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Abstract

Genome-wide association studies (GWASs) have identified a large number of noncoding

associations, calling for systematic mapping to causal regulatory variants and their distal tar-

get genes. A widely used method, quantitative trait loci (QTL) mapping for chromatin or

expression traits, suffers from sample-to-sample experimental variation and trans-acting or

environmental effects. Instead, alleles at heterozygous loci can be compared within a sam-

ple, thereby controlling for those confounding factors. Here we introduce a method for chro-

matin structure-based allele-specific pairing of regulatory variants and target transcripts.

With phased genotypes, much of allele-specific expression could be explained by paired

allelic cis-regulation across a long range. This approach showed approximately two times

greater sensitivity than QTL mapping. There are cases in which allele imbalance cannot be

tested because heterozygotes are not available among reference samples. Therefore, we

employed a machine learning method to predict missing positive cases based on various

features shared by observed allele-specific pairs. We showed that only 10 reference sam-

ples are sufficient to achieve high prediction accuracy with a low sampling variation. In con-

clusion, our method enables highly sensitive fine mapping and target identification for trait-

associated variants based on a small number of reference samples.

Introduction

Most disease associations discovered by genome-wide association studies (GWASs) are distant

from coding genes. It was shown that these noncoding variants are concentrated in regulatory

DNA marked by DNase I hypersensitivity[1] or histone modifications[2]. This enables epige-

netic fine mapping of noncoding GWAS single-nucleotide polymorphisms (SNPs)[3]. How-

ever, overlapping itself does not mean functionality. In this regard, quantitative trait loci

(QTL) mapping and more recently, allele-specific analyses, are used to test the functional dif-

ferentiation of different alleles in terms of chromatin accessibility[4,5], histone modification

levels[6–11], or transcription factor binding[12].

Additional methods and data are required to map these functional regulatory variants to

their target genes. Expression QTL (eQTL) analysis has been commonly used for the variant-
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gene mapping[13–16]. However, eQTL mapping hinges on statistical association, which may

fail to detect the direct regulatory relationships because primary target genes usually trigger a

cascade of downstream regulatory reactions. To identify direct physical targets, it is essential to

determine three-dimensional chromatin structure[17,18]. Chromatin interactome is expected

to provide critical resources for understanding the action mechanism of disease variants as

illustrated in obesity[19,20].

QTL mapping for either chromatin or expression traits may suffer limited sensitivity

because of technical variation and trans-acting effects. Because of sample-to-sample experi-

mental bias, for example due to different read depths or other unspecified batch effects, true

biological variation is often buried in confounding technical noise. The effect of trans-acting

mechanisms can be illustrated by negative-feedback control that cancels out variability across

samples with different cis-regulatory genotypes[21]. In contrast, allele-specific analyses lever-

age the intrinsic power of using a within-sample control, which enables elimination of techni-

cal, environmental, or trans-acting influences. Therefore, this approach should confer greater

sensitivity in uncovering the direct influence of cis-regulatory variation[21].

To overcome the limited sensitivity, QTL mapping requires a large cohort of samples to

increase statistical power. In contrast to QTL mapping, allelic analyses are not hampered largely

by small sample size, insofar as there is at least one heterozygous sample with a sufficient read

depth for the given locus. However, there is limitation in coverage (i.e., how many loci can be

tested) especially for less frequent variants. The same problem applies for QTL mapping. A

powerful workaround may be the employment of machine learning. Diverse features of the

identified variants can be learned and used to predict functional variants that were not testable

using given samples. Here we first perform allele-specific, long-range mapping of cis-regulatory

elements and target transcripts, and then apply machine learning for the identified pairs.

Results

Long-range allelic mapping of immune GWAS results

We collected data of chromatin immunoprecipitation-sequencing (ChIP-seq) for histone

modifications (including H3K27ac and H3K4me1), RNA-sequencing (RNA-seq), and phased

genotyping on 100 genetically different lymphoblastoid cell lines[6–9,22] (S1 Table). This data

collection served as a reference genetic panel for the allelic analyses of variants in question. As

a set of test variants, we obtained 2,351 SNPs associated with autoimmune diseases, allergic

diseases, inflammation-related diseases, and laboratory results for immune cells (S2 Table)

from the GWAS catalogue. Additionally, 7 reference chromatin interactome datasets in

immune-related cells were collected (S3 Table).

Fig 1A summarizes our analysis scheme. We first examined allelic imbalance in ChIP-seq

reads of H3K27ac, H3K4me1, H3K4me3, H3K27me3, and H3K36me3 for SNPs in linkage dis-

equilibrium (LD) with the GWAS SNPs. By using the chromatin interactomes in immune-

related cells (S3 Table), ChIP-seq peaks were mapped to their target transcripts. Of 2,351

GWAS SNPs, 1,620 were in LD with at least one SNP that was heterozygous in at least one

sample while residing in any long-range mapped ChIP-seq peaks. These target transcripts

were also searched for allele imbalance in RNA-seq. We performed meta-analysis for multiple

heterozygous samples. Then we paired ChIP-seq imbalance and RNA-seq imbalance by con-

sidering the regulatory directionality of phased SNPs (i.e., paired when the major regulatory

allele and major transcript allele are on the same chromosome for activating histone marks,

and the opposite for repression marks). The overall statistics are given in Fig 1B. Finally, 277

GWAS SNPs and 325 transcripts were paired. Gene Ontology analysis showed significant

enrichment for immune-related function (S4 Table).
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Fig 1. Summary of long-range allele-specific mapping. (A) Schematic view of our method. We first search for

SNPs causing allele imbalance in ChIP-seq reads within the LD block of a given GWAS SNP. We then search for

allele-specific expression of transcripts connected via chromatin interaction. The imbalance SNPs are paired

when the regulatory direction of their phased genotypes matches with each other (i.e., when the major regulatory

allele and major transcript allele are on the same chromosome for the activating histone marks). (B) The number

of GWAS SNPs (upper) and target genes (lower) at the beginning, after allele imbalance analysis, and after long-

range pairing (from bottom to top). The applicable SNPs and genes were defined as being heterozygous in at

least one sample and possessing chromatin interaction. (C) Explanatory power indicating the extent to which

allele-specific expression is explained by allele-specific cis-regulation. Linear regression was performed where

the RNA-seq allele ratio was regressed on the paired ChIP-seq allele ratio. Pairing was done by chromatin

interaction versus eQTL mapping with phased versus unphased genotypes.

https://doi.org/10.1371/journal.pone.0175768.g001
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We examined the degree to which regulatory allele imbalance was reflected in paired allele-

specific expression. To this end, the transcript allele ratios were regressed on the paired ChIP-

seq allele ratios for each histone mark, and the explanatory power of the linear regression model

was obtained. Here we focused on H3K27ac and H3K4me1. The explanatory power of linear

regression for the imbalance scores was consistently high across varying distances between the

paired SNPs (solid lines in Fig 1C). However, without phasing, the allelic regulatory association

maintained only within a short range (dotted line in Fig 1C) because the regulatory direction

cannot be matched using the reference genome for distant SNPs that are not in LD. This indi-

cates that genotype phasing is essential to map long-range regulatory associations. For compari-

son, we used reference eQTL data in lymphoblastoid cells in place of chromatin interactomes,

and found a similar or lower performance (green lines in Fig 1C). The permutations of chroma-

tin interactions reduced the explanatory power (grey curves in S1 Fig).

Comparison of allelic mapping and QTL mapping

We sought to compare the sensitivity of allelic mapping and QTL mapping. Based on the same

reference panel samples used for our allelic mapping, we first identified histone QTLs (hQTLs),

and then searched them for eQTLs by associating them with the expression level of genes con-

nected via chromatin interaction. For fair comparison, we started with the same sets of 814 and

875 GWAS SNPs for which at least one LD SNP was heterozygous in at least one sample and

that resided in H3K27ac and H3K4m1 regions having chromatin interactions (Fig 2A). Because

H3K27ac and H3K4me1 are activation marks, we selected the cases in which histone modifica-

tion and gene expression changed in the same direction according to the underlying genotype.

With the same statistical confidence (unadjusted P< 0.05), the allelic method identified approxi-

mately two-fold greater number of causal cis-regulatory variants and paired transcripts than the

QTL approach (Fig 2A). This underscores that fact that allelic mapping can provide higher sensi-

tivity than QTL mapping.

As for H3K27ac, there were 176 GWAS SNPs that were identified by our allelic analyses.

Among them, 35 SNPs (20%) were also identified by the histone QTL-eQTL methods. Regarding

H3K4me1, 21 out of 112 SNPs (19%) were supported by QTL mapping. However, there were

more cases in which only allelic mapping was able to detect. For example, ITGA4, a therapeutic

target for multiple sclerosis[23] and Crohn’s disease[24], was mapped to other autoimmune dis-

eases through our allele-specific analysis (Fig 2B). The risk alleles were overrepresented in the

ChIP-seq reads and were on the same chromosome as the alleles overrepresented in the RNA-

seq reads. This pattern was consistent for the different disease alleles, indicating that ITGA4

overexpression may be generally associated with an increased risk of autoimmune diseases. This

is in good agreement with the role of this gene in promoting adhesion and migration during

autoimmune responses and with the therapeutic effects of its antagonist[23,24]. However, it was

not possible to identify this gene through QTL mapping (Fig 2B).

Another example was RASSF5. This gene was recently shown to negatively control lympho-

cyte proliferation and prevents autoimmunity[25]. Indeed, the risk alleles associated with cer-

tain autoimmune diseases were underrepresented in the ChIP-seq reads and were on the same

chromosome as the alleles that were underrepresented in the RNA-seq reads (S2 Fig). There-

fore, one can hypothesize that these alleles increase the disease risk by inhibiting RASSF5 gene

transcription. As shown in the figure, eQTL mapping failed to detect the association despite

multiple chromatin interactome datasets supporting physical enhancer-promoter interaction.

Previous QTL studies commonly reported that many of regulatory variants associated with

histone modification or TF binding were not associated with gene expression variability[6–12].

In our analysis, ~60% of hQTLs were eQTLs for genes paired through chromatin interactions.
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Fig 2. (A) Comparison of sensitivity between allelic mapping versus eQTL mapping. The number of GWAS SNPs with ChIP-seq

imbalance versus that of GWAS SNPs that are histone QTLs (middle row), and the number of the imbalanced GWAS SNPs with paired

allele-specific expression versus that of the histone QTLs that are eQTLs for paired genes (top row). For both allelic mapping and eQTL
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the same direction as the ChIP-seq variants. eQTL mapping failed to detect association (boxplots).

https://doi.org/10.1371/journal.pone.0175768.g002
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The corresponding percentage was slightly lower for the allele-specific pairs (i.e., 40~50% of reg-

ulatory imbalance was paired with allele-specific expression). Even with improved sensitivity

owing to inherent control for confounding factors, allele-specific expression may be relatively

more difficult to detect compared to regulatory imbalance because exonic variants should be

less frequent than noncoding variants.

Predictive allelic mapping

Coverage limitations can be imposed not only by the absence of transcript variants but also

due to the unavailability of cis-regulatory or exonic heterozygotes especially when sample size

is small. Therefore, we employed a machine learning method that predicts missing positive

pairs whose allelic imbalance cannot be directly tested. To apply machine learning, we first

identified testable cases by checking whether we could assess allelic imbalance thanks to the

presence of heterozygous loci with sufficient read depth in each sample. Some of the testable

pairs passed our imbalance tests and were used as true cases for machine learning. The testable

pairs that failed to pass the imbalance tests, in other words, the cases in which cis-regulatory

regions or transcripts show no allelic imbalance, were used as false cases. We trained Random

Forest to learn 259 features (S5 Table) of the allele-specific pairs (true cases) against the fea-

tures of the false cases as the control set. Area under the curve (AUC) was measured by using

testing samples on the basis of 5-fold cross validation. High prediction performance was

obtained as shown by the red receiver operating characteristic (ROC) curves in Fig 2B. Proper

learning was failed when the features were randomly assigned to each pair (grey ROC curves

in S3 Fig), indicating that the observed allele-specific pairs indeed share certain features that

distinguish them from the non-functional variants in the control set.

Random Forest was feasible only with 2 samples, but its performance varied depending on

which samples were used (blue ROC curves in Fig 3A). Sampling bias in performance was sig-

nificantly lower with 5 samples and reached a robust level with 10 samples. This indicates that

10 samples with natural genetic variation have a sufficient number of testable (heterozygous)

cases for proper machine learning. The average number of the true cases per sample was 53 for

H3K27ac and 78 for H3K4me1. Therefore, with 10 samples, more than 500 true cases could be

used for training on average. The number of the false cases was 843 for H3K27ac and 1291 for

H3K4me1. When we repeated similar procedures for hQTL-eQTL pairs, considerable variabil-

ity existed among 10 sample-based prediction results (green ROC curves in Fig 3B).

By using the 10-sample Random Forest models, we sought to test the utility of our method

in predicting missing positive cases. To this end, we selected untestable cases, in which we were

not able to assess allelic imbalance due to the absence of heterozygotes (Fig 4). The sampling

was repeated 10 times. On average, our Random Forest classifier rescued ~ 89 H3K27ac pairs

and ~ 50 H3K4me1 pairs that were not available for allele-specific tests using the given 10 sam-

ples. We examined how many of them could be confirmed to be actually allele-specific (Fig 4).

For H3K4me1, the number of tested pairs was too low because the entire set consisted of 59

samples. Regarding H3K27ac for which there were 100 samples, allele specificity for> 87% of

the predicted pairs was corroborated when they were tested using the whole set of available sam-

ples (Table 1). In other words, the corroborated cases means that they were untestable on the

initial 10 samples, but were predicted to be positive and turned out to be allele-specific when

tested using the 100 panel samples.

Discussion

For a given set of trait-associated variants (tag SNPs), our method enables the identification

of causal regulatory variants in LD and their functional target genes. This task requires a

Predictive long-range allele-specific mapping
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A.     Allele-specific analysis
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Fig 3. (A) ROC curves representing the accuracy of predictive allelic mapping. Among all pairs of ChIP-seq and RNA-seq variants connected via chromatin

interaction, we collected true cases (pairs showing allele imbalance in both ChIP-seq and RNA-seq) and subjected them to Random Forest training. ROC

curves were generated based on 5-fold cross-validation with each validation process based on two Random Forest models. The red curves represent

performance achieved with the entire set of samples (100 samples for H3K27ac and 59 for H3K4me1). The blue curves show performance with a subset of

samples. The sampling was repeated 10 times to estimate variation in performance. (B) ROC curves indicating the accuracy of predictive QTL mapping.
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reference panel consisting of a small number of samples for which matched epigenome, tran-

scriptome, and phased genotypes are available. In addition, a reference chromatin interactome

dataset is needed to link regulatory variants and target genes. Instead, large-scale reference

eQTL data can serve the same purpose. For example, the GTEx project[13] provides genetic

associations in different tissues. The reference panel and chromatin interactome data should

be based on the tissue relevant to the trait in question. In our model, we used immune-related

traits and reference data in lymphoblastoid cell lines and other immune or blood cells. It is

also important to prepare feature sets related to the given trait for predictive allelic mapping

using machine learning. In our analysis, we used Gene Ontology terms such as immune pro-

cess and inflammatory response. For epigenomics features, we utilised the Blueprint Project

data in distincit types of haematopoietic cells. All the reference data, feature sets, and training

outcomes are provided in our software (see Materials and Methods). Users can search for

causal variants and functional target genes for their SNPs associated with immune-related

traits. Direct allelic mapping can be first performed and for untestable cases, Random Forest

will provide predicted functional pairs for each input SNP.

Similar attempts can be made through QTL mapping. However, this requires a large num-

ber of samples. The accuracy of QTL mapping increases in proportion to the number of sam-

ples used. While reference eQTL data have been made available in many tissues, hQTL or

other chromatin QTL mapping has been performed only in lymphoblastoid cells. With eQTL

data alone, causal variants and their direct, physical target genes cannot be mapped. Moreover,

there is inherent limitation that undermines the sensitivity of association detection. Our results

show that only ten samples enable highly sensitive detection of allele specificity. This approach

can be extended to cover different traits. For example, obesity associations can be dissected by

examining a small number of reference data based on genetically different adipose tissues. In

conclusion, our method is expected to assist in the annotation of a large number of trait-asso-

ciated variants residing noncoding regions of the genome.

Materials and methods

Reference genetic panel

We collected data of ChIP-seq for histone modifications (including H3K27ac and H3K4me1),

RNA-seq, and phased genotyping in 100 genetically different lymphoblastoid cell lines[6–

9,22]. The first three related datasets[6–8] included RNA-seq and five types of ChIP-seq

(H3K27ac, H3K27me3, H3K36me3, H3K4me1 and H3K4me3) of 24 samples. These data were

available under accession numbers E-MTAB-1883 and E-MTAB-1884 at ArrayExpress (http://

www.ebi.ac.uk/arrayexpress/) and under accession numbers GSE47991, GSE19480, and

GSE50893 at Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). From

another study[9], H3K27ac ChIP-seq data on 57 YRI samples were collected. The correspond-

ing data and matched expression data[16] were available at the GEO with accession number

GSE58852 and GSE19480, respectively. Additionally, we collected RNA-seq and three types of

ChIP-seq (H3K27ac, H3K4me1, and H3K4me3) data on 47 CEU samples[22]. The RNA-seq

data were available under accession number E-MTAB-3656 and histone ChIP-seq data were

under E-MTAB-3657 at ArrayExpress. DNase-sequencing data[16] were not used because of

low read depths. Collected data are summarized in S1 Table.

Among all pairs of ChIP-seq and RNA-seq variants connected via chromatin interaction, we collected true cases (histone QTLs that are eQTLs for the paired

genes) and subjected them to Random Forest training. The red curves represent performance achieved with the entire set of samples (100 samples for

H3K27ac and 59 for H3K4me1). The green curves show performance with a subset of samples. The sampling was repeated 10 times to estimate variation in

performance.

https://doi.org/10.1371/journal.pone.0175768.g003
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Fig 4. Schematic of predictive allelic mapping using a small number of samples. In this illustration, the 10 samples in the first 10 rows are used for

training and prediction. Over the whole-genome, testable and untestable pairs of regulatory regions and transcripts are collected. The red and blue bars

represent the number of allele-specific ChIP-seq or RNA-seq reads. Heterozygotes should have the two bars simultaneously whereas homozygotes should

have only one. The prediction outcome is validated by performing allelic tests using additional samples. In this illustration, the remaining 90 samples were

used for this purpose. For example, one of the untestable pairs is called positive by Random Forest, and indeed shows allele imbalance in one sample

heterozygous for the regulatory region and transcript.

https://doi.org/10.1371/journal.pone.0175768.g004
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Mapping and variant calling

The bam files of the collected raw data had been aligned to different releases of the reference

genome. Thus, we re-mapped the data to GRCh37/hg19[26,27]. The RNA-seq and ChIP-seq

raw data were mapped by using TopHat2[28] and BWA mapper[29], respectively. Each

remapped bam file was then subjected to variant calling according to the “GATK Best Prac-

tices” workflow (https://www.broadinstitute.org/gatk/guide/best-practices) by using the Picard

tool[30] and GATK tool[31]. In the variant filtration process, we discarded variants with < 2.0

QualByDepth (QD: QUAL score normalized by allele depth) or > 30.0 Phred-scaled P value.

GWAS SNPs and LD expansion

A total of 2,351 GWAS SNPs spanning 51 immune-related diseases and traits (S2 Table) were

retrieved from the National Human Genome Research Institute GWAS Catalog[32]. We con-

ducted an LD expansion of these GWAS SNPs using Haploview[33]. Instead of the built-in

HapMap genotype data, genotype information from the 1000 Genomes Project[34] (http://

www.1000genomes.org/) phase 3 was referenced for LD calculation. For each human subpop-

ulation (CEU, YRI, CHB and JPT), GAB blocks and GAM blocks, by the algorithm of Gabriel

et al.[35] and the four gamete rule, respectively, were constructed. The two blocks of the same

ethnicity were then merged. We searched for SNPs residing in the same block as its associated

GWAS SNP commonly in all the populations (CEU, YRI, CHB, and JPT). After all, we were

left with 19,584 GWAS LD SNPs.

Detection of allele imbalance

Among variants that passed all filtering processes, heterozygous SNPs were selected. Sufficient

sequencing depth is required for accurate allele imbalance testing[21]. We thus checked the

allelic depth (AD according to the VCF v4.1 specification[36]) of the filtered heterozygous

SNPs and chose those with the sum of reference and alternative allele depths > 8 and with the

imbalance ratio between 0.15 and 0.85, as previously suggested[37]. In the cases in which the

same sample was analyzed with RNA-seq or ChIP-seq for the same histone mark by two or

more studies (i.e., there are two or more citation numbers in a single entry in S1 Table), the

average allelic depth and ratio were considered by dividing by the number of studies. As for

the detection of allelic imbalance, we performed the binomial test with p = 0.5[21] and retained

the cases with P < 0.05. For the loci that were tested in multiple samples, we performed meta-

analysis by combining the P values based on the Fisher’s method[38]. The χ2 P = 0.05 was used

as a threshold for allelic imbalance across multiple samples.

Table 1. Validation of predictive allelic mapping.

Sampling number Number of predicted pairs Number of tested pairs Allele-specific pairs (percentage)

1 89 72 70 (97.2%)

2 51 26 25 (96.2%)

3 56 24 21 (87.5%)

4 82 60 54 (90%)

5 37 13 13 (100%)

6 54 21 18 (85.7%)

7 62 24 19 (79.2%)

8 52 25 17 (68%)

9 47 19 16 (84.2%)

10 45 30 27 (90%)

https://doi.org/10.1371/journal.pone.0175768.t001
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Target gene mapping, phasing, and allelic pairing

RNA-seq variants were assigned to their respective gene using the transcript location data pro-

vided by the hg19 version of RefSeq. We employed seven chromatin interactome datasets

(listed in S3 Table) that were derived from different technologies encompassing chromatin

interaction analysis by paired-end tag (ChIA-PET) sequencing, capture Hi-C, and integrated

methods for predicting enhancer targets (IM-PET) in lymphoblastoid, K562, Jurkat, and CD4

T cells. We only used intrachromosomal interactions. The reference and alternative alleles

were defined based on the unphased reference genome GRCh37/hg19. Therefore, the RNA-

seq SNP and ChIP-seq SNP mapped via chromatin interaction are more likely to be unphased

as they become distant from each other. Therefore, we flipped the allele ratios when the two

SNPs were on different chromosomes in the phased genotype data of the 1000 Genomes Proj-

ect[34] phase 3. SNPs without 1000 Genomes genotype were excluded from further analyses.

Furthermore, we matched the regulatory direction (i.e., activation or repression) of the phased

and mapped variants on the RNA and cis-regulatory region. H3K27ac, H3K36me3, H3K4me1,

and H3K4me3 were regarded as activating marks while H3K27me3 was regarded as a repres-

sive mark. We paired ChIP-seq imbalance and RNA-seq imbalance only when the major regu-

latory allele and major transcript allele were on the same chromosome for the activating

histone marks, and the opposite for the repression mark. For functional analysis of the paired

genes, we ran WEB-based GEne SeT AnaLysis Toolkit (WebGestalt)[39] and obtained P values

based on the hypergeometric enrichment test and multiple testing adjustment[40].

Explanatory power of regulatory imbalance

We wanted to test the extent to which allele-specific expression is explained by allele-specific

cis-regulation. The transcript allele ratios were regressed on the paired cis-regulatory allele

ratios for each histone mark, and the explanatory power of the linear regression model was

obtained as R2. There were cases in which multiple cis-regulatory regions were mapped to a

single transcript. In these cases, we considered the multiple pairs independently. The explana-

tory power was plotted according to the genetic distance between the two variants, 1−|r|,
where r is the Pearson coefficient of correlation measuring linkage disequilibrium between the

two loci. The r value was obtained by using the 1000 Genomes Project[34] phase 3 data. The

average R2 was computed for all pairs within a given genetic distance. For comparison with the

chromatin interactome data, we used reference eQTL data for mapping cis-regulatory variants

to their target genes. A total of 358,199 and 478,204 significant eQTL-gene pairs in whole

blood and lymphoblastoid cells[13,14], respectively, were used to replace the chromatin

interactions.

A model for predictive allelic mapping

We chose Random Forest[41] for our predictive allelic mapping. A cis-regulatory variant and

target gene pair that was linked by chromatin interaction was used as a unit of evaluation. The

true set for training consisted of paired cis-variants and target genes both showing allelic

imbalance in the given samples. As a control set, we collected the cases in which either cis-reg-

ulatory region or target gene shows no allelic imbalance even when heterozygotes are available

among the given samples. Because different histone marks lead to different true and control

sets, we trained our Random Forest classifier for each histone modification separately. As for

H3K27ac, there were 1,034 true pairs and 8,450 control pairs. For H3K4me1, there were 475

and 9,325 true and control, respectively. We selected features regarding the disease associated

with the GWAS SNP, mapped target gene, transcription factor that is predicted to bind the cis-

regulatory variant, and epigenetic marks at the distal and proximal regulatory region of the
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gene (S5 Table). Epigenomic feature data were retrieved from the Blueprint Project (http://

www.blueprint-epigenome.eu/). We chose cell lines related with inflammation processes,

including CD4+ T cells, CD8+ T cells, macrophages, monocytes, neutrophils, NK/T cells, and

B cells. In addition, GM12878 and K562 data were obtained from the UCSC Genome Browser.

All available histone ChIP-seq data were used. All the histone ChIP-seq data were in the nar-

row-peak bed file format. We assigned 1 or 0 for each ChIP-seq feature. For distal cis-regula-

tory regions, we assigned 1 if ChIP-seq peaks covered the variant of interest. For the promoter

region of target genes, we assigned 1 when the ChIP-seq peak covered at least half of the pro-

moter (1.5 kb upstream ~ 0.5 kb downstream of the transcription start site (TSS)). For the fea-

tures of target genes, we determined whether each gene belonged to a specific GO term. We

chose GO terms related to immune process and inflammatory response. The distance from the

cis-regulatory variant to the target gene was defined based on the TSS of the target gene. The

affinity of transcription factor binding at the distal cis-regulatory variant was estimated by

FIMO[42]. ROC plots were drawn based on a 5-fold cross validation with two repetitions each

time, resulting in 10 different classifiers. A total of 1,000 decision trees were used for each Ran-

dom Forest classifier. Each classifier determined whether the pair of the given cis-regulatory

variant and its linked gene shares similar features as those with observed allelic imbalance. We

used an R package named randomForest[43]. The default mtry (square root of the number of

variables) and node size (minimum size of terminal node = 1 and maximum number of termi-

nal nodes trees in the forest can have = NULL) were used. We also trained Random Forest

using the true and control datasets identified based on QTL mapping. We identified hQTLs

(H3K27ac and H3K4me1) and eQTLs based on the same dataset as used for allelic mapping.

Linear regression models were fit between the genotypes and the quantified measures of his-

tone ChIP-seq or RNA-seq. Using mapped BAM file from previous dataset, we called ChIP-

seq peak and calculated peak intensity by HOMER[44]. From the linear regression, we

obtained the effect size and P value for each tested association. hQTLs for H3K27ac and

H3K4me1 were identified and linked to their target genes via chromatin interactions. The true

set consisted of hQTLs that were eQTL of their connected target gene. The control set was

composed of hQTLs that were not eQTL of their connected target gene. In a similar manner as

our predictive allelic mapping, the whole set and subsets of samples were used for training and

prediction.

Small sample-based prediction

We wanted to estimate the number of samples needed to build a reliable Random Forest classi-

fier. A subset of 2, 5, 10, or 20 random samples was used for allelic prediction and 10 or 20

samples were used for QTL prediction. The sampling was repeated 10 times to generate 10

such subpanels, for each of which an ROC curve was drawn based on 10 Random Forest classi-

fiers resulted from a 5-fold cross validation with two repetitions each time. The variability

among the 10 ROC curves from the 10 subpanels was observed. Next, we sought to apply our

model for predicting missing positive pairs from small-size panels. To this end, we selected

untestable cases in which we could not assess allelic imbalance due to absence of heterozygotes

among the given samples. In some cases, observation could not be made because we filtered

out heterozygous SNPs according to the read depth and imbalance ratio as described above.

The previously built Random Forest classifiers for 10 samples were used to rescue missing pos-

itive cases from the untestable set. As described above, the sampling was repeated 10 times

each with 10 Random Forest classifiers. Therefore, an untestable set was generated for each of

the 10 subsets, and the matched 10 classifiers were run for each target set. Positive calls were

identified as being supported by more than 5 of the 10 classifiers. To assess the capability of
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our prediction method, we examined how many of the positive calls actually displayed allelic

imbalance when the whole set of samples in the panel was tested for allele specificity.

Supporting information

S1 Fig. Reduced explanatory power due to chromatin randomization. The chromatin inter-

actome data were merged and permuted to connect allele imbalance pairs randomly. Because

only allele-specific pairs in the same regulatory direction were mapped, a certain level of

explanatory power was achieved even with randomization. However, there was an overall

reduction compared to the real data (compare the grey curves with the coloured lines). Four

different permutations were performed for H3K27ac.

(PDF)

S2 Fig. Allelic mapping for RASSF5. The ChIP-seq SNPs (blue) showing allele imbalance

(blue bar graphs) with the risk allele underrepresented were connected to RASSF5 as indicated

by different chromatin interactome datasets (black lines). The RNA-seq variants (red) showed

allele-specific expression (red bar graphs) in the same direction as the ChIP-seq variants.

eQTL mapping failed to detect association (boxplots).

(PDF)

S3 Fig. Prediction failure due to feature randomization. Random Forest prediction was per-

formed after permuting the assignment of features to each pair. Permutation was repeated 10

times (grey ROC curves).

(PDF)

S1 Table. Reference panel data.

(XLSX)

S2 Table. Immune-related diseases and traits.

(XLSX)

S3 Table. Reference chromatin interactome datasets.

(XLSX)

S4 Table. Gene ontology enrichment analysis.

(XLSX)

S5 Table. Features used for Random Forest.

(XLSX)

S6 Table. Variable importance of Random Forest for H3K27ac.

(XLSX)

S7 Table. Variable importance of Random Forest for H3K4me1.

(XLSX)
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