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Abstract. The anti‑hyperglycemic effects of Cyclocarya 
paliurus polysaccharide (CPP) have attracted increasing 
attention; however, limited research has been conducted 
on the potential effects of CPP on inhibiting tumor growth. 
The present study aimed to investigate the functions of 
CPP in combination with X‑ray irradiation on colorectal 
cancer cells and the underlying mechanisms. SW480 cells 
were treated with various concentrations of CPP for 24, 48 
and 72 h to determine cell viability using a Cell Counting 
Kit‑8 assay. Then, the cells were divided into four groups as 
follows: Control, CPP (100 µmol/l), 8 Gy and CPP + 8 Gy. 
The proliferation and apoptosis, and colony formation of cells 
were detected using flow cytometry and plate clone forma-
tion assays, respectively. Reverse transcription‑quantitative 
PCR and western blot analyses were conducted to determine 
the expression of proliferation and apoptosis‑associated, 
and PI3K/Akt signaling‑associated genes. Treatment with 
75 µmol/l CPP for 48 h significantly decreased cell viability 
compared with untreated cells. CPP in combination with 
8 Gy X‑ray treatment significantly promoted the induction of 
apoptosis, and suppressed cell proliferation and clone forma-
tion compared with the control, CPP and 8 Gy groups. The 
detection of mRNA and protein expression levels by reverse 
transcription‑PCR and western blotting demonstrated that 
CPP in combination with 8 Gy not only significantly decreased 
the expression of proliferation marker protein Ki‑67, p53 and 
Bcl‑2, but also upregulated the expression of cleaved caspase‑3 
and Bax, compared with the control. In addition, CPP and 
8 Gy combined significantly attenuated the phosphorylation of 
PI3K and Akt. The present study demonstrated that the combi-
nation of CPP with X‑ray irradiation suppressed SW480 cell 
proliferation and promoted cell apoptosis compared with the 

control, CPP and 8 Gy groups. The underlying mechanisms 
may involve inhibition of PI3K/Akt signaling.

Introduction

Colorectal cancer (CRC) is one of the most common cancers 
threatening human life and health. In recent years, despite 
social progress, and improvements in living standards, dietary 
patterns and living habits, the incidence and mortality of CRC 
are increasing (1). It was reported that ~71,830 men and 65,000 
women in the USA were diagnosed with CRC, and that ~26,270 
men and 24,040 women succumbed to CRC in 2014 (2). Rectal 
cancer is the second most common type of colorectal cancer; 
in the USA, ~136,830 new cases of CRC are diagnosed annu-
ally, including 40,000 cases of rectal cancer (3). Rectal cancer 
can be asymptomatic during early stages, meaning that the 
majority of patients are diagnosed in advanced stages, and the 
incidence of local recurrence and distant metastasis following 
simple surgical treatment are high (4). At present, radiotherapy 
is one of the most important treatment methods for rectal 
cancer (5); however, its side effects and individual tolerance 
prevent increases in radiotherapy doses and limit the curative 
effects of tumor therapy (6,7).

Cyclocarya  paliurus (Batal.) Iljinsk (C.  paliurus), a 
plant of the genus Cyclocarya (Juglandaceae), is the sole 
species in its genus and is unique to China (8). It is mainly 
distributed in Southern China and grows at 420‑2,500  m 
altitude in mountainous humid evergreen forests  (8,9). Its 
branches and leaves taste sweet, have a cooling effect, and 
may reduce swelling and pain (8). From its leaves, Chinese 
populations produce health tea, commonly termed ‘sweet tea’. 
Modern pharmacology studies have revealed that C. paliurus 
exhibits various biological activities, including antihypergly-
cemic, antihyperlipidemic, antihypertensive, anti‑oxidative, 
immune‑boosting and anticancer properties (10‑13). Various 
bioactive components have been identified in C. paliurus; 
polysaccharide is one of its main active components (14,15). 
Polysaccharides and their complexes serve important roles in 
antitumor, anti‑inflammatory, antivirus, antihyperglycemic, 
anti‑aging and anticoagulant activities  (16). C.  paliurus 
polysaccharide (CPP) exhibits notably high bioactivity (17). At 
present, research has focused previous studies have focused 
on the anticancer effects of CPP (18). It can inhibit the growth 
of gastric cancer MGC803 cells and cervical cancer HeLa 
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cells (8,17). Xu and Xu (19) reported that aloe polysaccharide 
induced pancreatic carcinoma autophagy in combination with 
radiation. It was hypothesized that CPP in combination with 
radiation may enhance radiotherapeutic sensitivity. Therefore, 
in the present study, CPP was combined with radiotherapy to 
investigate their roles in rectal cancer.

Materials and methods

CPP and cell culture. CPP was purchased from Xiehe Institute 
of Pharmacology. The content of CPP in C. paliurus was 
~8.1% and the total sugar content was determined as 75.3%, 
which was mainly composed of glucose, arabinose, mannose 
and galactose.

SW480 cells were obtained from BeNa Culture Collection. 
The cells were cultured in DMEM containing 10% FBS (both 
Thermo Fisher Scientific, Inc.), 100 U/ml penicillin and strep-
tomycin at 37˚C with 5% CO2 in an incubator. When confluence 
reached ~75‑90%, the cells were digested and subcultured.

Cell Counting Kit‑8 (CCK‑8) assay. SW480 cells were plated 
into 96‑well plates at a seeding density of 5x103 cells/well for 
24 h. Then, CPP (25, 50, 75 and 100 µmol/l) was added, and the 
cells were incubated for 24, 48 or 72 h. CCK‑8 solution (10 µl; 
cat. no. HY‑K0301; MedChemExpress) was subsequently added 
to each well prior to incubation for a further 1 h at 37˚C. Cell 
viability was determined by detecting the absorbance at 450 nm 
using a microplate reader (Thermo Fisher Scientific, Inc.).

Experimental grouping. Subsequently, cells were divided 
into four treatment groups: Control, CPP (100  µmol/l), 
Radiotherapy (8 Gy X‑ray irradiation treatment) and combined 
treatment (100 µmol/l CPP + 8 Gy irradiation). Cells were 
incubated in DMEM containing 10% FBS with or without 
CPP overnight at 37˚C. After 24 h, cells were treated with 
8 Gy irradiation in the presence of CPP. Various assays were 
conducted in the subsequent 48 h following irradiation.

Flow cytometry. SW480 cell proliferation was analyzed 
using a flow cytometer and PE‑Cy5.5 (cat. no. 1341; Tianjin 
Biolite Biotech Co., Ltd.)‑conjugated anti‑CXCR4 antibodies 
(cat. no. ab181020; Abcam). Cells (1x106) were labeled with 
50 µg CXCR4 PE‑Cy5.5 for 15 min at 37˚C. The labeled cells 
were washed twice with culture medium and then harvested. 
The resulting fluorescence was measured by flow cytometry 
(BD FACScanto II; BD Biosciences) and FlowJo 7.6.1 software 
(FlowJo LLC) (20).

Cells (1x105) were seeded into 6‑well plates and treated 
as aforementioned. Cells were harvested and washed twice 
with washing buffer. Then, the suspension was incubated with 
Annexin V‑phycoerythrin and propidium iodide (PI; Beijing 
Solarbio Science & Technology Co., Ltd.) in the dark at 25˚C 
for 15 min. The samples were analyzed by flow cytometry 
(BD FACScanto II and FlowJo 7.6.1) within 1 h.

Plate clone formation assay. SW480 cells were incubated in 
four dishes (1.5x103 cells/dish). The cells were agitated gently 
and incubated at 37˚C with 5% CO2 for 10‑15 days. Cells were 
constantly monitored and cultures were terminated when clones 
visibly appeared in the dish. The medium was discarded and 

the cells were washed with PBS twice. Then cells were stained 
with crystal violet (0.1%) for 15 min at room temperature prior 
to washing with water. The number of colonies containing >50 
cells was counted under a light microscope (magnification, x4; 
Olympus Corporation) (21).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was isolated from culture cells using 
TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol. RNA was reverse 
transcribed to cDNA using a GoScript™ RT kit (Promega 
Corporation). RT was conductedd at 37˚C for 1 h and 90˚C 
for 5 min prior to cooling. qPCR was performed using SYBR 
Fast qPCR Mix (Invitrogen; Thermo Fisher Scientific, Inc.) to 
determine proliferation marker protein Ki‑67 (Ki67), p53, Bax, 
Bcl‑2 and GAPDH expression levels. The primer sequences are 
presented in Table I. qPCR was conducted under the following 
conditions: 95˚C for 15 min; 95˚C for 10 sec; 40 cycles at 60˚C 
for 30 sec and 60˚C for 30 sec. The relative expression levels 
of the genes were calculated using the 2‑ΔΔCq method  (22) 
and normalized to GAPDH. All primers were synthesized 
commercially (Sangon Biotech Co., Ltd.).

Western blot analysis. Cellular proteins were extracted using 
RIPA lysis buffer (Beyotime Institute of Biotechnology). 
The samples were centrifuged at 12,000 x g for 10 min at 
4˚C, and the supernatants were collected. The concentra-
tion of proteins was determined using a bicinchoninic 
acid assay (Beyotime Institute of Biotechnology). Aliquots 
from supernatant with proteins were mixed with loading 
buffer and mercaptoethanol. Then, samples (50 µg/lane) 
were subjected to 10% SDS‑PAGE and transferred to 
polyvinylidene f luoride membranes (EMD Millipore), 
which were blocked in 5% milk with 0.1% for 2 h at room 
temperature. Triton X‑100 and incubated overnight at 
4˚C with various primary antibodies: Rabbit anti‑Ki67 
(1:1,000; cat. no. ab16667; Abcam), anti‑p53 (1:1,000; cat. 
no. ab131442; Abcam), anti‑cleaved caspase‑3 (1:1,000; cat. 
no. ab2302; Abcam), anti‑phosphorylated (p)‑PI3K (1:1,000; 
cat. no.  BS4605; Bioworld Technology, Inc.), anti‑Akt 
(1:1,000; cat. no. 9272, Cell Signaling Technology, Inc.) and 
anti‑GAPDH antibody (1:1,000; cat. no. ab22555; Abcam); 
and mouse anti‑Bax (1:1,000; cat. no. sc‑20067; Santa Cruz 
Biotechnology, Inc.), anti‑Bcl‑2 (1:1,000; cat. no. sc‑7382; 
Santa Cruz Biotechnology, Inc.), anti‑PI3K (1:1,000; cat. 
no. MAB2686; R&D Systems, Inc.) and anti‑p‑Akt (1:1,000; 
cat. no. sc‑81433; Santa Cruz Biotechnology, Inc.). Following 
three washes in PBS, blots were incubated with horseradish 
peroxidase‑conjugated goat anti‑mouse (cat. no. ab205719) 
and goat anti‑rabbit (cat. no. ab6721) secondary antibodies 
(both 1:100,000; Abcam) at room temperature for 1  h. 
Then, the blots washed with TBS four times for 5 min and 
treated with ECL reagent (Thermo Fisher Scientific, Inc.). 
The quantification of the relative expression of proteins 
was performed using Quantity One (version 4.4; Bio‑Rad 
Laboratories, Inc.).

Statistical analysis. Statistical analysis was performed using 
Prism GraphPad version 6.0 software (GraphPad Software, 
Inc.). All data are presented as the mean ± standard deviation. 
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Differences were performed using ANOVA following Tukey's 
multiple comparison test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Various concentrations of CPP affect the viability of SW480 
cells. A CCK‑8 assay demonstrated that cells treated with 25 
and 50 µmol/l CPP exhibited no notable change in viability; 
however, when cells were treated with 75 or 100 µmol/l CPP, 
the viability of SW480 cells was significantly suppressed in a 
time‑dependent manner (Fig. 1A). Treatment with 75 µmol/l 
CPP for 48 h significantly decreased cell viability (P<0.05) 
compared with 0 µmol/l CPP; the effect of treatment with 
100 µmol/l CPP for 48 h exhibited a more significant effect 
compared with 0 µmol/l CPP at 48 h (P<0.01). Therefore, 
treatment for 48 h with 100 µmol/l CPP was selected for 
subsequent experiments.

Combination of CPP with X‑ray irradiation enhances the 
inhibition of cell proliferation and promotion of cell apoptosis 
in SW480 cells. Cell proliferation was detected via flow 
cytometry by CFSE staining. As presented in Fig. 1B and D, 
CPP (P<0.05) and 8 Gy X‑ray irradiation (P<0.01) treatments 
significantly attenuated cell proliferation compared with the 
control. Furthermore, CPP in combination with 8 Gy irradia-
tion exhibited a significant additive effect compared with CPP 
or 8 Gy (P<0.01). An apoptosis assay revealed that CPP single 
induced a significant increase in apoptosis compared with the 
control (P<0.01; Fig. 1C). Single 8 Gy irradiation promoted cell 
apoptosis more effectively than CPP (P<0.01). Additionally, 
CPP in combination with 8 Gy X‑ray irradiation induced the 
most significant increase in cell apoptosis (17.55%) compared 
with the control (3.61%), CPP (7.26%) or 8  Gy (12.07%) 
treatments (P<0.01; Fig. 1C and E).

Combination of CPP with X‑ray irradiation suppresses 
cell clone formation. As presented in Fig. 2, CPP (P<0.05; 
Fig. 2A and B) and 8 Gy (P<0.01) significantly inhibited clone 

formation compared with the control; the inhibitory effect of 
8 Gy was more pronounced than that of CPP (P<0.01). CPP 
in combination with 8 Gy further decreased clone number 
(P<0.05 vs. 8 Gy; P<0.01 vs. CPP and control).

Effects of combining CPP treatment with X‑ray irradiation 
on the expression of proliferation and apoptosis‑associated 
genes. To further study the effects of CPP in combination with 
irradiation on proliferation and apoptosis, the expressions of 
associated genes were evaluated. mRNA and protein analyses 
revealed that Ki67, p53 and Bcl‑2 exhibited similar expression 
profiles. CPP and 8 Gy treatment significantly downregulated 
the mRNA expression levels of Ki67 and Bcl‑2 compared with 
the control (P<0.01; Fig. 3A and D). The mRNA expression of 
p53 was further downregulated by 8 Gy compared with CPP 
treatment (P<0.01; Fig. 3B); the protein expression profiles 
of p53 and Bcl‑2 presented similar results (P<0.01; Fig. 4A, 
C  and  F). Treatment with CPP did not significantly alter 
Ki67 protein expression compared with the control (P>0.05; 
Fig. 4A and B). CPP in combination with 8 Gy significantly 
reduced the expressions of Ki67, p53 and Bcl‑2 at the mRNA 
and protein expression levels compared with the control or 
CPP (P<0.05). CPP in combination with 8 Gy reduced p53 and 
Bcl‑2 mRNA expression (Fig. 3B and D), and Bcl‑2 protein 
expression levels (Fig. 4A and F) to a notably similar degree as 
8 Gy X‑ray treatment alone (P>0.05). The expression profile of 
Bax in response to the various treatments opposed that of the 
other genes, as CPP and 8 Gy increased the expression of Bax 
at the mRNA and protein levels compared with the control 
(Figs. 3C; 4A and E). Additionally, CPP + 8 Gy significantly 
upregulated the mRNA and protein expression levels of Bax 
compared with the control, CPP or 8 Gy groups (P<0.05 vs. 
8 Gy; P<0.01 vs. control or CPP). The protein expression 
profile of cleaved caspase‑3 was similar to Bax; however, 
CPP in combination with 8 Gy did not significantly affect 
expression compared with 8 Gy (P>0.05; Fig. 4A and D).

CPP and X‑ray irradiation combination may inhibit 
PI3K/Akt signaling. To investigate the underlying molecular 
mechanisms, PI3K/Akt signaling was evaluated by western 
blotting. The protein expression of PI3K and Akt was not 
affected by any of the treatments (Fig. 5A). Treatment with 
CPP did not significantly affect p‑PI3K expression levels 
compared with the control (P>0.05; Fig. 5A and B); however, it 
significantly downregulated the expression of p‑Akt (P<0.01; 
Fig. 5A and C). CPP in combination with X‑ray irradiation 
significantly reduced the phosphorylation levels of PI3K and 
Akt compared with CPP or 8 Gy (P<0.01).

Discussion

Radiation therapy is frequently used for treating malignant 
tumors (23). It is regularly combined with surgical treatment 
and/or chemical drug treatment, which are the three major 
treatment methods for tumors. It is one of the most impor-
tant treatment methods for treating advanced rectal cancer, 
including preoperative neo‑adjuvant radiotherapy, intra‑oper-
ative radiotherapy and postoperative adjuvant radiotherapy, 
which can effectively improve the local control rate and anal 
protection rate, and reduce the risk of tumor recurrence and 

Table I. Primers used for reverse transcription‑quantitative 
PCR.

Gene	 Primer	 Sequence

Ki67	 Forward	 5'‑ATCATTGACCGCTCCTTTAGGT‑3'
	R everse	 5'‑TCCTTGGTAGTTCCGCTCG‑3'
p53	 Forward	 5'‑TAGTGTGGTGGTGCCCTATGAG‑3'
	R everse	 5'‑AGTGTGATGATGGTGAGGATGG‑3'
Bax	 Forward	 5'‑TGAAGACAGGGGCCTTTTTG‑3'
	R everse	 5'‑GCTCACAGAGGCCGCTTAA‑3'
Bcl‑2	 Forward	 5'‑ATGCCTTTGTGGAACTATATGGC‑3'
	R everse	 5'‑CGTAGTGAGACCCACGTATGG ‑3'
GAPDH	 Forward	 5'‑GAAGGTGAAGGTCGGAGTC‑3'
	R everse	 5'‑GAAGATGGTGATGGGATTTC‑3'

Ki67, proliferation marker protein Ki‑67.
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Figure 2. Effects of the combination of CPP and X‑ray irradiation on colorectal cancer cell clone formation. (A) SW480 cells were treated with 100 µmol/l CPP 
for 48 h and/or 8 Gy. (B) Relative clone number following treatment. Data are presented as the mean ± standard deviation of three independent experiments. 
*P<0.05, **P<0.01 vs. control; ##P<0.01 vs. 100 CPP; ^P<0.05 vs. 8 Gy. CPP, Cyclocarya paliurus polysaccharide.

Figure 1. CPP affects cell viability, and combined CPP and X‑ray irradiation treatment affects the proliferation and apoptosis of colorectal cancer cells. 
(A) Effects of treatment with various concentrations of CPP for 24, 48 or 72 h on the viability of SW480 cells. *P<0.05 vs. 0 µmol/l CPP at 24 h; #P<0.05, 
##P<0.01 vs. 0 µmol/l CPP at 48 h; ^P<0.05, ^^P<0.01 vs. 0 µmol/l CPP at 72 h. (B) Proliferation of SW480 cells following treatment with 100 µmol/l CPP for 
48 h and/or 8 Gy irradiation. (C) Apoptosis rate of SW480 cells following the aforementioned treatments. *P<0.05, **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. 
CPP; ^^P<0.01 vs. 8 Gy. (D) Proliferation as determined by the detection of CXCR4 staining by flow cytometry. (E) Apoptosis as assessed by flow cytometry. 
Data are presented as the mean ± standard deviation of three independent experiments. CPP, Cyclocarya paliurus polysaccharide; CXCR4, chemokine 
receptor type 4; Cy5.5, cyanine 5.5; PE, phycoerythrin; 7‑AAD, 7‑aminoactinomycin D.



Molecular Medicine REPORTS  20:  3535-3542,  2019 3539

metastasis (24‑30). In the treatment of rectal cancer, radio-
therapy and chemotherapy are often used in combination, 
as chemotherapy often induces systemic toxicity  (31). As 
technology advances, modern radiation therapy technology 
enables a high degree of conformity, including the use of 

computed tomography images to provide high precision and 
precise treatment, optimizing treatment planning (32,33); 
however, the limitation of radiation exposure remains an 
issue with radiotherapy. Therefore, the present study focused 
on increasing the sensitivity of cells to chemotherapy.

Figure 4. Effects of the combination of 100 µmol/l CPP for 48 h and X‑ray irradiation on the expression of proliferation and apoptosis‑associated proteins in 
colorectal cancer cells. (A) Expression of Ki67, p53, cleaved caspase‑3, Bax and Bcl‑2 protein as determined by western blotting. Quantification of (B) Ki67, 
(C) p53, (D) cleaved caspase‑3, (E) Bax and (F) Bcl‑2 protein expression levels. GAPDH served as an internal control. Data are presented as the mean ± standard 
deviation of three independent experiments. **P<0.01 vs. control; ##P<0.01 vs. CPP; ̂ P<0.05, ̂ ^P<0.01 vs. 8 Gy. CPP, Cyclocarya paliurus polysaccharide; Ki67, 
proliferation marker protein Ki‑67.

Figure 3. Effects of the combination of CPP and X‑ray irradiation on the expression of proliferation and apoptosis‑associated mRNAs in colorectal cancer 
cells. (A) Ki67, (B) p53, (C) Bax and (D) Bcl‑2 mRNA expression following treatment with 100 µmol/l CPP and/or 8 Gy irradiation was detected via reverse 
transcription‑quantitative PCR. GAPDH served as an internal control. Data are presented as the mean ± standard deviation of three independent experiments. 
*P<0.05, **P<0.01 vs. control; #P<0.05, ##P<0.01 vs. CPP; ̂ ^P<0.01 vs. 8 Gy. CPP, Cyclocarya paliurus polysaccharide; Ki67, proliferation marker protein Ki‑67.
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The present study demonstrated that colorectal cancer cells 
treated with 8 Gy X‑ray irradiation exhibited significantly 
inhibited cell proliferation, promoted apoptosis and suppressed 
clone formation. In the treatment of tumors, radiation therapy 
induces various side effects, including impairment of body 
immunity, local bone marrow suppression, severe gastrointes-
tinal reactions and radioactive dermatitis (34‑36). The concept 
of combined radiotherapy treatment has become one of the 
focuses of comprehensive tumor treatment in order to increase 
the sensitivity of tumor cells to radiotherapy, reduce the dose 
of radiotherapy required during the treatment of tumors and 
improve the efficacy of radiotherapy.

As an edible and medicinal plant, C. paliurus is widely used 
in the treatment of numerous diseases (37,38). Polysaccharide 
is the main active component of C. paliurus (17). As natural 
biological macromolecules, polysaccharides exhibit a variety of 
biological activities and are closely involved in the maintenance 
of biological processes; for example, various polysaccharides, 
including those from Acanthopanax giraldii Harms Var. 
Hispidus Hoo, deproteinized asparagus, Rhizoma pleionis, 
fungi and Ganoderma lucidum, exhibit inhibitory effects on 
tumor cells (39‑43). The potential antitumor properties of CPP 
have received less attention; however, in the present study, 
it was observed that treatment for 48 h with 75 µmol/l CPP 
significantly reduced the viability of SW480 cells. In addition, 
treatment with CPP inhibited proliferation, promoted cell 
apoptosis and suppressed clone formation.

CPP in combination with 8 Gy X‑ray irradiation exhibited 
significantly enhanced antiproliferative and pro‑apoptotic 
effects compared with CPP and radiotherapy alone. The expres-
sion profiles of proliferation and apoptosis‑associated genes 
was in accordance with these observations. The Ki67 gene is 
a cell proliferation‑associated gene, and is also considered one 
of the most reliable indicators of tumor cell proliferation (44). 
The Ki67 protein is a DNA‑binding protein required for 
tumor cell proliferation and is expressed at all stages of tumor 
proliferation (45). p53 is one of the earliest discovered tumor 
suppressor proteins, and its functions include cell cycle arrest, 
promotion of apoptosis, genome stability maintenance and 
tumor angiogenesis inhibition (46). The antitumor effects of 
p53 are achieved by blocking the cell cycle and inducing apop-
tosis (47). Conversely, in the present study, it was observed that 

CPP in combination with 8 Gy X‑ray irradiation downregu-
lated the expression of Ki67 and p53 at the mRNA and protein 
expression levels. Previous studies reported that >50% of 
tumor cells possess mutations in p53, and that mutant p53 may 
have the effect of promoting cell proliferation and inhibiting 
apoptosis (48,49). Additionally, a previous study reported that 
curcumin promoted apoptosis of colon cancer cells HCT‑15 
by inhibiting the expression of p53 (50). Further research is 
required into potential p53 mutations in the SW480 cells used 
during the present study. Caspase‑3, located downstream of 
the caspase cascade, is considered to be an important mediator 
of apoptosis induction (51). Cleaved caspase‑3 is the active 
form of caspase‑3; therefore, cleaved caspase‑3 is frequently 
used as an indicator of cell apoptosis (52). The present results 
demonstrated that CPP in combination with 8 Gy increased 
the protein expression of cleaved caspase‑3 and regulated the 
Bax/Bcl‑2 ratio.

The PI3K/Akt signaling pathway is an important signaling 
pathway in cells, and serves an important role in the prolif-
eration of tumor cells and alterations in the morphology of 
apoptotic cells (53). Abnormal regulation promotes the expres-
sion of tumor‑associated factors, and induces cell proliferation 
and malignant transformation (54,55). PI3K is a kinase located 
upstream of the Akt/mTOR signaling pathway. Abnormally 
activated PI3K promotes cell growth, proliferation and 
metastasis, epithelial‑to‑mesenchymal cell transformation and 
angiogenesis (56,57). Akt, also known as protein kinase B, is 
activated by PI3K (58). It was observed that CPP in combination 
with 8 Gy significantly inhibited PI3K and Akt phosphoryla-
tion. The results suggested that CPP in combination with 8 Gy 
inhibited PI3K/Akt signaling.

In conclusion, the present study demonstrated that CPP in 
combination with X‑ray irradiation suppressed SW480 cell 
proliferation and promoted cell apoptosis. The potential under-
lying mechanisms may involve inhibition of the PI3K/Akt 
signaling pathway. Future experiments will involve in vivo 
studies to further explore the mechanisms underlying the 
therapeutic effects of combined CPP and irradiation treatment.
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