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Abstract

Cancer remains a significant health issue, resulting in around 10 million deaths per year, particularly in developing nations.
Demographic changes, socio-economic variables, and lifestyle choices are responsible for the rise in cancer cases. Despite
the potential to mitigate the adverse effects of cancer by early detection and the implementation of cancer prevention
methods, several nations have limited screening facilities. In oncology, the use of artificial intelligence (Al) represents a
transformative advancement in cancer diagnosis, prognosis, and treatment. The use of Al in biomarker discovery improves
precision medicine by uncovering biomarker signatures that are essential for early detection and treatment of diseases
within vast and diverse datasets. Deep learning and machine learning diagnostics are two examples of Al technologies
that are changing the way biomarkers are made by finding patterns in large datasets and making new technologies that
make it possible to deliver accurate and effective therapies. Existing gaps include data quality, algorithmic transparency,
and ethical concerns around privacy, among others. The advancement of biomarker discovery methodologies with Al
seeks to transform cancer by improving patient survival rates through enhanced early diagnosis and targeted therapy.
This commentary aims to clarify how Al is improving the identification of novel biomarkers for optimal early diagnosis,
focused treatment, and improved clinical outcomes, while also addressing certain obstacles and ethical issues related to
the application of artificial intelligence in oncology. Data from reputable scientific databases such as PubMed, Scopus,
and ScienceDirect were utilized.

Highlights

e Al, deep learning and machine learning models in particular, is revolutionizing biomarker discovery by identifying
complex, non-intuitive patterns from vast multiple technologies that explain biological information at molecular
levels, enhancing the precision of cancer screening and prognosis.

e Al biomarkers give information about the patient’s reaction to a treatment especially in immunotherapy, help in the
cancer therapy and in predicting the progression of a disease and response to treatment.

o Nevertheless, biomarker discovery utilizing Al model has some issues, such as, a need for large and high quality data,
understanding of the model, privacy, and ensuring diversity to avoid exacerbating health disparities. By addressing
these issues, Al's potential in biomarker discovery and enhanced cancer prognosis could revolutionize oncology,
enhancing patient outcomes and survival rates, despite these challenges.

DX Esther Ugo Alum, esther.alum@kiu.ac.ug; alumesther79@gmail.com | 'Department of Research and Publications, Kampala International
University, P. O. Box 20000, Kampala, Uganda.

Discover Oncology (2025) 16:313 | https://doi.org/10.1007/512672-025-02064-7

Check for
updates

@ Discover


http://orcid.org/0000-0003-4105-8615

Comment
Discover Oncology (2025) 16:313 | https://doi.org/10.1007/512672-025-02064-7

Keywords Cancer - Biomarker discovery - Al - Deep learning - Machine learning - Oncology

1 Introduction

Cancer has turned out to be a health danger of great concern around the world, with about 10 million deaths occurring
due to this ailment each year [1]. Increased population growth, rising life expectancy, and risk factors like tobacco con-
sumption, poor nutrition, and pollution fuel cancer [2]. However, low- and middle-income countries shoulder and unequal
burden, recording 70% of cancer-related mortalities. Some of the frequently affected portions of the human body by
cancer are the lungs, breasts, colon, brain, and stomach. Lifestyle changes such as smoking cessation, vaccinations, and
dietary changes can significantly reduce the incidence of cancer disease [3]. While it is possible, and indeed necessary,
to detect diseases in an easily recognizable stage, screening programs are not available or implemented effectively in all
countries. The global cancer burden has increased, necessitating the development of safe, cost-effective, accessible, and
effective methods to prevent the disease [4]. The introduction of artificial intelligence (Al) in oncology has created a new
strategy to cancer diagnosis, prognosis, and treatment. This change has come about due to the growing need to practice
precise medicine. The search for an appropriate treatment takes into account not only the disease but also the individual,
their genetics, environment, lifestyle, and other factors [5]. One of Al's most constructive roles is the search for biomarkers,
which is one of the most critical elements in precision oncology. For quite a long time, cancer diagnostics and treatment
planning have used biomarkers, which are defined as genes, proteins, or other substances that inform on the presence
or evolution of a disease. However, most of the conventional biomarker discovery approaches are hypothesis-driven,
which is not practical given the intricacy of cancer biology and the quantity of data that modern ‘omics’ technologies
bring [6]. The rapid integration of Al, principally deep learning and machine learning, is revolutionizing the development
of biomarkers by enabling the derivation of ideas from patterns in big datasets and enhancing the development of new
technologies that facilitate the provision of precise and effective therapies [7]. Recently, Barioni et al. [8], in a systematic
review, reported that the above tools demonstrated potential in enhancing cancer detection, diagnosis, prognosis, and
therapeutic strategies. However, challenges persist, particularly in some cancers like ovarian and pancreatic cancer, where
limited data availability and quality exist [9]. To deal with these problems, researchers are coming up with new ways to
use computers. For example, Rodland et al. [10] described specific vocabularies for Al research that protect patient pri-
vacy, and advanced Bayesian algorithms for early cancer detection using longitudinal measures. Despite the potential,
we must resolve concerns about Al transparency, explainability, and trustworthiness to ensure its effective deployment
in clinical environments [9]. This commentary focuses on the technology of Al-based biomarker discovery, aiming to
comprehend the impact of biomarker discovery on oncology, specifically in terms of cancer diagnosis and prognosis.
It aims to clarify how Al is enhancing the discovery of new biomarker signatures for effective early diagnosis, targeted
therapy, and favorable clinical outcomes while addressing some of the barriers and ethical dilemmas surrounding the
use of artificial intelligence in a medical setting.

2 The promise of Al in uncovering novel biomarkers

Al makes it easier to use advanced algorithms to look at huge genomic, transcriptomic, proteomic, and metabolomic
datasets. This fundamentally changes the way biomarker identification is usually done. Unlike classical approaches based
on hypothesized hypotheses, Al-based models uncover innovative and surprising connections within high-dimensional
datasets that common statistical methods could easily miss [11]. How deep learning models demonstrate expertise in
decoding complex data patterns is one example. These models decode information from a variety of datasets, such as
tumor biopsies samples, blood tests, and medical images, to identify biomarkers associated with patient outcomes,
such as survival rates and medication reactions [12]. Bioinformatics techniques are used by Al-driven technologies like
PandaOmics to look at multimodal omics data. This helps find the therapeutic targets and biomarkers that are needed
in cancer care. These platforms use high-throughput technologies to amass extensive biological datasets over the last
two decades [13]. Researchers can uncover intricate correlations within these datasets, typically overlooked by tradi-
tional analytical techniques, facilitated by advanced statistical methods and machine learning algorithms. For instance,
explainable Al (XAl) frameworks are particularly significant. They enrich the interpretability of Al frameworks, helping
clinicians better recognize the connection between particular biomarkers and patient results [14]. A study showcases an
XAl-based deep learning framework for biomarker discovery in non-small cell lung cancer (NSCLC), demonstrating how
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explainable models can assist in clinical decision-making. This strategy improves diagnosis accuracy and boosts health
professionals’ confidence in Al-generated results [15]. In biomarker research, accuracy refers to the ability of a biomarker
test or tool to correctly identify or measure the intended biological condition or state. It reflects how closely the test
results align with the true value or actual condition, encompassing both sensitivity (true positive rate) and specificity
(true negative rate). High accuracy ensures reliable and valid results for diagnostic, prognostic, or therapeutic purposes.

The use of artificial intelligence also creates chances to bring in data from various ‘omics'—genomics, epigenomics,
and proteomics—to understand multi-omics biomarkers that provide more complete insights into tumor biology. Adopt-
ing an integrative method, we might attain exceptional information surrounding cancer pathways and mechanisms,
which may possibly result in better, personalized therapies. Using Al to coordinate and assess complicated data forms
will help researchers distance themselves from single-biomarker strategies and advance their exploration of cancer
biology in its entirety.

3 Enhancing diagnostic precision with Al-derived biomarkers

The integration of Al into biomarker research is expected to significantly improve cancer diagnosis precision. Although
typically valuable, biomarker-based diagnostics historically face challenges with both sensitivity and specificity. Sensi-
tivity refers to the ability of a biomarker to correctly identify individuals with a particular condition (true positive rate).
A highly sensitive test minimizes false negatives. Specificity refers to the ability of a biomarker to correctly identify
individuals without the condition (true negative rate). A highly specific test minimizes false positives. Both sensitivity
and specificity are critical for evaluating the diagnostic accuracy of biomarkers. For example, screening methods cur-
rently used for cancer, such as mammography for breast cancer or prostate specific antigen testing for prostate cancer,
face challenges with false readings that lead to either overtreatment or missed diagnoses [16]. By contrast, Al-driven
models have the capability to detect highly precise biomarker signatures linked to different cancer subtypes, enhancing
diagnostic methods. By interpreting complex histopathological images, Al can further elevate diagnostic accuracy [17].
Al techniques have proven effective in categorising cancer cases and healthy individuals, with ramifications for preci-
sion medicine and tailored cancer therapies [18]. Next-generation sequencing (NGS) technologies and Al have changed
precision oncology by making it easier to assess risk, diagnose cancer early, and find biomarkers [19]. As shown by Ozaki
et al. [20], Al applications can help find cancer earlier and predict how it will progress by analysing multi-omics data,
radiomics, pathomics, and clinical records. Machine learning and deep learning models have demonstrated superior
efficacy in categorizing cancer types and stages, especially for breast, lung, brain, and skin cancers [21]. Deep learning
algorithms, trained on a vast collection of histological images, have consistently demonstrated remarkable accuracy in
identifying cancerous tissues, often surpassing the performance of human pathologists. By combining these image-
based analyses with biomarker data, Al can provide a more comprehensive diagnostic method that significantly improves
early detection and diagnostic accuracy. Lung cancer diagnosis using Al-enhanced diagnostics has shown promising
results in analyzing radiological and genomic data, which could significantly improve patient outcomes through earlier
identification and focused intervention [22].

4 Prognostic value of Al-discovered biomarkers

The prognostic potential of Al-derived biomarkers is of considerable importance in predicting patient outcomes and
informing therapeutic choices. Oncologists can make more informed treatment decisions using models based on bio-
markers and Al, which can predict the likely response of patients to specific therapies. It is especially important within
the field of cancer immunotherapy, as patient responses are unpredictably variable. Al can pinpoint biomarker signa-
tures, which help to determine certain patients who are more predisposed to react to immunotherapies like checkpoint
inhibitors, thus aiding customized and more effective treatment plans [23]. Furthermore, prognostic biomarkers based
on Al provide dynamic insights into the evolution of cancer. Over time, Al systems can pick up on minor changes seenin
patient data—including the levels of circulating tumor DNA or RNA—allowing detection of disease recurrence or treat-
ment resistance before these conditions become clinically detectable [24]. The power to foresee results in real time gives
oncologists the opportunity to alter treatment approaches in a proactive manner, which could enhance both survival
statistics and the standard of living for cancer patients. In oncology, distinguishing predictive from prognostic biomarkers
is critical. Predictive biomarkers report how effective a treatment is for a patient, whereas prognostic biomarkers indicate
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the likely outcome of a case independent of treatment. The most recent advancements in this area have resulted in the
establishment of the Predictive Biomarker Modeling Framework (PBMF), which uses contrastive learning to systematically
extract predictive biomarkers from rich clinical data [25]. Retrospective studies have demonstrated the potential of this
framework, revealing significant improvements in patient survival rates through its predictive capabilities.

Al models can amalgamate several data modalities, including radiography, histology, genomics, and electronic health
records, to enhance diagnostic precision and reliability [26]. These models can identify novel patterns across modalities,
potentially resulting in new biomarkers and therapeutic targets [26]. Oncoimaging and oncopathology are developing
Al algorithms for cancer screening, tumour characterisation, and clinical decision-making [27]. Radiomics, pathomics,
and radiogenomics are nascent disciplines that use Al to derive significant insights from medical imaging and associate
them with biochemical pathways [27].

5 The integration of image-based and molecular Al-driven biomarkers in cancer diagnosis
and prognosis

The integration of image-based and molecular Al-driven biomarkers in cancer diagnosis and prognosis represents a
promising frontier in precision oncology. By combining insights from medical imaging (such as radiology and pathology
images) with molecular data (like genetic and genomic profiles), this integrated approach provides a comprehensive
view of cancer, improving diagnostic accuracy and prognostic predictions [28].

Image-based Al Biomarkers: Al-driven image analysis, particularly through techniques like radiomics and deep learn-
ing, extracts valuable features from medical imaging (e.g., CT scans, MRIs, or histopathological slides). These biomarkers
can reveal tumor heterogeneity, early signs of malignancy, and subtle patterns that may be missed by the human eye
[29]. For instance, Al can identify tumor boundaries, estimate tumor size, and assess treatment response, which are crucial
for staging and monitoring progression [17].

Molecular Al Biomarkers: Molecular biomarkers involve the analysis of genetic, epigenetic, and proteomic data to
identify cancer-specific alterations. Al algorithms, especially those based on machine learning, can process vast data-
sets to identify genetic mutations, identify tumor subtypes, and predict responses to targeted therapies [30]. Molecular
biomarkers are often used for personalized treatment, guiding clinicians to select the most appropriate therapies based
on the tumor’s genetic profile.

5.1 Integrated approach

By combining both image-based and molecular biomarkers, Al can correlate visual patterns with underlying genetic and
molecular alterations. This fusion enables:

i. More accurate diagnoses: Al can integrate both imaging and molecular data to detect early-stage cancers and
identify hard-to-detect tumors [31].
ii. Improved prognosis prediction: The integrated models predict cancer progression and metastasis more accurately,
guiding treatment decisions and patient management [32].
iii. Personalized treatment: The combination of imaging and molecular data helps tailor therapies to individual patients,
improving efficacy and reducing unnecessary side effects [33].

5.2 Real-world case studies where Al-driven oncology biomarkers have proven efficient
Al-driven oncology biomarkers have shown improvements in clinical outcomes. Below are a few real-world case studies:

1. Al-Driven Radiomics for Early Detection of Lung Cancer: A study used Al algorithms to analyze radiomic features from
CT scans to identify early-stage lung cancer biomarkers. The Al model demonstrated improved early detection rates
compared to traditional imaging methods. It was able to identify subtle patterns in CT images that were overlooked
by human clinicians, enabling earlier intervention and better survival rates [34].

2. AlinBreast Cancer Diagnosis: PathAl, a company specializing in Al-driven diagnostics, developed algorithms to analyze
histopathological images for breast cancer detection. PathAl's Al models achieved higher accuracy than pathologists
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in identifying breast cancer, especially in detecting smaller or less obvious malignancies. The Al system also helped
reduce diagnostic errors, particularly in distinguishing between benign and malignant tissues. Improved diagnostic
precision led to better treatment decisions, and faster, more accurate results were linked to enhanced patient care
and outcomes [35].

3. Al-Powered Genomic Profiling in Precision Oncology: Tempus, a technology company, developed an Al-driven platform
that integrates genomic data with clinical outcomes to help identify effective treatments for cancer patients. By ana-
lyzing tumor genomic profiles, Tempus’ platform identified biomarkers that guided personalized treatment plans. In
clinical trials, patients whose treatments were informed by Al-driven genomic profiling showed improved responses
to targeted therapies and immune checkpoint inhibitors, leading to better response rates and survival outcomes for
patients with various types of cancer [36].

4. Alin Prostate Cancer: IBM Watson for Oncology was used to analyze large volumes of medical data, including electronic
health records (EHR) and clinical trials, to assist in the diagnosis and treatment of prostate cancer. In China, Watson for
Oncology provided oncologists with evidence-based treatment recommendations that aligned with best practices
[37].

5. Alfor Liquid Biopsy in Colorectal Cancer: Guardant Health: Guardant Health developed an Al-powered liquid biopsy test
(Guardant360) that analyzes tumor DNA in blood samples to detect actionable mutations in colorectal cancer. The
Guardant360 test, powered by Al, helped identify specific mutations and guide treatment decisions for colorectal
cancer patients. It was found to be highly effective in detecting mutations and monitoring treatment responses with
minimal invasiveness [38].

6 Artificial intelligence (Al) and machine learning (ML) in clinical trials in oncology studies

Al and ML are progressively incorporated into oncology research and clinical practice. These technologies demonstrate
potential in multiple facets of cancer care, encompassing early detection, diagnosis, classification, and therapy planning
[39]. Al applications encompass several data modalities, including imaging, genomics, and medical records, and are being
created for the four predominant cancer types. Notable Al subtypes that have been remarkably useful are neural networks
and Bayesian methods. Al is the central domain, while neural networks and Bayesian methods are specific techniques within
Al with distinct approaches. While neural networks are data-driven, Bayesian methods are probabilistic and leverage prior
information. Recent research has concentrated on employing neural networks for cancer prediction utilising microarray data,
encompassing gene expression filtering, cancer presence or type prediction, and unlabelled sample clustering [40]. Neural
networks can integrate various biological scales, from genotype to phenotype, facilitating the comprehension of heterogene-
ity’s role in cancer progression and the microenvironment’s influence on evolutionary dynamics [41]. These networks have
been utilised across multiple cancer types, including prostate, breast, lymphatic, and head and neck cancers [42]. Although
neural networks exhibit potential in cancer research, challenges persist in identifying optimal network architectures and
hyperparameters, often necessitating trial-and-error methodologies [40]. Bayesian methods have been prominent in cancer
research because of their capacity to manage complicated statistical models and integrate prior information [43]. These
strategies are very effective in the analysis of high-dimensional omics data for cancer prognosis and prediction, facilitating
multi-omics integration and enhancing predictive performance [43]. Researchers have used Bayesian spatial-temporal mod-
els to study cancer incidence and death trends across time and geography, primarily using generalised linear mixed models
[44]. Al approaches in clinical trials provide benefits over conventional statistics by enabling direct assertions regarding
treatment success and effectively managing intricate trial designs [45]. Despite several constraints, including the necessity
for prior information, Al methods offer significant resources for oncologists across multiple facets of cancer research, encom-
passing prognostic modeling and the design and analysis of clinical trials [46, 47]. Recent improvements concentrate on the
incorporation of Al into clinical practice for the four predominant cancer types, involving tasks such as detection, diagnosis,
and treatment planning across diverse data modalities [48]. Notwithstanding these encouraging advancements, difficulties
persist, such as data transparency, interpretability, and potential biases, which must be resolved for the extensive implemen-
tation of Alin oncology [49]. Recent initiatives have highlighted Al's capability in forecasting emergency hospital admissions,
and sudden death in clinical trials [50]. A review of randomized controlled trials indicated that Al and ML methodologies
were predominantly investigated in prostate, colorectal, and lung cancers, with artificial neural networks being the most
frequently employed algorithm [51]. Although Al demonstrates significant potential in oncology, its present applications
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are predominantly centered on diagnostic and prognostic services, highlighting the necessity for additional research and
development in treatment-related applications. Table 1 is a brief comparison of Al methodologies and traditional methods.

7 Hard computing-based algorithms in cancer management

Hard computing is a deterministic, rule-based algorithm intended for precise and logical problem solving. These algorithms
rely on strict mathematical models and exact solutions, and so they are very powerful for problems where accuracy and
reproducibility are of the essence [52]. While Al-based methods, particularly deep learning and machine learning methods,
have revolutionized biomarker discovery, it's important to acknowledge the continued usefulness of hard computing-based
algorithms for biomarker discovery in oncology. These deterministic, rule-based approaches are powerful and provide com-
plementary benefits in clinical practice [53]. In cancer management, hard computing-based algorithms play a crucial role
in the following areas:

i. Medical Imaging and Diagnosis: Algorithms such as support vector machines (SVMs), decision trees, and linear
regression models are used in analysing medical images such as magnetic resonance imaging, computerized
tomography, and positron emission tomography scans to detect tumors, classify cancer types, and predict malig-
nancy. These algorithms perform best at pattern recognition when the input data is well-structured and labeled
[54].

ii. Molecular Data Analysis: Hard computing techniques are applied to analyse genetic and proteomic data, aiding
identification of mutations and biomarkers linked with specific cancers. For example, logistic regression and prin-
cipal component analysis are utilized to study gene expression profiles and stratify patients [55].

iii. Treatment Optimization: Rule-based algorithms assist in optimising radiation therapy and chemotherapy dosages
by simulating treatment scenarios based on patient-specific parameters [56]. This ensures efficient tumor targeting
while reducing damage to nearby healthy tissues.

iv. Predictive Modeling: Hard computing algorithms are utilized to create predictive models for cancer prognosis. For
example, algorithms like Cox proportional hazards models assess survival rates based on clinical data, enabling
personalized treatment planning [57].

v. Clinical Decision Support Systems (CDSS): Deterministic algorithms are implanted in CDSS to provide cancer spe-
cialists with evidence-based recommendations for diagnosis, treatment, and follow-up care, enhancing decision-
making accuracy [58].

7.1 Advantages of hard computing in cancer applications

i. Efficiency and Resource Optimization: Many hard computing algorithms (such as SVMs, and decision trees), and sta-
tistical models (such as linear regression and logistic regression) require significantly fewer computational resources
compared to deep learning models. Their deterministic ability ensures speedy execution times, making them ideal
for resource-constrained environments [59].

ii. Data Requirements: Unlike Al models that often demand large, high-quality datasets for training, hard computing-
based methods can produce reliable results with minimal datasets, provided the quality of the data is high and
well-structured [60]. This is particularly useful in situations where data availability is limited, such as rare cancer
types.

iii. Automation and Workflow Integration: The automation of many hard computing techniques have streamlined their
integration into clinical settings. For instance, rule-based systems and Bayesian methods are increasingly used in
clinical decision support systems for cancer prognosis and treatment optimization [61].

iv. Interpretability: Hard computing algorithms offer a level of transparency that improves understanding and trust
among clinicians and patients. Their results can often be traced back to specific rules or statistical principles, avoid-
ing the “black-box"issues associated with Al-based approaches [62].

7.2 Limitations of hard computing in cancer management

The transformative potential of Al is confronted with challenges of large datasets, high computational power requirements
and more complex architectures when it comes to real world clinical applications. This is addressed by complementing
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these tools with increasing frequency by soft computing techniques as neural networks and fuzzy logic, which are more
suitable for dealing with complexities and ambiguity [63]. As such, hard computing approaches serve to encode balanced
simplicity, interpretability and economic computability, and hence play an important role under certain circumstances.

8 Challenges and ethical considerations
Despite its potential for change, finding biomarkers through Al faces a variety of challenges.

i. Data-related challenges: An important challenge is the need for big, top-quality datasets. The quality of training
datasets directly impacts the strength of Al models, and the presence of diverse, representative data in many
regions is consistently limited [60]. Ethical hurdles appear in the context of biomarker discovery powered by Al,
especially concerning data privacy and bias. The inclusion of large numbers of patient data points in Al develop-
ment raises concerns about the security and privacy of important medical data [64]. In addition, when the data
used to train Al models does not include enough diversity, the biomarkers revealed may not be applicable in all
settings, which could worsen existing health disparities [65]. Statistical uncertainties in Al cancer diagnostics can
be caused by data variability, sample sizes, and model assumptions. Management strategies include robust data
collection, cross-validation, uncertainty quantification, explainable Al, and continuous learning. These practices
improve diagnostic reliability and trust in Al systems.

ii. Interpretability and Transparency: The opaque "black-box" nature of Al models affecting clinical trust. The hard-to-
decipher aspects of multiple Al algorithms, in particular, create difficulties in understanding and clinical imple-
mentation [66]. Oncology life-or-death choices require clinicians to have faith in Al model decision-making.

iii. Regulatory and Validation Barriers: there are challenges in transitioning Al-identified biomarkers into clinically
validated tools. Validating technologies for Al-driven biomarker identification is critical to ensuring that these
methods are reliable and suitable for clinical use. Even though several Al models have not gone through extensive
experimental verification, the question of generalizability across various patient segments arises. Additionally, the
integration of these technologies into established clinical workflows presents logistical challenges that require
resolution to promote widespread adoption [67]. More so, navigating complex approval pathways for Al-driven
methodologies delays its application [68].

iv. Ethical Considerations: The use of biomarker tools and Al technologies in healthcare raises ethical concerns such as
patient consent, accountability for errors, and addressing disparities. These concerns aim to ensure that patients
are fully informed about how their data will be used, establishing clear responsibility for any errors, and equity in
healthcare by addressing disparities across socio-economic and geographic populations. These considerations
ensure trust, fairness, and safety in the application of advanced medical technologies [69].

9 Procedure to address ethical and data privacy concerns

Recent studies have concentrated on resolving data privacy and bias concerns in cancer diagnosis. Tasci et al.[70] empha-
sise class imbalance as a critical issue in oncological datasets, suggesting methods to alleviate algorithmic bias. According
to McGraw [71], to eradicate bias in radiology Al, there is need for different datasets and expert participation during the
development as well as the implementation phase. Clinical informatics technologies, including real-world data analysis,
natural language processing, and radiomics, are utilised to comprehend and mitigate cancer disparities among diverse
demographic characteristics. Nonetheless, meticulous examination of algorithmic bias is essential to avert the exac-
erbation of preexisting inequalities [72]. Similarly, Malin and Goodman et al. [73] summarised research on reconciling
data accessibility and privacy within medical informatics. According to them, addressing permission methodologies
through consent strategy, privacy risk assessment, cryptography approaches for querying clinical data, and game theo-
retic method for publishing summary information, could mitigate data accessibility and privacy issues. These studies
jointly underscore the necessity of resolving bias and privacy issues in cancer diagnostic data to guarantee equal and
effective healthcare outcomes.

Recent studies emphasise measures to improve diversity in cancer clinical trials and research. Principal strate-
gies encompass culturally sensitive outreach, education, and the dissemination of accessible research within local
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communities [74]. Involving healthcare providers, community organisations, and other cancer survivors as stakeholders
is essential [74]. Enhancing trial matching through the expansion of eligibility criteria, comprehensive patient screen-
ing, and diligent follow-up on matches can augment enrolment [75]. | recommend addressing barriers through site
self-assessments, quality improvement plans, and tools like clinical trial checklists and patient navigators. Addressing
the deficiency of diversity in cancer research necessitates enhancing funding accessibility for low- and middle-income
countries, augmenting the involvement of under-represented scientists in editorial boards and conferences, and appro-
priately recognizing the contributions of low- and middle-income countries researchers [76]. These tactics aim to enhance
representation and generalizability in cancer research.

10 Future directions

One can expect encouraging progress in biomarker discovery from Al within oncology, with several important advance-
ments in the near future.

i. Improving data privacy: Developing global data-sharing frameworks while maintaining privacy. The precision of
biomarker discovery will continue to rise as Al models become more sophisticated and access to larger, more
diverse datasets increases.

ii. Expanding explainable Al: Developing explainable Al (XAl) models for better interpretability would foster trust
among clinicians and patients.

iii. Integration with other biomarkers: The integration of Al with other pioneering technologies, such as CRISPR and
single-cell sequencing, may trigger the discovery of earlier health issues in cancer biology, enabling a higher level
of personalized cancer treatment [77].

iv. Promoting collaboration among stakeholders to ensure equitable access to Al advancements: Clinical practice can
only use Al-derived biomarkers with confidence if there is collaboration between Al researchers, oncologists, and
regulatory agencies. As these technologies develop, Al-driven biomarker discovery is very likely to become a key
element of precision oncology, giving fresh opportunities for early detection, better prognostic predictions, and
more tailored cancer treatments [78].

11 Conclusion

Al-driven innovation in biomarker identification signifies a pivotal advancement in precision oncology, presenting dis-
tinct opportunities to markedly improve cancer diagnosis and prognosis. Through the analysis of complex, paradoxical
biomarker patterns derived from multi-omics data, Al can transform cancer treatment from a broad approach to a per-
sonalized one. Despite ongoing challenges, the application of Al in biomarker identification has the potential to trans-
form oncology, facilitating progress towards the ultimate objective of creating tailored cancer medicines that enhance
patient outcomes and survival rates. This suggests optimism that the anticipated increase in cancer incidence will not
correlate with mortality rates.
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