expressed with any single latent factor.

Calculation of the activity of a set of factors, li on each tumor i,

and estimation of the factor loadings, A, is then a problem of

statistical estimation of the overall model. Details of these

calculations are available in [39]. The issue of projecting factors

to a new sample, lnz1, is then one of prediction that is

immediately available from the BFRM analysis framework

[19,20]. For completeness, we present the formula here:

l�new~ IdzA’Y{1A
� �

A’Y{1: xnew{Bhnewð Þ

Where l�new are approximations of the factor scores for a new

observation, with gene expression values xnew and design variables

hnew.

Supporting Information

Figure S1 We computed the significance of the relationship

between the lactic acidosis factors and the lactic acidosis signature

by resampling the lactic acidosis signature weights and modeling

the resulting scores with the factors. After 10,000 iterations, we fit

the sampled r-squared values to a beta distribution. This figure

shows a Q-Q plot of the distribution of resampled values versus the

best fit beta distribution. Using this beta distribution, we find that

the r-squared value from regressing the true signature scores on

the factors is significant with p-value approximately 1e-13.

Found at: doi:10.1371/journal.pone.0004523.s001 (0.03 MB JPG)

Figure S2 Percent of variation across all discovered factors as a

function of the number of principal components used.

Found at: doi:10.1371/journal.pone.0004523.s002 (0.01 MB

PNG)

Figure S3 Figures (a) and (b) show the expression levels of the

probes from the ER factor (discovered in breast tissue). (a)

shows a conserved pattern of expression in the breast samples

that is lost in the lung samples (b). (c) and (d) show the same

figure, but for probes from the Tamoxifen susceptibility factor.

For purposes of visualization, samples are sorted such that the

first principal component is increasing. In figures (a) and (c) the

rows are sorted according to increasing correlation with the first

principal component. The ordering of the rows in figures (b)

and (d) is forced to be the same as that in (a) and (c)

respectively.

Found at: doi:10.1371/journal.pone.0004523.s003 (0.64 MB

PNG)

Figure S4 Lactic acidosis factors discovered in lung cancer can

distinguish between adenocarcinoma and squamous cell carcino-

ma (a) as well as stratify patients according to rates of recurrence

(b). Factors discovered in ovarian cancer have similar prognostic

ability (c).

Found at: doi:10.1371/journal.pone.0004523.s004 (0.05 MB

PNG)
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Figure S5 As in figure s3, probes show a consistent expression

pattern in breast cancer that is missing in the ovarian cancer data

set (a) and (b) while the tamoxifen susceptibility factor is conserved

across the two data sets.

Found at: doi:10.1371/journal.pone.0004523.s005 (0.48 MB

PNG)

Supplemental Materials S1 High dimensional sparse factor

modeling: Applications in gene expression gneomics. Reference 17

is currently in press, so we have included it as supplementary

material.

Found at: doi:10.1371/journal.pone.0004523.s006 (3.27 MB

PDF)

Supplemental Materials S2 In-vitro to in-vivo factor profiling

in expression genomics. Reference 37 is currently in press, so we

have included it as supplimentary material.

Found at: doi:10.1371/journal.pone.0004523.s007 (0.73 MB

PDF)
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