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Introduction
Radiotherapy (RT) represents one of the pillars in 
the management of cancer patients. Alone or in 
combination with surgery, RT displays a range of 
antitumor effects, which are mainly cytotoxic, evi-
denced by the drastic changes in proliferation, mor-
phology and cell death, leading to tumor shrinkage. 
At the molecular level, RT induces nonrepairable 
DNA strand breaks, leading to mitotic catastrophe, 
resulting in cellular senescence and apoptosis.1 
These cytotoxic effects can also affect leukocytes 
because conventional radiation fields frequently 
include the thymus, hematopoietic bone marrow or 
large blood volumes leading to lymphopenia 
together with impaired leukocyte function in irradi-
ated cancer patients which perpetuates the view 
that RT is generally immunosuppressive.2

The first evidence for an immune-stimulatory 
effect of RT emerged from infrequent clinical 
observations of tumor remission outside the 

radiation field in satellite secondary tumors. This 
event was called the ‘abscopal effect’ (Latin, ab sco-
pus, away from the target).3 Preclinical models 
showed that this effect is largely immune medi-
ated,3,4 a finding further supported by associations 
in early clinical studies.5–8 Importantly, these 
abscopal effects seldom occur after RT alone, sug-
gesting that RT as a single agent is not sufficient to 
trigger an effective antitumor immune response in 
cancer patients. Abscopal effects more frequently 
emerge in patients treated with combined RT and 
immunotherapy (IT).8–11 Likewise, RT boosted 
the antitumor effects of a range of immunothera-
pies including checkpoint inhibitors and adoptive 
transfers of T or natural killer (NK) cells. A wide 
range of ITs are currently being tested in combina-
tion with RT in clinical trials seeking to ameliorate 
current response and survival rates.12 Thus, the 
robust results obtained with IT and the RT-elicited 
abscopal effects open a new front to revolutionize 
the usage of RT.
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In this review, we will delineate the scope of com-
bined RT and IT, as well as recent advances in 
preclinical models and clinical trials showing the 
encouraging results of this dual combination. We 
will dissect the challenges of combining IT and 
RT, emphasizing the opportunities for increasing 
synergistic benefits.

Significance and hurdles of radiation-
induced immune responses
The combination of immune-checkpoint inhibi-
tors with the ability of RT to act on the immune 
system has gathered much interest. Striking 
responses using checkpoint inhibition not previ-
ously anticipated in melanoma, lung and other 
solid tumors are leading to a paradigm shift, and 
represent novel US Food and Drug administra-
tion (FDA)-approved treatments for a growing 
number of tumor types.13–15 These drugs act by 
blocking negative regulators of T-cell activation, 
restoring antitumor activity that is usually 
impaired by tumor cells themselves and other ele-
ments present in the tumor microenvironment 
(TME). Unfortunately, checkpoint inhibitors are 
not always efficacious to induce tumor rejection, 
and a significant number of patients do not 
respond or become refractory to IT. Several 
obstacles preventing IT from unleashing its full 
potential have been proposed:

(1) the insufficient priming of tumor-antigen 
reactive T cells;

(2) the weak infiltration of antitumor effectors 
into the neoplastic tissues (lymphocyte 
exclusion phenotype);16

(3) the presence of a highly immunosuppres-
sive TME;

(4) the ability of cancer cells to effectively evade 
recognition by immune effectors, impaired 
tumor-associated antigen presentation and 
the absence of danger-associated molecular 
patterns (DAMPs) and loss of sensitivity to 
interferon gamma (IFNγ).17

The combination of RT with IT may offer novel 
strategies to overcome the current limitations. 
Using these limitations as organizing principles, 
we conceptualize the effects of RT on the antitu-
mor immune response (Figure 1).

Priming of tumor antigen-specific T cells
Preclinical data show that RT-mediated tumor 
eradication largely depends on T cells and their 

ability to recognize tumor antigens with sufficient 
affinity.18,19 Irradiation, especially in combination 
with checkpoint inhibitors, effectively induces 
priming of tumor antigen-specific T cells in can-
cer patients and animal models. In the latter, 
T-cell priming mediates the rejection of estab-
lished primary tumors and prevents distant dis-
semination. The mechanistic insights by which 
RT boosts tumor-specific immune responses are 
summarized in Figure 2.

A growing body of evidence indicates that 
RT-mediated T-cell priming occurs through the 
activation of different branches of host immunity. 
RT releases waves of potential tumor antigens in a 
phenomenon called ‘epitope spreading’ in which cell 
damage leads to the priming of tumor antigen-
specific T cells, which attack the tumor, releasing 
another antigen wave creating a positive feedback 
loop.68 Interestingly, this process seems to be favored 
by checkpoint inhibitors, which enhance the reper-
toire of tumor antigen-specific T cells. In this con-
text, RT could facilitate dendritic-cell-mediated 
tumor antigen-specific T-cell priming.19,69,70

In addition, RT triggers immunogenic cell death 
(ICD) in a range of animal models. This is a 
unique type of cell death characterized by the 
release of danger signals, which elicit the effective 
costimulation concomitant to presentation of 
tumor antigens and subsequent priming of anti-
gen-specific T cells.71 Cellular events mediating 
effective ICD after RT include the release of 
ATP,20 which attracts dendritic cells (DCs) into 
the tumor,21 as well as the cell surface exposure of 
calreticulin, an endoplasmic reticulum-resident 
protein, which promotes phagocytosis of irradiated 
tumor cells.72,73 Finally, another factor is the 
release of the chromatin-binding protein HMGB1 
(high mobility group box 1), which facilitates anti-
gen presentation and type I-IFN-mediated DC 
maturation.46 Interestingly, low calreticulin and 
HMGB1 levels are associated with poor prognosis 
in RT-treated cancer patients. These findings sub-
stantiate the notion that RT could transform a 
tumor into an ‘in situ vaccine’ (Table 1).74 
Importantly, a subset of DCs, now termed DC1 
are critical for crosspriming of cytotoxic T lympho-
cytes including those involved in tumor immunity. 
These cells are specialized in taking up antigen 
from other cells and introducing the antigenic 
material into their class-I antigen-presenting path-
way. Two studies have found that this rare basic 
leucine zipper ATF-like transcription factor 3 
(BATF3) dependent DC subset is critical for the 
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Figure 1. Principles of the radiation-induced immune response.
The effects of RT on the immune system are conceptualized in four major organizing principles (inner circle): (a) the 
priming of TA-specific T cells; (b) leukocyte infiltration into the tumor tissue; (c) changes in the immunosuppressive TME; 
and (d) immunogenic modulation of the tumor cell phenotype, leading to increased sensitivity of irradiated tumor cells 
to lymphocyte-mediated lysis. The mechanisms involved in each of these organizing principles are displayed in the outer 
circle. (a) RT primes tumor antigen-specific T cells by inducing antigen uptake and maturation of dendritic cells. Five 
signals triggered by RT have been implicated in this process: the secretion of ATP and the alarmin HMGB1, the cell surface 
exposure of the eat-me signal calreticulin, radiation-induced interferons and activated complement fragments C5a/C3a. (b) 
RT drives leukocyte infiltration into the tumor tissue by three different mechanisms: changes in vessel structure, increased 
adhesion molecule expression on endothelium and the induction of chemokines. (c) RT also shapes the TME by triggering 
secretion of a plethora of cytokines and changing the presence and function of immunosuppressive leukocytes in the TME. 
(d) RT also modulates the immunophenotype of cancer cells by inducing the expression of MHC-I, ligands for the NKG2D 
receptor, ligands for immune checkpoint molecules and TNFRSF member Fas. These surface molecules increase or 
lower susceptibility of cancer cells to T and natural killer cell-mediated lysis. The different organizing principles are highly 
interconnected and influence each other’s occurrence and effect on tumor growth.
ATP, adenosine triphosphate; HMGB1, high mobility group box; MHC-I, major histocompatibility complex I; NKG2D, natural 
killer cell lectin-like-receptor K1; RT, radiotherapy; TA, tumor antigen; TME, tumor microenvironment; TNFRSF, tumor 
necrosis factor superfamily.

synergistic effects of RT and IT, including absco-
pal effects.26,75 In this line, it is proposed that DNA 
released from dying cells is able to turn on the 

transmembrane protein 173 (STING) pathway in 
tumor-surrounding DCs as a key element in the 
ignition of adaptive antitumor immunity.
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Figure 2. Mechanistic changes in the antitumor immune response after radiotherapy.
(I) RT triggers the recruitment of DCs to the tumor site by inducing adenosine triphosphate release.20–22 Subsequently, 
calreticulin is translocated to the tumor cell surface, which triggers their phagocytosis.23,24 HMGB1 released after RT 
promotes processing and cross-presentation of tumor antigens taken up by DCs.23,25 Moreover, phagocytosis of irradiated 
tumor cells activates the cytosolic DNA sensing cGAS/STING pathway leading to the induction of IFN-β. This, together with 
complement activated by RT leads to DC maturation.26–28 (II) DCs then migrate to the tumor-draining lymph nodes and 
prime CD8+ T cells,18,29 which express high levels of PD-1, thus representing optimal targets for checkpoint inhibitors.4,30,31 
In combination with IT, low-dose irradiation facilitates T-cell extravasation, which is mediated by iNOS+ macrophages 
and further perpetuated by the IFN-γ-dependent induction of adhesion molecules on the endothelium.32,33 After RT alone, 
immunosuppressive CD11b+ cells are recruited from the bone marrow and drive tumor regrowth and vasculogenesis and 
in an MMP-9-dependent manner.34–36 These CD11b+ myeloid cells are lured into the tumor tissue by radiation-induced 
CSF-1, CCL2 or CXCL12.34,35,37–40 Of note, the TME after RT fosters the secretion of CXCL12 by TGF-β and NO-mediated 
upregulation of HIF-1α.38,41 In contrast to these immunosuppressive chemokines, CXCL16 and CXCL9/10 can attract 
cytotoxic T cells and thereby enhance IT efficacy.42–45 (III) Once T cells activated by RT have infiltrated the tumor tissue, they 
encounter a heavily modified TME, which, in conjunction with IT, they can also modulate by killing immunosuppressive 
MDSCs by TNF-α or in a TCR-dependent manner.46–48 Radiation induces a plethora of cytokines including type I and II IFNs, 
which, next to their already-discussed functions, can directly activate leukocytes and have direct cytotoxic effects on tumor 
cells.28,44,49 However, several immunosuppressive cytokines are released into the TME post-RT such as TGF-β and IL-6 
leading to epithelial–mesenchymal transition, invasiveness and radioresistance.30,37,50 IT helps to shift the post-RT cytokine 
milieu towards antitumor immunity. RT also alters IT efficacy by quantitative and qualitative changes in tumor-infiltrating 
immunosuppressive leukocytes. CD11b+ myeloid cells expand due to CSF-1 induction and depending on radiation-dose 
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Current approved ITs directed to restore antitu-
mor immune responses might benefit from the 
antitumor effect of RT because of debulking 
and because of enhancing crosspriming of T 
cells. For instance, the relevance of RT in prim-
ing antitumor-specific T-cell responses is also 
supported by the high expression of pro-
grammed-cell-death ligand 1 (PD-L1) in irradi-
ated tumors.47 RT enhances the expression of 
CD137, a co-stimulatory immune checkpoint 
molecule on tumor and programmed-cell-death 
1 (PD-1) on T cells.4 Consequently, PD-1 or 
PD-L1 blockade and CD137 activation act in 
synergism with RT and favor abscopal effects.81 
These preclinical findings suggest that local RT 
may enhance the systemic beneficial effects of 
immunostimulatory monoclonal antibodies and 
explain the large number of ongoing clinical tri-
als exploring the clinical activity of these combi-
nations82 (vide infra).

Attracting leukocytes into the tumor tissue
Low infiltration of effector T cells into the tumor 
represents a major obstacle for cancer IT.83,84 
RT-mediated leukocyte infiltration can be 
directed by changes in leukocyte extravasation, an 
event partially modulated by the in situ generation 
of leukocyte chemoattractants. In addition to 
effector T cells, RT also induces the infiltration of 
a wide range of leukocytes including NK cells, 
regulatory T cells (Tregs) and CD11b-positive 
(CD11b+) cells, such as MDSCs (myeloid-
derived suppressor cells) and TAMs (tumor-asso-
ciated macrophages).

RT by itself exerts dual and opposite effects on the 
immune system, which underscores its role as a 
double-edged sword in the antitumor immune 
response. On the one hand, RT increases tumor 

infiltration by endogenously primed or adoptively 
transferred effector T cells, NK cells and other 
leukocytes which impede tumor growth.32,85 On 
the other hand, RT increases infiltration by Treg 
and CD11b+ cells, including MDSCs and TAMs, 
which are associated with an immunosuppressive 
TME and poor outcome in cancer patients.46,86 
However, CD11b+-mediated immunosuppres-
sion may be transient and be later replaced by 
influx of effector T cells.87 Moreover, in combined 
RT with IT, the accumulation of CD11b+ cells 
can be prevented and the immunostimulatory 
effects of RT seem to prevail.48 For example, 
intratumor vaccination and monoclonal antibod-
ies against PD-L1 can render CD11b+ cells sus-
ceptible to T-cell mediated lysis.46 In the same 
line, MDSCs and Tregs can be directly depleted 
using monoclonal antibodies, targeting CD11b or 
CD25 to achieve more salient effects.54,85 These 
findings highlight the notion that radiation-
induced immune responses can be optimized 
using novel combined strategies to achieve an 
optimal therapeutic synergy.

An important mechanism involved in leukocyte 
infiltration after RT is the alteration and normali-
zation of the aberrant tumor vasculature. Tumors 
induce a chronically activated angiogenesis creat-
ing anomalous vasculature, resulting in distorted 
vessel sprouting, abnormal branching, large ves-
sel diameter, abnormal blood flow with leakiness, 
and microhemorrhaging. In addition, an endothe-
lium nonpermissive for lymphocytes is main-
tained by an array of immunosuppressive and 
proangiogenic signals together with endothelium-
associated cells.

The combination of RT and IT leads to a nor-
malization of the vasculature characterized by a 
reduction of vascular density and leakiness, 

macrophages, are skewed towards an M1- or M2-like phenotype, with the latter being sequestered in hypoxic areas.32,37,51–53 
In addition, Tregs accumulate due to priming by Langerhans cells and their intrinsic radioresistance.54,55 (IV) Finally, RT 
induces the expression of several molecules and receptors on the tumor cell surface, like MHC-I molecules,56,57 TNFR 
superfamily members,57–60 ATM-dependent induction of ligands for the NKG2D receptor60–63 and calreticulin,23 leading to 
enhanced tumor cell killing by CD8+ T and NK cells.56,57,61,63 However, RT can also induce excess levels of PD-L1 on tumor 
cells and thereby induce T-cell anergy underlining the rationale for combining RT and IT.4,31,47,64–67

ATM, ataxia teleangiectasia mutated; ATP, adenosine triphosphate; cGAS, cyclic GMP-AMP synthase; CCL, C-C motif 
chemokine ligand; CSF-1, colony stimulating factor-1; CXCL, C-X-C motif chemokine ligand; DC, dendritic cell; HIF-1α, 
hypoxia-inducible factor-1 alpha; HMGB1, high mobility group box 1; IFN, interferon; IL, interleukin; iNOS, nitric oxide 
synthase 2; IT, immunotherapy; LGP2, laboratories of genetics and physiology 2; M1, M1-like macrophage (iNOShi, Arg1lo, 
Fizz-1lo); M2, M2-like macrophage (iNOSlo Arg1hi, Fizz-1lo) MDSC, myeloid-derived suppressor cell; MHC-I, major 
histocompatibility complex I; MMP-9, matrix metalloproteinase 9; NK, natural killer cell; NKG2D, killer cell lectin-like 
receptor K1; NO, nitric oxide; PD-1, programmed-cell-death 1; PD-L1, programmed-cell-death ligand 1, CD274 molecule; 
RT, radiotherapy; STING, transmembrane protein 173; TCR, T cell receptor; TGF-β, transforming growth-factor beta, TME, 
tumor microenvironment; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; Treg, regulatory T cell.

Figure 2. (Continued)
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together with increased vessel homogeneity. This 
phenotypic change is associated with higher infil-
tration by endogenous or transferred CD8+ T 
cells and higher immunotherapeutic efficacy. 
Some of these effects are mediated by nitric oxide 
(NO) that, depending on radiation dose, can 

exert dual functions. At least after low-dose (LD) 
radiation, normalization of vasculature can be 
mediated by the induction of nitric oxide synthase 
(iNOS) by macrophages residing in the irradiated 
tissue, an event crucial for the therapeutic efficacy 
of adoptive T-cell transfer.32 However, when 

Table 1. Mechanisms of radiation-induced T-cell priming.

Signal 
induced
by RT

Function and mechanisms Tumor Dose Time References

Calreticulin Is exposed on the surface of irradiated tumor 
cells
Triggers phagocytosis of irradiated tumor cells 
by DCs
Increases lysis of irradiated tumor cells by CTLs
Is required for the formation of antitumor 
immunity after vaccination with irradiated tumor 
cells
Correlates with OS in lung cancer patients 
receiving RT

3 × breast
1 × chordoma
2 × colon
2 × lung
1 × melanoma
2 × prostate

8 Gy
10 Gy
20 Gy
25 Gy
75 Gy
75 Gy

4h
7h
12h
24h
72h
4 d

Golden et al.;21 
Garg et al.;72 Perez 
et al.;73 Gameiro 
et al.;23 Gameiro 
et al.;76 Obeid 
et al.24

HMGB1 Is released from irradiated tumor cells
Triggers antigen presentation by DC and priming 
of antigen-specific T cells after local RT in a TLR4 
dependent manner
ESCC patients show elevated HMGB1 
concentrations post CRT
HMGB1 expression correlates with overall 
survival in ESCC patients receiving CRT

3 × breast
1 × ESCC
2 × lung
2 × lymphoma
1 × prostate

10 Gy
20 Gy
30 Gy
30–33*2 Gy
100 Gy

24h
48h
72h
72h
72h

Golden et al.;21 
Gameiro et al.;23 
Apetoh et al.;25 
Suzuki et al.;77 
Yoshimoto et al.78

ATP Is released from irradiated tumor cells
Release from irradiated tumor cells is dependent 
on expression of the autophagy factor ATG5

1 × breast
1 × colon
1 × lung
1 × prostate

4 Gy
20 Gy
100 Gy

24h
24h
72h

Ko et al.;22 Golden 
et al.;21 Gameiro 
et al.23

IFN-α/β Is induced by sensing of irradiated tumor cells in 
DCs in a cGAS and STING dependent manner
Is required for priming of antigen-specific T cells 
by DCs after local RT and for the antitumor effect 
of RT
Directly activates lymphocytes after RT
Increases intratumoral IFN-γ production and 
CXCR3-dependent T-cell recruitment after local 
RT

1 × colon
1 × lung
2 × melanoma

14 Gy
15 Gy
20 Gy
20 Gy

48h
48h
72h
NA

Wu et al.;46 Deng 
et al.;26 Lim et al.;44 
Burnette et al.79

Complement Is activated by local RT
Complement activation can either favor or inhibit 
antitumor immune responses depending on the 
use of single dose or fractionated RT, respectively
Triggers DC maturation and IFN- γ production in 
tumor-infiltrating CD8+ T cells after local RT

1 × breast
1 × colon
1 × lymphoma
1 × melanoma

20 Gy
4*1.5 Gy

24h
24h

Surace et al.;27 
Elvington et al.80

Preclinical studies analyzing the mechanisms of antigen-specific T-cell priming after RT, as well as studies analyzing the effect of RT on DC 
maturation and antigen-presentation. Indicated are the analyzed tumor types and the lowest radiation dose and earliest timepoints after RT at 
which maximum effects on the indicated mechanism were observed in vivo or in vitro.
ATG5, autophagy related 5; ATP, adenosine triphosphate; cGAS, cyclic GMP-AMP synthase; CTL, cytotoxic lymphocytes; CRT, chemoradiotherapy; 
CXCR, C-X-C motif chemokine receptor; d, days; DC, dendritic cell; ESCC, esophageal squamous cell carcinoma; Gy, Gray; HMGB1, high mobility 
group box 1; h, hours; IFN, interferon; NA, not applicable; n.d., not disclosed; OS, overall survival; RT, radiotherapy; STING, transmembrane 
protein 173; TLR4, toll-like receptor 4.

https://journals.sagepub.com/home/tam


T Walle, RM Monge et al.

journals.sagepub.com/home/tam 7

high-dose RT is used without concurrent IT, the 
tumor-promoting role of NO prevails over its 
effect on vasculature.41

In addition to changes in tumor vasculature, RT 
also induces the expression of adhesion molecules 
on blood vessel and lymphatic endothelial cells, 
which are crucial mediators for migration and 
extravasation of leukocytes into the tumor 
bulk.75,88 So far, their functional relevance in 
modifying antitumor immunity post-RT remains 
to be established. Radiation-induced intercellular 
adhesion molecule 1 (ICAM-1), for instance, 
mediates the transmigration of tumor-promoting 
CD11b+ myeloid cells after RT alone.85 
Nevertheless, when RT was combined with an 
adoptive T-cell transfer or a cancer vaccine, 
induction of adhesion molecules was associated 
with higher infiltration by cytotoxic T cells and 
therapeutic efficacy.89 Intriguingly, RT-induced 
vascular cell adhesion molecule 1 (VCAM-1) 
expression depends on nitric oxide synthase 2 
(iNOS) positive macrophages and on interferon-γ 
(IFN-γ) produced by hematopoietic cells.32,33 It is 
therefore likely that radiation-induced mecha-
nisms of T-cell priming and T-cell infiltration are 
closely interconnected.

Among the most relevant signals regulating leuko-
cyte infiltration post-RT are radiation-induced 
chemokines secreted by irradiated tumor cells and 
other stromal components, including myeloid cells 
and fibroblasts. The net balance and the type of 
radiation-induced chemokines determine the com-
position of the leukocyte infiltrate. For instance, 
RT-induced chemokine (C-X-C motif) ligand 9 
(CXCL9), -10 and -16 secretion attracts adop-
tively transferred T cells and thereby enhances 
tumor control.42–45 By contrast, CXCL12 and col-
ony stimulating factor-1 (CSF-1) induced by RT 
can attract tumor-promoting CD11b+ myeloid 
cells.34,35 Concurrently, this massive release of 
chemokines can also potently increase epithelial–
mesenchymal transition and invasiveness of tumor 
cells.90,91 Thus, the overall combination of 
RT-induced chemokines will determine not only 
the infiltration of pro- or antitumorogenic leuko-
cytes, but will also affect tumor cell behavior.

Beyond these effects on vessel structure and 
chemokine expression, RT can also lead to the 
accumulation of Tregs in the tumor tissue postra-
diation due to their high intrinsic radioresistance54 
and due to Treg priming by radioresistant 
Langerhans-cells.55

In summary, RT can help endogenous CD8+ T 
cells or transferred CD8+ T cells and NK cells to 
infiltrate the tumor tissue and thereby enhance IT 
efficacy. Radiation-induced changes in the tumor 
vasculature generally support tumor regrowth 
after RT alone by favoring infiltration of immu-
nosuppressive myeloid cells. Importantly, IT 
counteracts this radiation-induced accumulation 
of immunosuppressive leukocytes in the tumor 
and thereby prevents tumor regrowth after RT by 
increasing vascular permeability to cytotoxic lym-
phocytes. Further comprehensive studies are 
needed to dissect how the chemokine milieu can 
be optimally influenced by RT to support IT effi-
cacy (Table 2).

Modifying the tumor microenvironment
Modulation by secreted factors of the tumor micro-
environment. Once tumor-reactive lymphocytes 
have been primed and have infiltrated the tumor 
tissue, they must overcome a highly immunosup-
pressive tumor milieu. The TME encompasses an 
intricate interplay of tumor cells and their associ-
ated stroma, which, as the tumor progresses, 
entails the secretion of an array of soluble factors 
(Table 3). RT profoundly alters the TME, impact-
ing tumor growth and effective antitumor immune 
responses. A wide variety of growth factors and 
cytokines is released after RT into the tumor 
milieu to configure a net balance of pro- and anti-
immunogenic cues, greatly modulating the 
immune response.

RT induces a cytokine burst from a few hours post-
RT to several weeks postradiation. Cytokines are 
produced by both tumor cells and other tumor-
associated cells including fibroblasts, macrophages 
and other leukocytes. The bulk of soluble media-
tors and cytokines that are released from senescent 
cells after cytotoxic treatments has been termed the 
senescence-associated secretory phenotype (SASP) 
and includes major secretion of interleukin-1β (IL-
1β), IL-6, IL-7 and granulocyte-macrophage  
colony-stimulating factor (GM-CSF).91

Among the RT-mediated cytokine burst, trans-
forming growth-factor beta (TGF-β) represents a 
major immunosuppressive factor limiting both the 
priming of tumor-reactive T cells and the release of 
macrophage pro-inflammatory cytokines. Indeed, 
this cytokine released after RT displays a protumo-
rigenic and prometastatic role in some tumors.30 
TGF-β release occurs in advanced pro-inflamma-
tory and postradiation fibrotic events during tissue 
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repair and extracellular matrix remodeling.104 
Beyond its immunosuppressive effects, TGF-β 
also confers intrinsic radioresistance on tumor cells 
thus providing a dual protection from both the 
RT-induced cytotoxic effects, as well as antitumor 
immune response post-RT.97 In addition to tran-
scriptional induction of TGF-β1, the activation of 
the latent as a result of exposure to ionizing radia-
tion has been reported.30,105

CSF-1 is another RT-induced cytokine with a 
protumorigenic effect, which can drive the sys-
temic expansion and survival of macrophages and 
MDSCs.37 In addition, IL-6 released from tumor 
cells’ T cells and TAMs supports tumor prolifera-
tion, invasiveness and radioresistance.50

Radiation-induced IFNs are crucial for the thera-
peutic effect of RT.79 They can directly activate T 
cells and other lymphocytes.33,44 The induction of 
type-I IFNs by RT via STING induces the prim-
ing of T cells, which in turn release IFN-γ.26 This 
cytokine seems to represent the dominant effector 
molecule of the antitumor immune response 
post-RT.33 Indeed, IFN-γ knockout mice showed 
severely diminished survival post-RT accompa-
nied with low CD8+ T cell and high MDSC 
infiltration.87

Nevertheless, exposure to type I and II IFN sign-
aling can also confer resistance to anti-CTLA-4 
checkpoint blockade by upregulating PD-L1 or 
ligands for T-cell-inhibitory receptors suppressing 
antitumor immunity.106 Preventing chronic upreg-
ulation of these IFN-stimulated genes represents a 
highly effective approach to restore susceptibility 
of tumors that recur after combined RT and 
checkpoint blockade therapy.

RT can also activate the complement system, an 
event most likely mediated by the binding of 
immunoglobulin M (IgM) to necrotic cells.27 
However, its impact on tumor control remains 
elusive. Whereas one-time activation of comple-
ment by single-dose RT led to improved tumor 
control and the induction of an adaptive antitu-
mor immune response,27 repeated activation by 
fractionated RT showed a negative effect on 
tumor control.80

In contrast to local tumor irradiation, total body 
irradiation (TBI) leads to systemic changes in 
cytokine levels. This has been attributed to the 
removal of so-called ‘cytokine sinks’, which are 
host leukocytes sequestering and limiting the 

availability of cytokines.107,108 Thereby, TBI can 
drive the proliferation and engraftment of trans-
ferred CD8+ T cells and NK cells.85,109 Effects 
on intestinal permeability and ensuing transloca-
tion of luminal bacteria to the submucosa are also 
likely elements in the boosting of immunity by 
sublethal TBI.110

Modulation by changes in tumor infiltrating leuko-
cytes. MDSCs and TAMs are considered protu-
mor stromal components.94 RT can induce 
cross-presentation of tumor antigens on 
CD11b+ myeloid cells leading to their elimina-
tion by antigen-specific T cells.48 In addition, 
LD irradiation can skew macrophages towards 
an M1-polarized phenotype (iNOShi, Arg1lo, 
Fizz-1lo), including the upregulation of iNOS 
and T-helper-1 cytokines and render them sup-
portive of antitumor immunity.32 However, 
higher radiation doses may polarize macro-
phages to an M2-phenotype that can promote 
tumor growth, an event mediated by soluble fac-
tors released from irradiated tumor cells.51 Since 
polarization of macrophages is extremely depen-
dent on the contextual signals of the TME, char-
acterization of the radiation-induced factors 
regulating polarization remains to be 
elucidated.

Increasing tumor cell susceptibility to 
lymphocyte-mediated cytotoxicity
RT increases the susceptibility of tumor cells to T 
and NK-cell-mediated lysis by modulating the 
expression pattern of surface molecules including 
(major histocompatibility complex I) MHC-I, NK 
cell ligands, costimulatory receptors and death 
receptors. All these changes mediated by RT in 
immunomodulatory surface molecules, also 
observed with other cytotoxic treatments, have 
been termed immunogenic modulation.111,112

Radiation-induced upregulation of MHC-I mole-
cules was associated with enhanced lysis of irradi-
ated tumor cells by tumor antigen-specific T cells in 
vitro and in vivo (Table 4). The induction of MHC-I 
after RT occurs by a three-step mechanism, includ-
ing a proteasome-dependent increase in cytosolic 
peptide levels, mTOR-dependent protein transla-
tion and induction of radiation-specific peptides.56 
In addition to these cell intrinsic mechanisms of 
MHC-I induction, radiation-induced IFN-γ 
induces MHC-I upregulation.33 Of note, upregula-
tion of MHC-I post-RT does not seem to be a uni-
versal mechanism, but it is confined to a fraction of 

https://journals.sagepub.com/home/tam


T Walle, RM Monge et al.

journals.sagepub.com/home/tam 11

Ta
bl

e 
4.

 E
ff

ec
ts

 o
f i

on
iz

in
g 

ra
di

at
io

n 
on

 tu
m

or
-c

el
l s

us
ce

pt
ib

ili
ty

 to
 T

 o
r 

na
tu

ra
l k

ill
er

 c
el

l-
m

ed
ia

te
d 

ly
si

s.

Si
gn

al
 in

du
ce

d
by

 R
T

Fu
nc

ti
on

 a
nd

 m
ec

ha
ni

sm
s

Tu
m

or
D

os
e

Ti
m

e
R

ef
er

en
ce

s

M
H

C
-I

/I
b

R
T 

in
du

ce
s 

M
H

C
-I

 e
xp

re
ss

io
n 

on
 tu

m
or

 c
el

ls
 in

 a
n 

IF
N

-β
-d

ep
en

de
nt

 o
r 

m
TO

R
-d

ep
en

de
nt

 m
an

ne
r;

M
H

C
-I

 in
du

ct
io

n 
on

 tu
m

or
 c

el
ls

 is
 a

ss
oc

ia
te

d 
w

ith
 in

cr
ea

se
d 

su
sc

ep
tib

ili
ty

 
to

 T
-c

el
l-

m
ed

ia
te

d 
ly

si
s;

M
H

C
-I

 in
du

ct
io

n 
is

 a
ss

oc
ia

te
d 

w
ith

 in
cr

ea
se

d 
in

tr
ac

el
lu

la
r 

pe
pt

id
e 

le
ve

ls
;

H
LA

-E
 in

du
ct

io
n 

on
 e

nd
ot

he
lia

l c
el

ls
 is

 a
ss

oc
ia

te
d 

w
ith

 d
ec

re
as

ed
 

su
sc

ep
tib

ili
ty

 to
 N

K
-c

el
l-

m
ed

ia
te

d 
ly

si
s

2 
×

 c
ol

on
2 
×

 lu
ng

1 
×

 m
el

an
om

a
1 
×

 p
ro

st
at

e
N

A

4 
G

y
10

 G
y

3*
12

 G
y

25
 G

y

12
 h

18
 h

72
 h

5 
d

R
ei

ts
 e

t a
l.;

56
 G

ar
ne

tt
 e

t a
l.;

57
 

W
an

g 
et

 a
l.;

99
 R

ie
de

re
r 

et
 a

l.11
3

N
K

G
2D

 li
ga

nd
s

U
pr

eg
ul

at
io

n 
of

 N
K

G
2D

 li
ga

nd
s 

af
te

r 
ir

ra
di

at
io

n 
is

 m
ed

ia
te

d 
by

 A
TM

 a
nd

 
th

e 
ab

se
nc

e 
of

 S
TA

T3
 a

nd
 c

an
 b

e 
in

hi
bi

te
d 

by
 a

llo
pu

ri
no

l;
R

A
E-

1 
in

du
ct

io
n 

by
 R

T 
re

st
or

es
 in

tr
at

um
or

al
 ly

m
ph

oc
yt

e 
ar

re
st

 a
nd

 
in

cr
ea

se
s 

tu
m

or
 c

on
tr

ol
 a

ft
er

 c
om

bi
ne

d 
an

ti-
C

TL
A

-4
 a

nd
 R

T;
M

IC
A

/B
 a

nd
 U

LB
P

1 
in

du
ct

io
n 

is
 a

ss
oc

ia
te

d 
w

ith
 in

cr
ea

se
d 

N
K

 c
el

l 
m

ed
ia

te
d 

ly
si

s;
M

IC
A

/B
 is

 p
re

fe
re

nt
ia

lly
 u

pr
eg

ul
at

ed
 o

n 
st

em
-l

ik
e 

ca
nc

er
 c

el
ls

;

1 
×

 b
re

as
t

1 
×

 g
lio

m
a

1 
×

 o
va

ri
an

2 
×

 p
an

cr
ea

s
2 
×

 s
ar

co
m

a

8 
G

y
2*

12
 G

y
25

 G
y

40
 G

y
40

 G
y

16
h

16
h

24
h

24
h

48
h

G
as

se
r 

et
 a

l.;
61

 X
u 

et
 a

l.;
62

 
A

m
es

 e
t a

l.;
60

 B
ed

el
 e

t a
l.;

11
4  

R
uo

cc
o 

et
 a

l.63

TN
FR

SF
 

m
em

be
rs

R
T 

in
du

ce
s 

Fa
s 

ex
pr

es
si

on
 o

n 
st

em
-l

ik
e 

ca
nc

er
 c

el
ls

;
Fa

s 
in

du
ct

io
n 

in
cr

ea
se

s 
tu

m
or

 c
el

l s
us

ce
pt

ib
ili

ty
 to

 T
-c

el
l m

ed
ia

te
d 

ly
si

s 
an

d 
is

 a
ss

oc
ia

te
d 

w
ith

 in
cr

ea
se

d 
N

K
-c

el
l-

m
ed

ia
te

d 
ly

si
s;

U
pr

eg
ul

at
io

n 
of

 C
D

13
7 

is
 a

ss
oc

ia
te

d 
w

ith
 e

nh
an

ce
d 

tu
m

or
 c

on
tr

ol
 b

y 
an

ti-
C

D
13

7

3 
×

 c
ol

on
1 
×

 b
re

as
t

1 
×

 A
M

L
2 
×

 lu
ng

1 
×

 p
ro

st
at

e
2 
×

 s
ar

co
m

a

8 
G

y
8 

G
y

10
 G

y
16

 G
y

20
 G

y
20

 G
y

20
 G

y

24
h

24
h

48
h

48
h

72
h

72
h

7d

G
ar

ne
tt

 e
t a

l.;
57

 C
ha

kr
ab

or
ty

 
et

 a
l.;

77
 C

ha
kr

ab
or

ty
 e

t a
l.;

59
 

A
m

es
 e

t a
l.60

; S
hi

 a
nd

 
Si

em
an

n11
5

Im
m

un
e 

ch
ec

kp
oi

nt
 

m
ol

ec
ul

es

P
D

-L
1 

is
 u

pr
eg

ul
at

ed
 o

n 
le

uk
oc

yt
es

 a
nd

 n
on

le
uk

oc
yt

ic
 c

el
ls

 in
 th

e 
tu

m
or

 
m

ic
ro

en
vi

ro
nm

en
t a

nd
 a

ss
oc

ia
te

d 
w

ith
 e

nh
an

ce
d 

tu
m

or
 c

on
tr

ol
 a

ft
er

 R
T 
+

 
an

ti-
P

D
-L

1;
R

ad
ia

tio
n-

in
du

ce
d 

P
D

-L
1 

ex
pr

es
si

on
 li

m
its

 T
-c

el
l p

ro
lif

er
at

io
n 

an
d 

cy
to

to
xi

ci
ty

;
P

D
-L

1 
up

re
gu

la
tio

n 
on

 tu
m

or
 c

el
ls

 is
 m

ed
ia

te
d 

by
 C

D
8+

 T
 c

el
ls

 a
nd

 IL
-6

;
H

ig
h 

IL
-6

 e
xp

re
ss

io
n 

co
rr

el
at

es
 w

ith
 P

D
-L

1 
ex

pr
es

si
on

 in
 E

SC
C

 p
at

ie
nt

s 
un

de
rg

oi
ng

 c
he

m
or

ad
io

th
er

ap
y;

P
D

-1
 is

 u
pr

eg
ul

at
ed

 o
n 

T 
ce

lls
/T

IL
s 

af
te

r 
R

T

1 
×

 b
la

dd
er

2 
×

 b
re

as
t

2 
×

 c
ol

on
1 
×

 E
SC

C
1 
×

 p
an

cr
ea

s

6 
G

y
9 

G
y

5*
2 

G
y

12
 G

y
12

 G
y

15
 G

y
20

 G
y

30
 G

y

24
h

24
h

48
h

48
h

72
h

72
h

72
h

21
d

R
od

ri
gu

ez
-R

ui
z 

et
 a

l.;
4  D

en
g 

et
 a

l.;
47

 V
er

br
ug

ge
 e

t a
l.;

31
 

A
za

d 
et

 a
l.;

64
 D

ov
ed

i e
t a

l.;
65

 
Li

an
g 

et
 a

l.;
11

6  C
he

n 
et

 a
l.;

66
 

W
u 

et
 a

l.67

O
th

er
U

pr
eg

ul
at

io
n 

of
 th

e 
N

K
p3

0 
lig

an
d 

B
7-

H
6 

se
ns

iti
ze

s 
tu

m
or

 c
el

ls
 to

 N
K

-c
el

l-
m

ed
ia

te
d 

ly
si

s;
R

ad
ia

tio
n-

in
du

ce
d 

ca
lr

et
ic

ul
in

 s
en

si
tiz

es
 tu

m
or

 c
el

ls
 to

 C
TL

-m
ed

ia
te

d 
ly

si
s

1 
×

 A
M

L
1 
×

 b
re

as
t

1 
×

 lu
ng

1 
×

 p
ro

st
at

e

8 
G

y
10

 G
y

24
h

72
h

G
am

ei
ro

 e
t a

l.;
23

 C
ao

 e
t a

l.11
7

R
ep

re
se

nt
at

iv
e 

pr
ec

lin
ic

al
/c

lin
ic

al
 s

tu
di

es
 a

na
ly

zi
ng

 th
e 

ef
fe

ct
s 

of
 R

T 
on

 tu
m

or
-c

el
l s

us
ce

pt
ib

ili
ty

 to
 T

 o
r 

N
K

-c
el

l-
m

ed
ia

te
d 

ly
si

s.
 In

di
ca

te
d 

ar
e 

th
e 

re
sp

ec
tiv

e 
ef

fe
ct

s 
of

 R
T,

 th
e 

su
gg

es
te

d 
un

de
rl

yi
ng

 m
ec

ha
ni

sm
s,

 th
e 

an
al

yz
ed

 tu
m

or
 ty

pe
 a

nd
 th

e 
lo

w
es

t r
ad

ia
tio

n 
do

se
 a

nd
 e

ar
lie

st
 ti

m
ep

oi
nt

 a
ft

er
 R

T 
at

 w
hi

ch
 m

ax
im

um
 e

ff
ec

ts
 o

n 
th

e 
in

di
ca

te
d 

m
ec

ha
ni

sm
 w

er
e 

ob
se

rv
ed

 in
 v

iv
o 

or
 in

 v
itr

o 
(if

 n
o 

in
 v

iv
o 

da
ta

 a
va

ila
bl

e)
.

C
D

13
7,

 tu
m

or
 n

ec
ro

si
s 

fa
ct

or
 r

ec
ep

to
r 

su
pe

rf
am

ily
 m

em
be

r 
9;

 A
M

L,
 a

cu
te

 m
ye

lo
id

 le
uk

em
ia

; A
TM

, a
ta

xi
a 

te
la

ng
ie

ct
as

ia
 m

ut
at

ed
; N

K
p3

0 
lig

an
d 

B
7-

H
6,

 n
at

ur
al

 k
ill

er
 c

el
l c

yt
ot

ox
ic

ity
 

re
ce

pt
or

 3
 li

ga
nd

 1
; C

TL
, c

yt
ot

ox
ic

 ly
m

ph
oc

yt
e;

 C
TL

A
-4

, c
yt

ot
ox

ic
 T

-l
ym

ph
oc

yt
e 

as
so

ci
at

ed
 p

ro
te

in
 4

; d
, d

ay
s;

 E
SC

C
; e

so
ph

ag
ea

l s
qu

am
ou

s 
ce

ll 
ca

rc
in

om
a;

 F
as

, F
as

 c
el

l s
ur

fa
ce

 d
ea

th
 

re
ce

pt
or

; G
y,

 G
ra

y;
 H

LA
, h

um
an

 le
uk

oc
yt

e 
an

tig
en

; I
FN

, i
nt

er
fe

ro
n;

 IL
, i

nt
er

le
uk

in
; M

H
C

, m
aj

or
 h

is
to

co
m

pa
tib

ili
ty

 c
om

pl
ex

; M
IC

A
/B

, M
H

C
 c

la
ss

 I 
po

ly
pe

pt
id

e-
re

la
te

d 
se

qu
en

ce
 A

 O
R

 
M

H
C

 c
la

ss
 I 

po
ly

pe
pt

id
e-

re
la

te
d 

se
qu

en
ce

 B
; m

TO
R

, m
ec

ha
ni

st
ic

 ta
rg

et
 o

f r
ap

am
yc

in
; N

A
, n

ot
 a

pp
lic

ab
le

; n
.d

., 
no

t d
is

cl
os

ed
; N

K
, n

at
ur

al
 k

ill
er

; N
K

G
2D

, k
ill

er
 c

el
l l

ec
tin

-l
ik

e 
re

ce
pt

or
 

K
1;

 N
K

p3
0,

 n
at

ur
al

 c
yt

ot
ox

ic
ity

 tr
ig

ge
ri

ng
 r

ec
ep

to
r 

3;
 P

D
-1

, p
ro

gr
am

m
ed

 c
el

l d
ea

th
 1

; P
D

-L
1,

 C
D

27
4 

m
ol

ec
ul

e;
 R

A
E-

1,
 r

et
in

oi
c 

ac
id

 e
ar

ly
 in

du
ci

bl
e-

1;
 R

T,
 r

ad
io

th
er

ap
y;

 S
TA

T3
, s

ig
na

l 
tr

an
sd

uc
er

 a
nd

 a
ct

iv
at

or
 o

f t
ra

ns
cr

ip
tio

n 
3;

 T
IL

, t
um

or
-i

nf
ilt

ra
tin

g 
le

uk
oc

yt
e;

 T
N

FR
SF

, t
um

or
 n

ec
ro

si
s 

fa
ct

or
 r

ec
ep

to
r 

su
pe

rf
am

ily
; U

LB
P

1,
 U

L1
6 

bi
nd

in
g 

pr
ot

ei
n 

1;
 W

, w
ee

ks
.

https://journals.sagepub.com/home/tam


Therapeutic Advances in Medical Oncology 10 

12 journals.sagepub.com/home/tam

tumor cell lines.57 Thus, RT could increase MHC-I 
levels in some tumors with low endogenous MHC-I 
to increase immune-mediated attack.

A crucial role of NK cell-mediated response elim-
inating small tumors and metastases has been 
shown. Irradiated tumors increase their visibility 
to NK cell-mediated cytotoxicity by enhanced 
expression of tumor ligands for NK receptors 
(NKG2D and NKp30) (Table 4).61,118 Although 
RT has shown beneficial effects on NK effector 
function, various factors in the TME can sup-
press NK effector responses. These include TGF-
β, suppressive cells (MDSCs and Tregs), low pH 
and oxygen levels. Moreover, MHC-I molecules 
inhibit NK cell effector function even though they 
are crucial in the initiation of T-cell responses, as 
previously mentioned.

Other radiation-induced changes include the 
induction of Fas and TNF related apoptosis-
inducing ligand receptors (TRAILRs) on tumor 
cells, members of the TNFR superfamily, which 
increases susceptibility to NK and T-cell-
mediated lysis. Calreticulin is exposed in the 
outer layer of the plasma membrane upon irradia-
tion and triggers tumor cell phagocytosis by DCs 
and increases susceptibility to T-cell-mediated 
lysis.23,58,59,119 Moreover, RT also induces expres-
sion of immune checkpoint ligands such as PD-L1 
on tumor cells, which interferes with the effector 
functions of interacting T cells.4,31,47

Implications for clinical 
radioimmunotherapy

Clinical trials combining radio- and 
immunotherapy
Despite the plethora of preclinical information 
available, clinical data on combining RT and IT 
are scarce and largely limited to anti-CTLA-4 
(ipilimumab)–RT combinations (Table 5). 
Importantly, concurrent or sequential combina-
tions of RT and anti-CTLA-4 or anti-PD-1 were 
safe and well tolerated in several prospective 
clinical trials and retrospective analyses,5,69,120–122 
although 34% grade 3 toxicities were reported 
when biologically effective doses of over 90 Gy 
for liver or lung stereotactic body radiation ther-
apy (SBRT) were used.6

Combinations of RT and ipilimumab have yielded 
encouraging results, especially in melanoma. A 
phase I clinical trial of concurrent ipilimumab 

and a physician’s choice RT regimen in 22 meta-
static melanoma patients reported three complete 
responses (CRs) (13.6%).5 Notably, CRs are rare 
under ipilimumab monotherapy (1.4–
2.2%).13,150,151 Another phase I trial in 22 mela-
noma patients of ipilimumab administered after 
RT did not show CRs but four partial responses 
(PRs) (18%), which is comparable with ipili-
mumab monotherapy (9.5–16.8%).13,151,152 
Moreover, combined ipilimumab and SBRT 
achieved a 10% response rate in 35 patients with 
tumor types other than cutaneous melanoma.6 
Nevertheless, in metastatic prostate cancer, a 
phase III clinical trial comparing ipilimumab (n = 
399) and SBRT for bone metastases with SBRT 
alone (n = 400) failed to meet its primary end-
point.123 Notably, prostate cancer infrequently 
responds to immune checkpoint therapy and a 
synergy of RT and IT in preclinical models of 
metastatic prostate cancer has not been demon-
strated yet; calling for more basic immunological 
research in this tumor type (Table 5).17,153 Aside 
from checkpoint inhibitors, a phase I/II trial com-
bining GM-CSF and conformal RT in various 
tumor types reported an overall response rate of 
26%, including two CRs in non-small cell lung 
cancer (NSCLC).8

Currently, more than 90 clinical trials assessing 
RT–IT combinations are ongoing.82 Of interest 
are combinations of RT with PD-1 antibodies, 
which in monotherapy have already shown clinical 
activity in a variety of cancers.14,15,154,155 Over 40 
clinical trials are assessing safety and efficacy of 
this combination, including two phase III studies in 
glioblastoma multiforme and NSCLC 
[ClinicalTrials.gov identifiers: NCT02768558 
and NCT02617589].82 Moreover, triple combi-
nations of RT, anti-CTLA-4 and anti-PD-L1 are 
being tested and may have complementary effects 
on antitumor immune responses, as demonstrated 
in preclinical models [ClinicalTrials.gov identifiers: 
NCT02701400 and NCT02639026].69

Despite encouraging results in first clinical trials, 
most patients do not respond to RT–IT combina-
tions. Several factors of the radiation regimen 
could be important to enhance its local and sys-
temic antitumor effects in combination with IT.

Dose of radiotherapy
Radiation dose largely affects both the immu-
nomodulatory and cytotoxic effects of RT. Most 
preclinical studies combining RT and IT use high 
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cumulative radiation doses of 5–20 Gy and most 
immune-stimulatory effects of RT peak at similar 
doses (Tables 1–5). For example, cytokine therapy 
combined with 10 Gy of local RT led to a strong 
synergistic effect and tumor control in 70% of mice, 
while combinations with 5 Gy or 2 Gy only led to 
tumor control in 50% or 10% of mice, respec-
tively.156 Clinical trials combining RT and IT 
applied even higher cumulative doses up to 66 Gy 
using more hyperfractionated radiation regimens 
(Table 5). Interestingly, a preclinical study showed 
that radiation doses above 12–18 Gy attenuate the 
immunogenicity by cytosolic DNA degradation 
induced by exonuclease Trex1, whereas lower 
doses rather stimulate IFN-β secretion, activating a 
subset of DCs critically important for CD8 T-cell 
priming, allowing tumor rejection (abscopal effect) 
when combined with immune-checkpoint block-
ade.136 LD irradiation has been shown to have 
immunomodulatory capacity both when applied 
locally or as TBI. In 30 patients with low-grade 
B-cell lymphoma or mycosis fungoides, local LD 
irradiation of 2*2 Gy in combination with local 
administration of a toll-like receptor 9 (TLR9) ago-
nist led to one CR and eight PRs at distant sites.7,157 
In preclinical models, a local LD irradiation with 2 
Gy synergized with adoptive T-cell transfer via the 
induction of iNOS in TAMs32,158 and also resulted 
in an abscopal effect when combined with an FMS-
like tyrosine kinase 3 ligand.3 Moreover, 1.25 Gy 
total body LD irradiation in combination with a 
DC gp100 tumor vaccine enhanced priming of 
antigen-specific T cells and reduced relative Treg 
numbers in peripheral lymph nodes.158,159 
Furthermore, total body LD irradiation with 0.1, 
0.2 Gy or 0.75 Gy has been repeatedly shown to 
reduce outgrowth of intravenously injected tumor 
cells in the lungs of different mouse models, an 
event associated with increased NK cell numbers 
and cytotoxicity.160–164 However, the dose range in 
which the beneficial effects of total body LD irra-
diation can be observed appears to be narrow and 
slightly higher doses can already abrogate NK cell 
proliferation and activity.163 The advantage of local 
LD radiation results from its mild adverse events 
facilitating clinical application.165 Several ongoing 
clinical trials are investigating the immunomodula-
tory properties of local LD irradiation in pancre-
atic, colorectal and NSCLC patients.166–168

Fractionation of RT
Fractionation of RT represents another key factor 
usually applied to reduce radiation damage to 
healthy tissues and maximize exposure of tumor 

cells in a sensitive phase of their cell cycle. Focused 
modern radiation techniques allow for a reduced 
number of RT fractions and prevent generalized 
lymphopenia by improved definition of the irradi-
ated volume.169 Although the underlying mecha-
nisms remain to be elucidated, hypofractionated 
ablative RT (8–12.5 Gy/fraction, for two to three 
fractions) seems to be superior to single-dose RT 
in inducing an antitumor T-cell response and cre-
ating a favorable TME for maximal efficacy of 
checkpoint blockade in preclinical models (Table 
6).87,138,170,171 A recent clinical trial reported the 
outcomes of 22 metastatic melanoma patients 
treated with ipilimumab and different RT regi-
mens.5 Three patients experienced a sustained 
complete response and were treated with 50 Gy in 
4 fractions, 24 Gy in 3 fractions or 40 Gy in 10 
fractions, respectively. Finally, a retrospective 
analysis of 44 melanoma patients treated with RT 
and ipilimumab showed a significantly increased 
survival of patients treated with ablative as com-
pared with patients treated with conventionally 
fractionated RT.132 However, conventionally or 
less hypofractionated RT may also synergize with 
immune-checkpoint therapy. A clinical trial com-
bining GM-CSF and hypofractionated RT of 35 
Gy in 10 fractions in 41 patients of several tumor 
types reported two CRs and six PRs.8 Moreover, 
conventionally fractionated RT synergized with 
anti-PD-L1 in different mouse models and induced 
the formation of antitumor immunological mem-
ory.64,65 Indeed, the effects of conventionally frac-
tionated RT on IT efficacy may be underestimated 
due to the technical difficulties in applying many 
sequential RT doses to mice. Future studies should 
address this question, since conventionally frac-
tionated RT remains the standard radiation regi-
men in many tumor types and stages. Hence, the 
limited number of reports calls for further investi-
gation of the effects of different fractionation regi-
mens on combined RT and IT.

Irradiation volume
Another important factor which could impact the 
outcome of combined RTs and ITs is the irradi-
ated volume. Most preclinical and clinical studies 
combining RT and IT focused on local RT. Local 
RT can either be administered by external-beam 
RT or brachytherapy and both approaches can 
induce abscopal responses.3,4,172 However, A 
adoptive T or NK cell transfers (ACTs) not only 
benefit from local RT, but also from TBI and 
other lymphodepleting regimens.173 Preclinical 
studies revealed several effects of TBI on ACTs, 
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including enhanced engraftment, increased prolif-
eration and effector function of transferred lym-
phocytes.85,107,109 Besides, both TBI and local RT 
enhance T-cell infiltration or tumor susceptibility 
to T-cell-mediated lysis, resulting in higher antitu-
mor efficacy of ACTs. It is therefore compelling to 
assume that combining TBI with a local booster 
dose could optimally enhance ACTs. Nevertheless, 
in cancer patients, chemotherapy is generally used 
instead of TBI to enhance ACT engraftment. A 
recent phase III clinical trial showed no benefit of 
adding TBI to an adoptive T-cell transfer after a 
preconditioning chemotherapy regimen, suggest-
ing that the latter is sufficient for effective lympho-
depletion.174 However, this could be different in 
hematopoietic cancers where cells frequently 
spread to the bone-marrow and where TBI consti-
tutes a standard treatment before hematopoietic 
stem-cell transplantation.

In ITs relying on priming of tumor-reactive T 
cells such as checkpoint inhibitors, radiation or 
surgical removal of the tumor-draining lymph 
nodes could impede therapeutic efficacy. Sparing 
macroscopically nonaffected tumor-draining 
lymph nodes from RT may add benefit to patient 
survival and its combination with IT needs to be 
prospectively addressed in clinical trials.18 
Moreover, the radiation field should not include 
large skin areas, since Treg cells can be primed by 
activation of Langerhans cells residing in the irra-
diated skin.175 Therefore, irradiating the tumor 
from few angles could be superior to conventional 
three-dimensional conformal RT.

Timing
Timing is another critical factor when applying 
combined RT and IT. A retrospective analysis 

Table 6. Comparison of different radiation regimens in combination with immune checkpoint therapy.

Study type Immune
checkpoint

Tumor type Timepoint 
of IT before/
after RT

Fractionation
radiation 
dose

Conclusions References

Retrospective 
clinical

CTLA-4 Melanoma Before/after 1–5*5–22 Gy
5–20*2.3–4 Gy

Median OS 19.6 versus 10.2 
months in patients with 
ablative versus patients with 
conventionally fractionated RT, 
respectively

Qin et al.132

Preclinical CTLA-4 Breast (4T1) +1, 4, 7 d 1*12 Gy
2*12 Gy

Fractionated RT is superior to 
single-dose RT.

Demaria 
et al.81

Preclinical CTLA-4 Breast (TSA) +0, 3, 6 d 1*8 Gy
1*30 Gy
3*8 Gy

Fractionated radiotherapy, but 
not single-dose radiotherapy, 
induces an abscopal effect.

Vanpouille-
Box et al.136

Preclinical CTLA-4 Breast (TSA)
MCA38
(colorectal)

+2, 5, 8 d 1*20 Gy
3*8 Gy
5*6 Gy

Fractionated radiotherapy 
is superior to single-
dose radiotherapy when 
combined with anti-CTLA-4 
in two mouse models; a more 
hypofractionated regimen of 
3*8 Gy is superior to a less 
hypofractionated regimen of 5*6 
Gy when combined with CTLA-4

Dewan 
et al.138

Preclinical PD-L1 Pancreatic 
(Pan02)

+0 d 1*12 Gy
5*3 Gy

Fractionated and single dose 
equally synergize with anti-
PD-L1.

Azad et al.64

Preclinical PD-1
CD137

Breast 
(AT-3)

+0 d 1*12 Gy
4*5 Gy
4*4 Gy

Both single dose and 
fractionated RT + IT synergize 
with anti-PD-1 and anti-CD137.

Verbrugge 
et al.31

Representative clinical and preclinical in vivo studies comparing different radiation regimens in combination with immune checkpoint therapy. 
Characteristics of the studies with the main conclusions are included.
CTLA-4, cytotoxic T-lymphocyte associated protein 4; d, days; Gy, Gray; OS, median overall survival; IT, immunotherapy; PD-1, programmed cell 
death 1; PD-L1, CD274 molecule; RT, radiotherapy.
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revealed that in patients undergoing combined 
RT and IT for brain metastasis, timing of RT 
strongly correlated with patient outcome. 
Interestingly, patients receiving concurrent RT 
and ipilimumab had a longer overall survival than 
patients receiving ipilimumab before or after 
RT.124,126 Moreover, a phase I clinical trial of 
concurrent RT and ipilimumab in 22 patients 
with metastatic melanoma reported three CRs, 
whereas no CRs were observed in a clinical trial 
of sequential RT and ipilimumab in metastatic 
melanoma.5,69 This notion was further substanti-
ated by studies in syngeneic mouse models con-
firming the superiority of concurrent versus 
consecutive PD-L1 or CTLA-4 checkpoint inhi-
bition.140 Likewise, most preclinical and clinical 
studies administered checkpoint inhibitors con-
currently with RT, which appears to be the pre-
ferred timing schedule, as recently supported by 
mathematical modeling176 (Table 5).

As opposed to checkpoint inhibitors, ACTs were 
not delivered concurrently but sequentially, 
directly after RT, because adoptively transferred 
cells may be impaired or killed by concurrent irra-
diation. Importantly, the window for effective 
adoptive transfer after RT appears to be narrow. 
In a syngeneic mouse model, T cells rejected all 
tumors when they were adoptively transferred 2 
days after RT but did not reject any tumors when 
they were transferred 4 days after RT.48 This 
might suggest that ACTs mainly benefit from 
early effects of RT, such as the induction of 
chemokines, cytokines and immunogenic modu-
lation of DAMPs on the tumor cells (Tables 2, 4). 
Of note, animal models often progress consider-
ably faster than cancer patients, rendering delayed 
spaced regimens unfeasible. These must therefore 
be evaluated differently.

Additional factors influencing combined radio- 
and immunotherapy
Immunogenicity of the tumor is a critical factor 
that needs to be considered. The tumor type may 
heavily influence the response to combined RT 
and IT. Priming of tumor antigen-specific T  
cells in cancer patients after RT was frequently 
observed in colorectal cancer patients but less fre-
quently in prostate cancer patients. In this sense, 
prostate cancer is believed to be a poorly immuno-
genic cancer entity.177 Moreover, the upregulation 
of immunogenic surface molecules after RT is 
confined to a fraction of cell lines.57 Nevertheless, 
there are few comprehensive studies to generalize 
these findings.

The patient’s immune status should be consid-
ered when planning RT and IT combination tri-
als.19,116 It is conceivable that immune parameters 
could also be employed to predict the response of 
patients to combined RT and IT but this remains 
to be evaluated. In this line, patients responding to 
combined RT and IT showed a lower number of 
tumor-infiltrating MDSCs and a higher frequency 
of T cells with an activated effector memory phe-
notype.178,179 Moreover, a recent randomized con-
trolled clinical trial in castration-resistant prostate 
cancer patients indicated that patients with fea-
tures of less advanced disease benefited more from 
RT plus ipilimumab compared with RT alone 
than patients with advanced disease,123 which 
could be explained by a less advanced TME with 
lower suppression of antitumor immunity.

Concurrent treatments and medication of the 
patient could alter the radiation-induced immune 
response and should therefore be considered. 
Surgery greatly diminished antigen abundance 
and impeded antitumor immunity in a preclinical 
mouse model of fibrosarcoma.149 Corticoids and 
antibiotics are frequently administered after  
RT to treat complications such as radiation- 
induced emesis, pneumonitis and infections. 
Dexamethasone entails immunosuppressant 
effects and ciprofloxacin abrogates the radiation-
induced translocation of gut microbiota resulting 
in limited efficacy of RT or combined RT and IT 
in mice.27,110 Despite the fact that some cytotoxic 
drugs alone can induce antitumor immune 
responses,119 they can either have beneficial or 
detrimental effects when added to combined RT 
and IT. LD chemotherapy administered before 
initiation of combined RT and IT can be benefi-
cial by lowering systemic Treg or MDSC num-
bers.158 By contrast, full-dose chemotherapy 
administered after initiation of combined RT and 
IT inhibits the proliferation of tumor-reactive T 
cells. Thus, the type of concurrent medication 
and its effects on the immune system should be 
considered when combining RT and IT.

Conclusion
Preclinical studies have been of much importance 
elucidating new mechanisms of RT on the immune 
system. But more translational studies are needed 
to evaluate whether RT can enhance the priming 
of tumor-reactive T cells in large cohorts of 
patients and whether they induce CD8 and CD4 
immunological memory. Even though combined 
treatments have shown considerable promise, 
many patients do not respond to combined RT 
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and IT, which means that further mechanistic 
preclinical studies are needed to unveil novel clini-
cal approaches combining these two 
treatments.106,121,123

Radiation dose, fractionation and timing must all 
be optimized to enhance IT in each tumor type 
and stage, and these should be established in future 
clinical trials. The complexity of this question 
would require systematic approaches in experi-
mental models and in patients. In our opinion, 
consensus on novel radiological response criteria 
are needed to capture benefit in terms of local ver-
sus abscopal/systemic responses to radioimmuno-
therapy. Ultimate evidence in randomized clinical 
trials is unlikely to be available in the next 5 years.

The wide implementation of modern RT tech-
niques such as intensity-modulated radiation ther-
apy and four-dimensional conformal radiation 
therapy facilitates the clinical translation of com-
bined RT and IT. The high radiation doses fre-
quently needed for enhancing IT can be 
administered with high precision. Moreover, 
detailed analyses of the effects of emerging RT 
techniques such as proton and heavy ion therapy 
on the immune system remain to be addressed. 
Inflammatory responses post-RT can cause seri-
ous side effects such as pneumonitis, myocarditis 
and fibrosis. It is currently unknown how enhanced 
immune reactivity after RT and IT may impact 
these adverse events and how they can be pre-
vented without limiting the antitumor immune 
response. Finally, a scenario, which has so far been 
largely ignored in preclinical studies, is the combi-
nation of RT, IT and surgery either in the adjuvant 
or neoadjuvant setting. Future preclinical research 
should account for this combination of great clini-
cal importance and identify its distinct immuno-
logical features such as a highly diminished tumor 
antigen load in the adjuvant setting.

Brachytherapy offers opportunity for local deliv-
ery of IT agents in addition to the local instigation 
of RT. Indeed, the combination of intraoperative 
RT and IT also offers opportunities that remain 
unexplored at this point.

The insights obtained from studying the effects of 
RT on the immune system could also lead to the 
development of new ITs acting synergistically 
with RT. Given the complexity of immunological 
changes in the TME postirradiation, approaches 
using computational tools and systems biology 
will gain more importance in the field and shed 
light on complex spatio-temporal players of the 

TME post-RT. This can ultimately lead to the 
development of novel and more complex combi-
nation therapies,180 which could overcome resist-
ance to RT plus single/dual-agent immunotherapies 
and which may therefore be applicable in complex 
settings such as at multimetastatic stages. Abscopal 
effects after RT represent one of the most exciting 
themes, and a better understanding of their mech-
anistic basis in multiple tumors and stages could 
lead to a paradigm shift in radiation oncology that 
could turn a local mode of cancer treatment into a 
systemic one.
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