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ABSTRACT
The fight against the emergence of mutant influenza strains has led to the screening
of an increasing number of compounds for inhibitory activity against influenza
neuraminidase. This study explores the chemical space of neuraminidase inhibitors
(NAIs), which provides an opportunity to obtain further molecular insights regarding
the underlying basis of their bioactivity. In particular, a large set of 347 and 175 NAIs
against influenza A and B, respectively, was compiled from the literature. Molecular
and quantum chemical descriptors were obtained from low-energy conformational
structures geometrically optimized at the PM6 level. The bioactivities of NAIs were
classified as active or inactive according to their halfmaximum inhibitory concentration
(IC50) value in which IC50< 1 µM and ≥ 10 µM were defined as active and inactive
compounds, respectively. Interpretable decision rules were derived from a quantitative
structure–activity relationship (QSAR) model established using a set of substructure
descriptors via decision tree analysis. Univariate analysis, feature importance analysis
from decision tree modeling and molecular scaffold analysis were performed on both
data sets for discriminating important structural features amongst active and inactive
NAIs. Good predictive performance was achieved as deduced from accuracy and
Matthews correlation coefficient values in excess of 81% and 0.58, respectively, for both
influenza A and B NAIs. Furthermore, molecular docking was employed to investigate
the binding modes and their moiety preferences of active NAIs against both influenza
A and B neuraminidases. Moreover, novel NAIs with robust binding fitness towards
influenzaA andBneuraminidasewere generated via combinatorial library enumeration
and their binding fitness was on par or better than FDA-approved drugs. The results
from this study are anticipated to be beneficial for guiding the rational drug design of
novel NAIs for treating influenza infections.

Subjects Bioinformatics, Computational Biology, Drugs and Devices, Computational Science
Keywords Influenza, Neuraminidase, Neuraminidase inhibitor, Chemical space, QSAR, Scaffold
analysis, Molecular docking, Fragment analysis, Data mining, Combinatorial library enumeration

INTRODUCTION
Influenza is a fatal disease of global public health concern. It is caused by influenza viruses
which are envelope segmented-RNAviruses belonging to theOrthomyxoviridae family. The
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global estimate for seasonal influenza infection is as high as 1 billion cases per year in which
approximately 3–5 million cases often develop progressive and severe illness leading to
250,000–500,000 fatalities per year worldwide (World Health Organization, 2014). Among
the severe cases, high fatality rates are observed particularly in very young children and
elderly people >65 years of age who are considered to be a risk group vulnerable to influenza
infection. Thus, influenza infections significantly increase the number of hospitalizations,
lead to substantial economical losses from disease intervention, and impact the productivity
of society (Peasah et al., 2013).

The current strategy for treating influenza focuses on inhibiting the function of
neuraminidase, which is an enveloped enzyme located on the surface of both influenza A
and B. Influenza neuraminidase is an exosialidase that recognizes the α-ketosidic linkage
between neuraminic acid (or sialic acid) and carbohydrate residues (Von Itzstein, 2011).
The influenza virus requires this enzyme to facilitate viral budding of progeny virions out
of the cells and to prevent viral aggregation of virus particles. The interaction allows the
mature virus to detach from the host cell, resulting in the release of progeny virions from
the surface of the host cell. Moreover, neuraminidase also plays a role in the cleavage of
neuraminic acid of mucin inside the respiratory tract, thereby facilitating the movement of
the virus toward its target cells (Shtyrya, Mochalova & Bovin, 2009). Thus, neuraminidase is
a crucial enzyme that facilitates viral spreading and transmission. To prevent the spreading
of influenza viruses, neuraminidase inhibitors (NAIs) are currently an effective choice for
treatment and prophylaxis.

Currently, only three NAIs have been approved for use as therapeutic and prophylaxis
agents of influenza virus: zanamivir (Relenza), oseltamivir (Tamiflu) and peramivir
(Rapivab). Zanamivir is the first approved nasally administered NAI and it exerts highly
effective inhibitory activity against both types of influenza virus. This dihydropyran-
based NAI was developed based on the structural modification of a sialic acid analogue
called DANA (Meindl et al., 1974). Due to its high polarity, zanamivir exhibits low
oral bioavailability and requires administration via nasal inhalation. Oseltamivir is a
second-generation NAI approved for use as an oral anti-influenza agent and it exhibits
efficacy comparable to that of zanamivir (Tuna, Karabay & Yahyaoglu, 2012). This
cyclohexene-based NAI is less polar than the previous generation, thus making it easier
to administer than the inhalation route. The most recently approved intravenous NAI,
peramivir, was announced in December 2014. This intravenous formulation was developed
as a single dose for the treatment of acute uncomplicated influenza infection and it
potentially reduces the duration of illness in participants. Although current NAIs exhibit
high therapeutic efficacy against circulating influenza virus, searching for novel anti-
influenza agents is continuously performed to address newly emerging or mutant strains
with resistance to anti-influenza agents.

Nevertheless, a number of drug candidates have failed in the late stages of the
drug development process, primarily during clinical trials. These failures are a result
of either insufficient therapeutic efficacy or adverse drug reactions at therapeutic
doses. Balancing between favorable bioactivity and desirable adverse effects is essential
for improving the therapeutic outcome after treatment (Greene & Naven, 2009). The
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bioactivity of compounds is facilitated by interactions between functional groups
aligning inside the molecule and target residues in the binding pocket of the drug
target. Thus, insights into the structure–activity relationship are important for filling the
knowledge gap during the lead optimization process. Currently, advanced computational-
aided drug design approaches are employed in medicinal chemistry research, which
potentially reduce costs and the amount of time spent for optimizing a set of novel
compounds for pre-clinical and clinical assessments. Chemical space exploration
enables the determination of important molecular substructures that contribute to
bioactivity against drug targets. In combination with quantitative structure–activity
relationships, the informative physicochemical properties and molecular features
that are relevant to the bioactivity of compounds can be obtained for discriminating
between active and inactive compounds through various machine-learning approaches.

To reduce the failure rate in the late stages of drug design and development, it is necessary
to understand both important molecular substructures and informative molecular features
relevant to the activity of interest. Herein, we report the application of chemical space
for exploring the important structure distributions related to neuraminidase inhibitor
activities and the creation of a set of simple physicochemical properties that define
the preferred physicochemical properties for neuraminidase inhibition. To achieve this
objective, a large data set of neuraminidase inhibitors was collected from a publicly available
database of protein-ligand interaction (Liu et al., 2007). This data set provides considerable
opportunity for investigating the fundamental profiles that dominate neuraminidase
inhibition. Ligand-based approaches, namely univariate, multivariate and scaffold analyses,
were performed on compounds in the data set as to explore the chemical space of NAIs.
Furthermore, structure-based approaches, namely molecular docking and combinatorial
library enumeration, were carried out to generate ligand candidates against neuraminidase
from influenza types A and B. Finally, post-filtering of the enumerated ligands were
performing using rules from the decision treemodel in order to enrich the resulting ligands.

MATERIALS AND METHODS
Data collection
A schematic workflow is presented in Fig. 1. Bioactive compounds that exhibited an
inhibitory effect against neuraminidase of both influenza virus type A and B were collected
from BindingDB (Liu et al., 2007), which was primarily compiled from 27 original articles.
The bioactivities of the NAIs were indicated by IC50 and converted to pIC50 by taking the
negative logarithm to the base of 10 using the following equation:

pIC50=−log(IC50). (1)

We first excluded the compounds with similar compound names, SMILES structures
and protein targets to avoid bias in the prediction model. After the pre-preprocessing
procedure, non-redundant data sets consisting of 347 and 175 NAIs for influenza A and B,
respectively, were obtained. To categorize compounds as active or inactive, pIC50 cut-off
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Figure 1 Schematic workflow of this study.

values were used, in which compounds with pIC50 values of greater than 6 (corresponding
to an IC50 value of less than or equal to 1 uM) were categorized as ‘‘active’’ and compounds
with pIC50 values of less than 5 (corresponding to an IC50 value of greater than or equal to
10 uM) were categorized as ‘‘inactive’’. Moreover, the intermediate biological activity NAIs
with pIC50 values ranging between 5 and 6 were not selected in this study, which consist of
62 and 44NAIs for influenza virus type A and B, respectively. Finally, sets of non-redundant
compounds consisting of 285 influenza A NAIs and 131 influenza B NAIs were obtained
and subjected to further investigation. These data sets are provided as supplementary data
on figshare and is accessible at http://dx.doi.org/10.6084/m9.figshare.1612484.
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Molecular descriptor generation
A molecular descriptor is a numerical description that represents the physicochemical
properties and chemical information of compounds. The chemical structures of curated
NAIs in the formof SMILES structures were converted to 3D structures usingMolConverter
from ChemAxon (version 15.1.12.0; ChemAxon Kft., Budapest, Hungary) and then
subsequently converted to Gaussian input file format using Open Babel (O’Boyle et al.,
2011). Geometrical optimization was performed using density functional theory (DFT)
calculations at the PM6 level as implemented in Gaussian09 (Frisch et al., 2009). In this
study, low-energy conformations obtained from geometrical optimizations were used to
extract thirteen easy-to-interpretmolecular descriptors, consisting of six quantum chemical
descriptors and sevenmolecular descriptors, accounting for the physicochemical properties
of compounds according to our previous study (Nantasenamat et al., 2013). The obtained
quantum chemical descriptors include the mean absolute charge (Qm), energy (E), dipole
moment (µ), highest occupied molecular orbital (HOMO), lowest unoccupied molecular
orbital (LUMO) and energy gap of the HOMO and LUMO state (HOMO-LUMO).
Furthermore, the second sets of molecular descriptors were calculated using DRAGON
5.5 Professional (version 5.5.; Talete, Milan, Italy). The obtained descriptors include the
molecular weight (MW), rotatable bond number (RBN), number of rings (nCIC), number
of hydrogen bond donors (nHDon), number of hydrogen bond acceptors (nHAcc), Ghose-
Crippen octanol-water partition coefficient (ALogP) and topological polar surface area
(TPSA). In addition, sets of 307 substructure fingerprint counts (SubFPC) were generated
to construct the predictivemodels of influenza A and BNAIs using PaDEL-Descriptor (Yap,
2011).

Univariate analysis
As an exploratory data analysis, univariate statistical analysis was performed to investigate
the different patterns and trends of individual molecular descriptors between active and
inactive NAIs using 6 descriptive statistical parameters: the minimum (Min), first quartile
(Q1), median, mean, third quartile (Q3) and maximum (Max). In addition, statistical
differences of descriptors among active and inactive NAIs were evaluated using the p value
obtained from Student’s t -test (Goodman, 1999). Finally, histogram plots of the thirteen
descriptors were generated using in-house R language scripts to visualize the different
distributions of active and inactive NAIs. The t -test is considered to be a feature selection
technique belonging to the class of filter methods (Saeys, Inza & Larrañaga, 2007). The
advantages of such filter methods are its fast and scalable nature as well as its independence
of the classifier.

Data splitting
The aforementioned non-redundant data sets were divided into internal and external sets
with the Kennard-Stone sampling algorithm (Stevens, 2014) using ratios of 80% and 20%,
respectively (Table 1). The internal set was subjected to full training calculations and was
evaluated using a ten-fold cross-validation (10-fold CV) scheme, which was applied to
confirm the reliability and robustness of the proposed models. Furthermore, the external
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Table 1 Summary of the data set used for predicting the inhibitory activity of influenza A and B.

Data set Initial Internal data set External data set

Active Inactive Active Inactive

Influenza A 285 118 110 30 27
Influenza B 131 36 69 9 17

set was used to assess the generalization ability of themodel when extrapolating to unknown
data samples.

Multivariate analysis
Principal component analysis (PCA) is a tool used for analyzing data sets that possess
several inter-correlated quantitative dependent variables (Prachayasittikul et al., 2015;
Jolliffe, 2005). To manipulate these inter-correlated variables, PCA essentially transforms
the original data into a number of principal components (PCs) or new co-ordinate axes,
where the axes are located on the center of the data points. Mathematically, PCs depends
on the eigenvectors and eigenvalues of a data covariance (or correlation) matrix. The
eigenvector associated with the largest eigenvalue has a direction that is identical to the first
principal component (PC1), whereas the eigenvector associated with the second largest
eigenvalue determines the direction of the second principal component (PC2) and so
forth. In the present study, PCA was employed in exploring the chemical space of NAIs
from influenza A and B as a function of the thirteen molecular descriptors using the
FactoMineR (Lê, Josse & Husson, 2008) package of the R statistical language. Prior to PCA
analysis, all data were first standardized to a comparable scale by transforming variables to
zero mean and unit variance.

Decision tree (DT) is a simple, transparent and interpretable learning method
that produces decision rules for the underlying data (Quinlan, 1993). Practically,
the prediction task using the decision model can be easily implemented without
complicated computations and this model can also be applied in both continuous
and categorical variables (Prachayasittikul et al., 2015). This algorithm has been widely
used for the interpretable analysis of various tasks, such as hepatitis virus C NS5B
polymerase (Nantasenamat, Isarankura-Na-Ayudhya & Prachayasittikul, 2010), aromatase
inhibitors (Nantasenamat et al., 2013; Shoombuatong et al., 2015b), dipeptidyl peptidase IV
inhibitors (Shoombuatong et al., 2015a) and metabolic syndrome (Worachartcheewan et al.,
2013). This study employs Weka’s (Hall et al., 2009) J48 algorithm (a Java implementation
of the C4.5 algorithm) for constructing a predictive model for discriminating influenza
virus type A and B into its class (active or inactive group). The model is constructed as a
function of a set of thirteen molecular descriptors. In the J48 algorithm, the information
gain is used to rank features for constructing a decision tree based on feature usage. The
feature usage score can be obtained after constructing a decision tree and then counting
the firing frequency of associated rules (nodes). The feature usage provides an easy way to
rank and identify important features. A molecular descriptor with a high feature usage is
considered to be an important feature.
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Performance of the J48 algorithm was benchmarked against other commonly used
classifiers such as the Naive Bayes (Bayes), support vector machine (SVM) and artificial
neural network (ANN). The first classifier that was employed is SVM, which is a statistical
learning method that had demonstrated wide utility in QSAR/QSPR modeling. A non-
linear SVM was used herein by applying the radial basis function kernel to transform the
original feature space to a higher dimensional space in which the SVM classifier linearly
separate the inherent classes of the dependent variable via a maximum margin separating
hyperplane. A grid search for the optimal parameters was performed according to a 10-fold
cross-validation (10-fold CV) scheme using the R package e1071 (Meyer et al., 2008).
The second classifier employed herein is ANN, which is based on a back-propagation
implementation of the feed-forward neural network approach. ANN had also received
widespread popularity in QSAR/QSPR modeling. The suitable number of hidden nodes of
the ANN classifier was decided based on the best evaluated 10-fold CV. The Bayes classifier
is a statistical classifier that can predict the bioactivity of interest using the probability
of class membership according to the Baye’s Theorem. ANN and Bayes classifiers were
calculated with default parameters using Weka, version 3.6.12.

Statistical assessment
Four measurements were used to evaluate the prediction performance of the proposed
model namely accuracy (Ac), sensitivity (Sn), specificity (Sp) and Matthews correlation
coefficient (MCC), which are defined by the following equations:

Ac=
TP+TN

TP+TN+FP+FN
(2)

Sn=
TP

TP+FN
(3)

Sp=
TN

TN+FP
(4)

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(5)

where TP, TN, FP and FN are the numbers of true positive, true negative, false positive
and false negative, respectively.

Maximum common substructure analysis
The chemical substructure analysis ormolecular fragment analysiswas performed to analyze
the properties of the NAIs expressed by molecular descriptors using LibMCS software as
implemented in ChemAxon’s JChem technology to identify and display the maximum
common substructures of compounds in the data set (version 15.1.12.0; ChemAxon
Kft., Budapest, Hungary). In brief, all chemical structures in SMILES format were
initially converted to SDF format as an input file using MolConverter (version 15.1.12.0;
ChemAxonKft., Budapest, Hungary). LibMCS subsequently generatedmaximum common
substructures present in the data set. The fragments were ranked according to structure-
based hierarchical clustering algorithms, in which the bottoms of the hierarchy are the
initial structure and then the next level contains the maximum common substructures of
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initial molecule clusters where all molecules that share the same common structure are
placed in a cluster. Active and inactive fragments were distinguished according to pIC50
cut-off values of >6 and <5, respectively and the chemical substructures were ranked
according to their fragment occurrence in both the active and inactive groups of the data
set.

Binding analysis
To further understand the protein-ligand interaction site, a structure-based molecular
docking approach was employed in this study. Sets of 148 and 45 active NAIs against
influenza A and B, respectively, were subjected to docking with neuraminidase. In this
study, crystal structures of 2009 pandemic H1N1 neuraminidase for influenza A (PDB
accession code 3TI4) and B (PDB accession code 1A4G) were retrieved from the Protein
Data Bank (Berman et al., 2000). The proteins were initially prepared by removing water
molecules and alternative side chains. Hydrogens and Gasteiger charges were added to
the protein, which were subsequently cleaned up by merging the charges, repairing bonds
and removing non-polar hydrogens and lone pair atoms. Low-energy conformers of active
NAIs obtained from the geometrical optimization process were employed to dock with
the binding site of neuraminidase. Grid boxes with dimensions of 40× 30× 32 Å and
40×40×40 Å was applied to center the ligands inside the active sites of neuraminidase for
influenza A and B, respectively. Molecular docking was performed using AutoDock Vina
(Trott & Olson, 2010) with default parameters. Prior to performing docking of the active
NAIs, the docking protocols were initially validated by calculating the root-mean-square
deviation (RMSD) of atomic positions between co-crystallized ligand and re-binding
ligand, which are laninamivir octanoate and zanamivir for PDB accession codes 3TI4
and 1A4G, respectively. The protocol was acceptable with an RMSD value ≤2.0 Å, which
was observed to be 1.153 and 1.277 Å for 3TI4 and 1A4G, respectively. Binding energy
(Kcal/mol) of ligand conformers were calculated and the conformation providing the
lowest binding energy was chosen for further analysis of the binding modality in the active
site of neuraminidase. All protein structures were visualized and rendered in PyMOL,
version 1.7.6.3.

Combinatorial library enumeration
Novel NAIs were generated via combinatorial library enumeration using AutoGrow
3.0 (Durrant, Amaro & McCammon, 2009;Durrant, Lindert & McCammon, 2013) in which
compounds are enumerated inside the binding pocket of influenza neuraminidase.
AutoGrow is an evolutionary algorithm that generate populations of ligands through three
operators includingmutation, crossover and selection. Firstly, the mutation process derives
a novel compound by randomly replacing certain moieties with chemically synthesizable
click-chemistry reactive groups. Secondly, crossover operator is applied via the alignment
of two ligands in order to identify the maximum common substructure, which will serve
as the core scaffold by which fragments will be attached to. Newly generated ligands are
subsequently filtered following the Lipinski’s rule of five where a relaxed criteria was applied
so that the generated compounds could violate not more than one rule of the rule of five.
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Subsequently, compounds are subjected to a second filter using the Ghose criteria (Ghose,
Viswanadhan &Wendoloski, 1999) in which enumerated compounds possessing LogP in
the range of−0.4–5.6 were acceptable. Thirdly, a set of ligands obtained from the mutation
and crossover operators are then evaluated by the binding fitness against the active site
of neuraminidase via selection operators in AutoDock Vina. The top ten lowest binding
energy was selected to serve as founders of the next generation. These procedures are
repeated in an iterative manner until the specified number of generation has been reached.

Molecular structures of active compounds against both types of influenza
neuraminidases were used as molecular founders in the enumeration of a new population
of ligands. Grid box was defined to provide coverage of the active site of neuraminidase
as well as loop positions 150 and 430 (i.e., critical for enzyme-substrate recognition and
may possibly improve the binding fitness of enumerated ligands) (Amaro et al., 2011).
The enumeration was set to generate 10 mutants and 10 crossovers per generation such
that the top ten ligands with the best AutoDock Vina docking score were advanced to the
next generation. Fragment addition were selected from AutoGrow 3.0 fragment library
with molecular weight of less than 150 Da. Finally, a total number of 19 and 31 candidate
ligands against neuraminidase of influenza A andB, respectively, were enumerated and their
binding modalities were subsequently analyzed. Moreover, post-filtering of enumerated
ligands against influenza A and B neuraminidase were separately performed using J48
models of influenza A and B NAIs. Molecular structures of the filtered enumerated ligands
against influenza A and B neuraminidase are provided as supplementary data in SDF file
format on figshare and is accessible at http://dx.doi.org/10.6084/m9.figshare.1612484.

RESULTS AND DISCUSSION
Exploratory data analysis
A total number of 313 NAIs were collected from the BindingDB that consisted of 285 and
131 NAIs against influenza A and B, respectively, as shown in Table 1. Because NAIs are
used to inhibit neuraminidase from both influenza A and B, however their distinct protein
structures give rise to different efficacy of treatment, therefore the two neuraminidases were
analyzed separately as to gain a better understanding of their individual pharmacokinetic
properties. To determine the different characteristics between active and inactive NAIs, an
exploratory data analysis of the thirteen descriptors was carried out via statistical analysis.
Summary of the statistical parameters of the underlying data are shown in Table 2 and
Tables S1 and S2. Furthermore, histogram plots showing the general data spread of the
physicochemical descriptors are provided in Figs. 2 and 3. The p-value was used to compare
the 13 descriptors in active and inactive groups of influenza A and B NAIs. The differences
between active and inactive groups were considered statistically significant at p≤ 0.05.
Results from the t -test along with their p values are shown in Table 2 for NAIs against
influenza A and B.

Exploratory data analysis showed that the NAIs displayed drug-like properties according
to Lipinski’s rule of 5 (Lipinski et al., 2001) in which compounds generally exhibit the
following features: (1) MW <500 Da, (2) LogP <5, (3) nHDon <5 and (4) nHAcc <10. An
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Table 2 Summary of statistical analysis of active and inactive classes of influenza A and B neuraminidase inhibitors.

Descriptor Influenza A Influenza B

Active Inactive p-value Active Inactive p-value

MW 343.234± 56.916 328.415± 83.823 0.085 312.466± 44.641 357.692± 76.866 <0.05
RBN 7.061± 2.183 5.248± 2.681 <0.05 5.689± 2.043 7.233± 2.561 <0.05
nCIC 1.514± 0.655 2.109± 1.316 <0.05 1.444± 0.546 1.709± 0.852 <0.05
nHDon 4.743± 1.257 4.321± 2.029 <0.05 4.578± 1.34 4.849± 1.561 0.302
nHAcc 7.777± 1.502 7.204± 2.153 <0.05 7.156± 1.731 8.337± 1.334 <0.05
ALogP 0.049± 1.256 0.853± 2.475 <0.05 −0.128± 1.291 −0.017± 1.602 0.67
TPSA 125.205± 24.37 120.033± 37.06 0.169 114.592± 27.661 134.168± 25.007 <0.05
Qm 0.163± 0.02 0.179± 0.055 <0.05 0.158± 0.013 0.168± 0.018 <0.05
Energy −0.274± 0.083 −0.246± 0.119 <0.05 −0.276± 0.099 −0.249± 0.089 0.129
Dipole moment 4.101± 1.972 4.328± 2.003 0.336 3.831± 1.601 4.364± 2.011 0.101
HOMO −0.352± 0.011 −0.343± 0.015 <0.05 −0.351± 0.009 −0.35± 0.013 0.573
LUMO −0.006± 0.018 −0.021± 0.022 <0.05 −0.013± 0.01 −0.003± 0.023 <0.05
HOMO-LUMO 0.346± 0.023 0.322± 0.03 <0.05 0.339± 0.014 0.347± 0.029 <0.05

in-depth analysis of the molecular descriptors as a function of active and inactive NAIs
were carried out as to shed light on the origin of the neuraminidase inhibitory activity. As
described in the Materials and Methods, compounds were classified as active or inactive
using pIC50 cut-offs of ≥ 6 (IC50≤ 1 µM) and ≤ 5 (IC50 ≥ 10 µM), respectively; however,
compounds that exhibited a pIC50 value in the range of 5–6 were not considered in this
study (similar to the ‘Data collection’). The bioactivities of the NAIs were determined by
observing the mean pIC50 value, which was 5.788 ± 2.023 (1.30 µM) and 5.107 ± 1.695
(7.80 µM) for type A and B neuraminidase, respectively. It could be observed that NAIs
for influenza A neuraminidase possessed significantly different therapeutic activity than
those for type B neuraminidase with p< 0.05.

MW refers to the molecular size of compounds and is an important parameter of
Lipinski’s rule of five for drug-like molecules. Statistical analysis showed that the average
molecular size of active compounds for influenza A NAIs (343.234 ± 56.916) was not
significantly different from that of inactive compounds (328.415± 83.823) with p= 0.085.
However, for influenza B NAIs, the average MW of the active (312.466 ± 44.641) and
inactive (357.692 ± 76.866) groups were significantly different with p< 0.05.

RBN is the number of rotatable bonds in a molecule and provides a relative measure
of molecular flexibility. RBN is defined as any single bond, not in a ring, that is bound to
a non-terminal heavy atom. Amide C–N bonds are excluded from the count because of
their high rotational energy barrier. As shown in Table 2, the number of rotatable bonds
in a molecule of the active group (7.061 ± 2.183) for influenza A NAIs is notably different
from that of the inactive group (5.248 ± 2.681). In the case of influenza B NAIs, the active
group (5.689 ± 2.043) is also different from the inactive group (7.233 ± 2.561) as shown
in Table 2.

nCIC is calculated as the cardinality of the set of independent rings known as the smallest
set of smallest rings. As shown in Table 2 and Table S1, the average number of rings of

Anuwongcharoen et al. (2016), PeerJ, DOI 10.7717/peerj.1958 10/34

https://peerj.com
http://dx.doi.org/10.7717/peerj.1958/supp-1
http://dx.doi.org/10.7717/peerj.1958


MW

300 400 500 600 700

0
20

40

RBN

F
re

qu
en

cy

4 6 8 10 12 14

0
20

40

nCIC

F
re

qu
en

cy

1 2 3 4 5

0
60

12
0

nHDon

2 3 4 5 6 7 8 9

0
40

80

nHAcc

F
re

qu
en

cy

5 6 7 8 9 10 11

0
20

50

ALogP

F
re

qu
en

cy

−4 −2 0 2 4 6

0
30

60

TPSA

100 140 180

0
20

40

Qm

F
re

qu
en

cy

0.14 0.18 0.22 0.26
0

15
30

Energy

F
re

qu
en

cy

−0.5 −0.3 −0.1

0
10

20

Dipole moment

100 140 180

0
15

30

HOMO

F
re

qu
en

cy

−0.37 −0.35 −0.33

0
5

10

LUMO

F
re

qu
en

cy

−0.02 0.00 0.02 0.04

0
20

40

HOMO−LUMO

F
re

qu
en

cy

0.32 0.36 0.40

0
10

25

Figure 2 Histogram representing the molecular descriptors for NAIs against influenza A.Note: Active
and inactive NAIs are represented with red and blue bars, respectively, whereas their overlapping region
are shown in purple.

the active group (1.514 ± 0.655) of influenza A NAIs is less than that of the inactive
group (2.109 ± 1.316). Similar to type B, the average number of rings of the active group
(1.444 ± 0.546) is not greater than that of the inactive group (1.709 ± 0.852) at p< 0.05.

nHDon refers to the number of hydrogen bond donors in a molecule. In brief, the active
group was found to possess higher mean values of nHDon than the inactive group for
influenza A NAIs, where as for influenza B NAIs, the active group was found to possess
lower mean values of nHDon than the inactive group. As shown in Fig. 2, the histograms
of nHDon in the active/inactive groups indicate that the distributions for influenza A
NAIs are significantly different, whereas the distributions for influenza B NAIs are not
significantly different at p< 0.05.
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Figure 3 Histogram representing the molecular descriptors for NAIs against influenza B.Note: Active
and inactive NAIs are represented with red and blue bars, respectively, whereas the purple represents their
overlap region.

nHAcc describes the number of hydrogen bond acceptors in a molecule. Table 2 shows
that nHAcc of the active group for influenza A NAIs (7.777± 1.502) is greater than that of
the inactive group (7.204 ± 2.153). Similar to influenza B NAIs, the numbers of nHAcc of
the active (7.156 ± 1.731) and inactive groups (8.337 ± 1.334) were statistically different
(at p< 0.05) as also indicated by histogram plots in Figs. 2 and 3 for influenza A and B,
respectively.

ALogP is a computational method for estimating the 1-octanol/water partition
coefficient (logP), which is a well-known measure of the molecular hydrophobicity also
known as lipophilicity. As shown in Figs. 2 and 3, the histogram of ALogP of influenza B
has a greater overlapping region (purple) than that of type A. Table 2 shows that ALogP
was statistically significant for actives versus inactives for NAIs of both influenza. Mean
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AlogP values of 0.049 ± 1.256 and 0.853 ± 2.475 were observed for active and inactive
influenza A NAIs, respectively, whereas values of−0.128± 1.291 and−0.017± 1.602 were
observed for influenza B NAIs, respectively.

TPSA describes the contribution of polar atoms to the molecular charge based on an
empirical measurement of the polar surface area of a molecule. Table 2 shows that actives
and inactives for influenza type A NAIs is not statistically significant at the p< 0.05 level
while the active and inactive groups of influenza B NAIs were statistically significant. The
corresponding TPSA values were 125.205± 24.370 (active) and 120.033± 37.060 (inactive)
for influenza A NAIs, whereas the TPSA values of influenza B NAIs were 114/592± 27.661
(active) and 134.168 ± 25.007 (inactive).

Mean absolute charge (Qm) describes the global measurement of the molecular charge.
The histogram plot showed different distributions of Qm for influenza A and type B NAIs.
Moreover, Qm exhibited a distinct Qm of 0.171 ± 0.042 and 0.165 ± 0.017 for influenza A
and type B NAIs, respectively. This study suggested that the inactive group had higher Qm

values when compared to the active group as shown in Table 2. TheQm values were statisti-
cally significant at p< 0.05 for the active and inactive influenza A NAIs were 0.163± 0.020
and 0.179 ± 0.055, respectively, while values of 0.158 ± 0.013 and 0.168 ± 0.018
were observed for the active and inactive groups of influenza B NAIs, respectively.

Energy represents the summation of the atomic energy. Overall, no significant difference
in energy were observed for NAIs of influenza A (−0.260± 0.103) and B (−0.258± 0.093)
with p= 0.823. It was found that the active group (−0.274 ± 0.083) had a slightly higher
energy than the inactive group (−0.246 ± 0.119) for influenza A. However, the values of
(−0.276 ± 0.099) and (−0.249 ± 0.089), which were observed in the active and inactive
groups, respectively, of influenza B NAIs were not statistically significant at p< 0.05
(p= 0.129).

Dipole moment represents the asymmetric distribution of charge in a molecule. A
high dipole moment value indicates a high charge distribution and vice versa. The
dipole moment of NAIs for influenza A (4.210 ± 1.987) and B (4.181 ± 1.891) were
not significantly different at p< 0.05 (p= 0.737). Further statistical analysis revealed that
the dipole moment of actives versus inactives for both influenza A and B NAIs are also not
significantly different, with p= 0.336 and p= 0.537, respectively.

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) are the highest- and lowest-energy molecular orbitals that are occupied
and unoccupied by electrons, respectively. HOMO is associated with ionization potential
(ability to donate electrons), whereas LUMO is responsible for electron affinity (ability
to accept electrons). It could be observed that the HOMO value of the active group is
significantly different from that of the inactive group with p< 0.05. Moreover, in the case
of influenza B NAIs, the HOMO value of the active group is not statistically significant
(p= 0.573) at p< 0.05 as summarized in Table 2. However, the mean values of LUMO
for influenza A and B NAIs were statistically significant when comparing the active and
inactive groups at p< 0.05 as summarized in Table 2.

HOMO-LUMO describes the kinetic stability and chemical reactivity of molecules. A
small energy gap between these two states pertains to low kinetic stability and provides high
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chemical reactivity and vice versa (Mathammal et al., 2015). The histogram plot shows a
slightly different pattern of distribution of the NAIs for influenza A and B between the
active and inactive groups (Figs. 2 and 3, respectively). The overviews of theHOMO-LUMO
values of influenzaA (4.210± 1.987) andB (4.181± 1.891)NAIswere significantly different
at the p= 0.737 level. For analysis of influenza A and B NAIs, the HOMO-LUMO value of
the active group is shown with the statistically significant results at the p< 0.05 level for
both type A and B as summarized in Table 2.

In summary, these results indicated that several descriptors were significant for
differentiating the active and inactive class of influenza A NAIs (p< 0.05) except for
MW, TPSA and dipole moment. Similarly, several descriptors were also significant for
differentiating the active and inactive class of influenza B NAIs with the exception of
nHDon, ALogP, energy, dipole moment and HOMO descriptors. The active class of
influenza A NAIs tended to have higher values of flexibility (RBN), hydrogen-bond donors
(nHDon) and acceptors (nHAcc) as well as chemical reactivity/stability (HOMO-LUMO)
while possessing low values for lipophilicity (ALogP), ringmoiety (nCIC),molecular energy
and charge (Qm). On the other hand, the active class of influenza B NAIs had the tendency
of being smaller in size (MW), less molecular flexibility (RBN), ring moiety (nCIC),
hydrogen-bond acceptors (nHAcc), charge (Qm) but higher chemical reactivity/stability
of molecules (HOMO-LUMO). Nevertheless, in practice, compounds used for treating
influenza B are the same compounds used to develop treatments for influenza A. As the
univariate analysis can only provide an overview of the general features of NAIs therefore
multivariate analysis was performed to construct predictive models using substructure
descriptors for classifying the bioactivity of NAIs as well as discerning key features for
differentiating active NAIs from their inactive counterparts.

PCA analysis
Furthermore, PCA was applied to explore the chemical space of NAIs for influenza A (Figs.
4A and 4B correspond to scores and loadings plots, respectively) and B (Figs. 4C and 4D
correspond to scores and loadings plots, respectively) whereby the set of 13 descriptors
were mapped onto a few PCs. PC1 had the highest variance in the data of influenza A NAIs
with a value of 38.59%. Meanwhile, PC2 and PC3 provided the second and third highest
variances with values of 19.87% and 12.25%, respectively. In summary, the first three PCs
afforded a cumulative variance of 70.71%, which was sufficiently informative for further
analysis. Particularly, the loadings plot (Fig. 4B) shows that ALogP, HOMO and nCIC
dominated the periphery of the negative end of PC1 while TPSA, nHDon, nHAcc and
HOMO-LUMO were distributed on the positive end thereby suggesting the importance of
these descriptors in accounting for the variance of PC1. Furthermore, molecular energy and
HOMO-LUMO dominated the negative end while MW was found towards the terminal
side of the positive end of PC2. Moreover, the variance of PC3 was accounted for by
Qm on the negative terminal while the LUMO on the positive periphery. Taken together,
the cluster of descriptors comprising of nHAcc, nHDon and TPSA together with the
cluster of descriptors consisting of RBN, LUMO and HOMO-LUMO (i.e., both shown as
green clusters) were found to characterize the features of active compounds owing to its
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Figure 4 PCA scores and loadings plots of NAIs against influenza A (A and B, respectively) and B (C and D, respectively). Active and inactive
compounds are represented by green and red circles, respectively, in the scores plots. Important features for rationalizing the active and inactive
compounds are highlighted by green and red clusters, respectively. An interactive version is available at https://dx.doi.org/10.6084/m9.figshare.
3123136.v1.

distribution in the spatial location of the active compounds when the scores and loadings
plots are superimposed. It can thus be seen that active compounds were accounted by
hydrogen bond propensities, molecular orbital energies as well as the rotatable bond count
and polar surface area. Likewise, the other cluster of descriptors consisting of ALogP,
HOMO, nCIC and molecular energy were found to define the inactive set of compounds
as indicated by the red cluster, which corresponded to lipophilicity, electron donating
propensity and number of rings.
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Table 3 Summary of performance comparison of decision tree algorithmwith other learning methods for classifying the bioactivity of in-
fluenza A and B NAIs.

Classifier Data subset Influenza A Influenza B

Ac (%) Sn (%) Sp (%) MCC Ac (%) Sn (%) Sp (%) MCC

Bayes Training set 86.84 92.37 80.91 0.74 98.10 100.00 97.10 0.96
10-fold CV set 81.58 85.59 77.27 0.63 98.10 100.00 97.10 0.96
External set 78.95 100.00 55.56 0.63 38.46 100.00 5.88 0.15

ANN Training set 98.68 99.15 98.18 0.97 98.10 97.22 98.55 0.96
10-fold CV set 88.16 90.68 85.45 0.76 83.81 75.00 88.41 0.64
External set 91.23 86.67 96.30 0.83 96.15 88.89 100.00 0.92

SVM Training set 98.68 99.15 98.18 0.97 98.10 97.22 98.55 0.96
10-fold CV set 89.04 94.92 82.73 0.78 84.76 61.11 97.15 0.66
External set 92.73 100.00 84.00 0.86 88.46 66.67 100.00 0.75

DT Training set 92.98 96.61 89.09 0.86 96.19 97.22 95.65 0.92
10-fold CV set 88.60 91.53 85.45 0.77 81.90 61.11 92.75 0.58
External set 89.47 83.33 96.30 0.80 96.15 100.00 94.12 0.92

As for influenza B NAIs, PC1 afforded the highest variance with a value of 37.66%.
Meanwhile, PC2 and PC3 provided the second and third highest variances with values
of 23.02% and 9.88%, respectively. It was found that the first three PCs accounted for
70.56% of the total variance. Particularly, the positive end of PC1 was dominated by
TPSA, nHDon, nHAcc, HOMO-LUMO and LUMO, respectively, while the negative end
by HOMO. Furthermore, descriptors at the periphery of the positive end of PC2 were
comprised of MW, nCIC, ALogP and RBN while having Qm dominating the negative end.
Moreover, dipole moment and molecular energy were found as terminal descriptors at the
positive end of PC3 with RBN and MW on the negative end. Putting these findings into
perspective, it can be seen that the first PC was accounted by molecular orbital energies and
hydrogen bond donating and accepting propensities, the second PC was characterized by
structural features comprising of the molecular weight, number of rings, lipophilicity and
rotatable bond count while similarly the third PC was rationalized by the rotatable bond
count and molecular weight. The loadings plot (Fig. 4D) shows two distinctive cluster of
descriptors as indicated by the green and red clusters, which were found to characterize
compounds as being active and inactive, respectively. Comparison of the loadings plots of
influenza A and B NAIs revealed that TPSA, nHAcc, nHDon, HOMO-LUMO and LUMO
were important features for characterizing active compounds. Likewise, four features
comprising of ALogP, HOMO, nCIC and molecular energy were crucial for discriminating
compounds as inactive.

Prediction of inhibitory activity against neuraminidase from influenza
A and B
An interpretable predictive model is more useful for providing insights into the basis
of the biological and chemical properties of influenza A and B NAIs. Therefore, in this
study, a QSAR model based on the J48 algorithm is presented for discriminating between
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active/inactive groups of influenza A and B NAIs. Each compound was calculated as an
M-dimensional vector of 307 bits based on substructure fingerprints. In constructing the
predictive model, the J48 algorithm was applied using the encoded compounds from the
internal sets. Moreover, to evaluate the ability of our proposed QSAR model, two different
experiments were performed: one experiment was performed on the full training data and
the other experiment was evaluated using a 10-fold CV procedure as shown in Table 3. The
CV procedure was performed by first partitioning the data into 10 equally sized segments
or folds; then, 9 folds were used as the training data while the remaining fold was used for
validation. Finally, the results were averaged across the 10 experiments. Fourmeasurements
were used to assess the performance of the QSAR models namely Ac, Sn, Sp and MCC.

Table 3 demonstrated that using the set of 307 descriptors provided promising results
with an Ac of 88.60%, Sn of 91.53%, Sp of 85.45% and MCC value of 0.77 for influenza A
NAIs, whereas these descriptor set also performed well for influenza B NAIs with an Ac of
81.90%, Sn of 61.11%, Sp of 92.75% and MCC value of 0.58. As shown in Table 1, the used
data set is not balanced because the number of positive samples (active group) is larger than
that of negative samples (inactive group). Therefore, the Sn is considerably greater than
the Sp for influenza A NAIs. To address this problem, the original data set should first be
balanced between the active and inactive groups. In addition, to assess the reliability of the
predictive model on unknown data, an external set was considered. Table 3 shows that our
proposedmodel still performswell for predicting influenzaANAIswith anAc of 89.47%, Sn
of 83.33%, Sp of 96.30% and MCC of 0.80 while the performance for predicting influenza
B NAIs was acceptable with an Ac of 96.15%, Sn of 100.00%, Sp of 94.12% and MCC
of 0.92. It was well recognized that a decision tree-based classifier utilized the estimated
threshold to predict a sample. Moreover, the employed data set is not balanced in which
the number of positive samples (active) is smaller than that of negative samples (inactive).
Thus, it was not surprising that the prediction result of our proposed model on type B
provided a moderate Sn of 61.11%. However, our proposed model aims to maximize
both the simplicity and interpretability of the classification method. The classification
tree of NAIs against both type of influenza neuraminidase were illustrated in Fig. 5.

The J48 algorithm was benchmarked against other commonly used learning methods
such as Bayes, SVM and ANN classifiers. For fair comparisons, the other classifiers were
constructed using the same set of thirteen descriptors. Table 3 shows the comparative
results on the influenza A and B NAIs data sets. Predictive performance for the external
set of influenza A for Bayes, SVM, ANN and J48 classifiers had Ac values of 78.95%,
92.73%, 91.23% and 89.47%, respectively, while affording MCC values of 0.63, 0.86, 0.83
and 0.80, respectively. Meanwhile, the influenza B data set afforded Ac values of 38.46%,
88.46%, 96.15% and 96.15%, respectively, while MCC values were 0.15, 0.75, 0.92 and
0.92, respectively. Comparisons of the performance can be briefly summarized as follows.
In predicting the bioactivity of influenza A, the SVM classifier performed well with the
highest external Ac while the J48 classifier was comparable with such model. As for the
influenza B data set, the highest external MCC was achieved by the J48 and SVM classifiers.
The ANN classifier performed well with the second highest MCC. The aforementioned
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Figure 5 Illustration of decision tree model for classifying the activity of NAIs against Influenza types
A and B as a function of their substructure fingerprint. The full descriptive name of the substructure fin-
gerprints are shown for the purpose of clarity while their corresponding acronyms are provided in the text
as well as the supplementary data available on figshare at http://dx.doi.org/10.6084/m9.figshare.1612484.
It should be noted that ‘‘1,3-tautomerizable’’ and ‘‘chiral center specified’’ correspond to idiosyncratic
PaDEL definitions rather than ‘‘standard definitions’’.
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Figure 6 Plots of the descriptor usage derived from the decision tree model.Descriptors with the
largest percentage of descriptor usage is deemed the most important.

results revealed that the J48 algorithm was comparable to that of the SVM classifier on the
influenza A data set and also outperformed other benchmarked classifiers.

Substructure fingerprint play an important role in representing the characteristics
of compounds. Thus, the identification of informative substructure fingerprints would
help provide insights into the underlying mechanism of influenza A and B NAIs. The
feature importance plot is shown in Fig. 6 where features with the largest descriptor usage
are deemed to be the most important. Figure 6A shows that the top three informative
fingerprints of influenza A NAIs are SubFPC100, SubFPC41 and SubFPC300, which
corresponds to secondary amide, 1,2-Diol and 1,3-tautomerizable moiety, respectively.
Moreover, Fig. 6B shows that the top three informative fingerprints of influenza B NAIs
are SubFPC5, SubFPC14 and SubFPC88, which corresponds to alkene, secondary alcohol
and carboxylic acid derivative moiety, respectively. Secondary amide was found as the
root node of the decision tree for classifying the bioactivity of influenza A NAIs followed
by the 1,2-diol moiety (Fig. 5A). Notably, compounds lacking secondary amide were
classified as inactives whereas compounds possessing the 1,2-diol moiety were classified as
inactive NAIs. On the other hand, the alkene moiety can be considered to be an important
substructure for classifying the bioactivity of influenza B NAIs as it was found to be the root
node of the decision tree. Nevertheless, it can be seen that the decision rule for classifying
the bioactivity of influenza B NAIs are reliant on several substructure fingerprints, which
is more than that of influenza A NAIs (Fig. 5B).

Analysis of maximum common substructure
The molecular substructure analysis revealed the important molecular fragments that
facilitate the biological activity against influenza neuraminidase. The top-ranking
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substructures for both active and inactive NAIs agianst influenza A are indicated in
Figs. 7A and 7B, respectively, while Fig. 7C and 7D represents active and inactive NAIs
against influenza B, respectively. The top five substructures were sorted by substructure
occurrence. The results of the top five active fragments indicated that cyclohexene-based,
dihydropyran-based and cyclopentane-based scaffolds are relevant to inhibitory activity
against influenza neuraminidase, in which these six- and five-membered non-aromatic
rings possess a marginal ligand-binding conformation comparable to the tetrahydropyran
ring of the sialic acid substrate of influenza neuraminidase.

The top-ranked common substructure was a cyclohexene-based moiety, which can be
found in the current drug of choice for influenza treatment: oseltamivir. This drug was
developed to lower the polarity effect of the dihydropyran scaffold of the first-generation
NAIs, which led to the low bioavailability as observed in zanamivir. Initially, zanamivir
was developed based on a dihydropyran scaffold and exerts good inhibitory activity against
influenza neuraminidase (Meindl et al., 1974; Von Itzstein et al., 1993), which became the
first approved NAI for use as a therapeutic agent against the influenza virus. Structure-
based drug design based on the availability of N2 sialidase X-ray co-crystal structure
with α-Neu5Ac and Neu5Ac2en (Varghese et al., 1992) was used as guidelines for the
development of novel NAIs. In silico analysis of enzyme active sites revealed energetically
favorable interactions of amino acid residues in the active site and various functional group
probes, such as carboxylates, amines, methyl groups and phosphates (Von Itzstein et al.,
1996). The molecular structure overlay of predicted favorable functional groups against
co-crystal structure of N2 sialidase and Neu5Ac2en as template molecules suggested that
substituting the C-4 hydroxyl group of the template with amino and guanidino groups
should improve the binding affinity with the N2 active site. As a result of amino substitution
at the C4 hydroxyl group, the binding affinity is enhanced by the formation of a salt bridge
between the amino group and E199 residue, whereas guanidino substitution interacts
with E119 and E227 via its terminal nitrogen (Von Itzstein et al., 1993; Von Itzstein et al.,
1996). Nevertheless, this acid–based inhibitor processed high polarity due to the ring
oxygen and polar glycerol side chain, resulting in low bioavailability. Thus, this drug was
considered to be administered by inhalation, which is difficult to provide in some patients,
particularly children. The development of orally administrated NAIs was required to
overcome this problem.

As previously mentioned, the polarity of dihydropyran-based NAIs affects their
pharmacokinetic properties and the route of administration. To reduce the polarity
effect of the dihydropyran scaffold, scaffold hopping was employed to identify appropriate
molecular scaffolds that would exert desirable properties. A cyclohexene scaffold was
used to replaced the ring oxygen, which was previously reported to be a non-essential
moiety required for neuraminidase inhibition (Taylor & Von Itzstein, 1994). Replacing
dihydropyran with a cyclohexene ring in which the double bond position is similar to the
sialosyl transition state provided significantly higher inhibitory activity (Kim et al., 1997).
Moreover, the glycerol side chain is also considered to be a main source of polarity due
to its high number of oxygen atoms. The modification of the hydrophilic glycerol side
chain with a 3-pentyl ether side chain based on the structure–activity relationship study led
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Figure 7 Summary of common substructure in active and inactive sets of NAIs against influenza A (A and B, respectively) and B (C and D,
respectively).Number of substructure occurrences are indicated in bracket below the substructure’s rank.
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to the development of GS 4071, which was subsequently named oseltamivir carboxylate,
a potent sialidase inhibitor. As a result of introducing the 3-pentyl ether side chain, the
binding interaction is reorganized by reorientation of E276 from this side chain to form
a salt bridge with R224, leading to the generation of a substantial hydrophobic patch,
which increases the binding affinity with the ligand’s hydrophobic side chain (Itzstein &
Thomson, 2009). Elimination of the oxygen atom in combination with functional group
modification led to lower polarity and increased the bioavailability of molecules. Thus,
the second NAI was developed and consequently approved, named oseltamivir, which
is currently used as a drug of choice for treating influenza. In addition, the successful
development of cyclohexene-based NAIs results in the generation of extensive studies for
developing novel NAIs using this scaffold.

Recently, the cyclopentane scaffold in furanose was found to possess an inhibitory effect
against influenza neuraminidase as strongly as the lead compound of sialidase inhibitor,
called DANA. The report on inhibitory activity by furanose revealed the potential of
cyclopentane as a novel scaffold for the development of NAIs (Yamamoto et al., 1992).
Structure-based analysis of the cyclopentane scaffold using protein crystal structure
information indicates a distinct bindingmode, in which the cyclopentane ring re-organized
the functional groups of NAI to interact with amino acid residues inside the binding pocket
of influenza neuraminidase (Stoll et al., 2003). This evidence revealed an opportunity for
introducing NAIs with novel scaffolds. The most recently approved NAI, named peramivir,
was developed based on a five-membered ring scaffold. A set of novel NAIs with five-
membered ring scaffolds were synthesized using cyclopentane derivatives incorporating
three functional group substitutions of zanamivir, which included carboxylate group,
C5-acetamido group and C4-guanidino group, arranged in all expected positions inside
the N9 active site. The functional group binding with the negatively charged area in
the active site, which previously interacted with the C4 hydroxyl group of Neu5Ac2en,
was designed to replace with a guanidino group as similarly observed in zanamivir. The
addition of n-butyl was designed to interact with the hydrophobic region, which was
previously occupied by the glycerol side chain of Neu5Ac2en. The binding interaction
was confirmed by co-crystallization with N9 sialidase and the crystal structure indicates
that the binding interactions are comparable with those of zanamivir (Babu et al., 2000).

Nevertheless, some of the molecular substructures that were present in the active
group of NAIs, such as 3-acetamido-2-methyl-3,4-dihydro-2H-pyran-6-carboxylic acid
and 5-amino-4-acetamidocyclohex-1-ene-1-carboxylic acid, can be found in the inactive
group of influenza A and B neuraminidase, respectively. Note that the inhibitory activities
against influenza neuraminidase are facilitated by additional factors from both protein
and ligand sides. From the protein perspective, the neuraminidase share approximately
90% structural homology in the same subtype, whereas the homology between subtypes
is lower, 50% and 30%, between influenza A and B (Shtyrya, Mochalova & Bovin, 2009).
The distinct structural homology affects the conformation of catalytic residues inside the
catalytic pocket, resulting in different fitness binding of ligands. On the other hand, the
composition of the ligand and properties affect the efficiency of the binding interaction.
These factors are frequently observed by the type and position of functional groups lying in
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Figure 8 Binding modes of NAIs in active site of influenza A and B neuraminidase are shown in (A) and (B), respectively. Electrostatic (Elec),
hydrogen-bond (Hbond) and van der Waals’ (vdW) interaction sites are indicated by red, blue and orange sphere, respectively. Interacting residues
(N2 numbering) of Elec, Hbond and vdW are highlighted in white, cyan and yellow, respectively.

molecules, which are the crucial part for interacting with the target enzyme for inhibition.
The overall size of the molecules and the molecular conformations are also important for
binding with the enzyme because the binding pocket has a unique geometrical conformer
that limits the shape and electrostatic properties of the target molecules. In addition, the
drug-like properties of the ligand also facilitate pharmacokinetics and pharmacodynamics
of ligands to reach their target and generate desirable bioactivity for therapeutic purposes.

Analysis of binding modality
The observations on the active set of NAIs fragments revealed a pattern of molecular
scaffolds that exhibited activity against the neuraminidase glycoprotein of influenza
A. Note that the molecules shared a similar conformation substructure as the original
substrate, sialic acid and tended to exhibit inhibitory potential against this enzyme. The
binding pocket in the active site of neuraminidase contains eight highly conserved amino
acid residues, which interact with the substrate and provide catalytic activity in the binding
pocket. These residues can be grouped into five minor sites as illustrated in Fig. S1.
Thus, designing novel NAIs requires choosing functional groups that can interact and fit
with these sites of conserved residues to prevent catalytic reactions with this enzyme. To
investigate the bindingmodes of active compounds against neuraminidase of both influenza
A and B, a combination of molecular docking and post-docking analysis using AutoDock
Vina (Trott & Olson, 2010) and SiMMAP web-server (Chen et al., 2010), respectively, was
employed to identify key interactions and important moieties facilitating protein-ligand
interactions.

The analysis of 148 active NAIs against influenza A revealed four distinct binding
anchors (Elec1, vdW1, vdW2 and vdW3) with their site-moiety preferences as illustrated
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in Fig. 8A. Elec1 is the first anchor site and it facilitates electrostatic interactions with
carboxylic and alkyl phosphate groups of NAIs through the positive charge of the arginine
side chain. The amino acid members of this anchor include R118, R292 and R371, which
belongs to the S1 subsite of the influenza A neuraminidase active site (Von Itzstein, 2011;
Stoll et al., 2003). In contrast, another three anchor sites are facilitated by van der Waals
interactions. The first anchor, vdW1, consisted of R152, I222 and E227, which forms
the S3 subsite of the neuraminidase binding pocket (Von Itzstein, 2011; Stoll et al., 2003).
The moiety preferences of this anchor are composed of a heterocyclic ring, aromatic
moiety, phenol group and aliphatic moiety with alkene. Another van der Waals interaction
site was found at the vdW2 anchor site, which contains R224, E227 and R292 as key
residues. This anchor facilitates van der Waals contact against aliphatic moieties with
an alkene linkage, heterocyclic and aromatic moieties. vdW3 is the final anchor site,
with a moiety preference of heterocyclic moiety, alkene linkage of aliphatic moiety and
formamidine group. These findings have shown that NAIs interact with both functional
residues that facilitate enzymatic reactions and structural residues that maintain the active
site architecture (Shtyrya, Mochalova & Bovin, 2009).

The analysis of the binding anchor of 45 active NAIs targeting influenza B revealed four
different anchor sites of the binding pocket: Elec1, Hbond1, vdW1 and vdW2 as shown in
Fig. 8B. Electrostatic interactions betweenNAIs and amino acid residues primarily occurred
with R115, R291 and R373 (comparable to R118, R292 and R371 in N2 numbering), which
are members of the Elec1 anchor. The positive charge of the arginine side chain prefers
carboxylic groups as its moiety preference. Note that this finding is similar to anchor Elec1
of influenza A neuraminidase. Interestingly, there are several moiety types of NAIs against
influenza B virus that tend to form hydrogen bonds with amino acids in the Hbond1
anchor. The phenolic moiety of D148 and the carboxylic side chain of Y408 (comparable
to D151 and Y406 in N2 numbering) facilitate hydrogen bonding through amino groups,
carboxylic moieties, primary and secondary alcohols and ester moieties. It can be observed
that these residues are members of the S2 subsite of influenza neuraminidase and are
responsible for catalytic residues essential for enzyme functioning (Shtyrya, Mochalova &
Bovin, 2009). Furthermore, van der Waals contact sites are observed at two anchor site:
vdW1 and vdW2. The first van der Waals interaction site is facilitated by R149, W176 and
R222 (comparable to R152, W178 and R224 in N2 numbering) and their moiety preference
is aliphatic moiety with alkene linkage, heterocyclic ring and aromatic moiety. The second
van der Waals anchor is facilitated by I220, R222 and E274 (comparable to I222, R224 and
E276 in N2 numbering), which have a heterocyclic ring and alkene linkage of aliphatic
moiety as their moiety preference. The results of the post-docking analysis revealed the
important amino acid residues and their moiety preferences that can generate potential
protein-inhibitor complexes to inhibit enzymatic functioning of influenza neuraminidase.

Linking the results from molecular docking and decision tree revealed pertinent
knowledge for targeting key residues of neuraminidases from influenza A and B. As
mentioned above, the top three informative descriptors of influenza A NAIs were LUMO,
nHDon and nHAcc while nHAcc, energy andHOMO-LUMOwere informative descriptors
for influenza B NAIs. Analysis of the catalytic pocket of neuraminidase from influenza A
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and B revealed the presence of the following key residues: arginines, aspartic acid, glutamic
acids and tyrosine. The neuraminidase from influenza A had five arginines (e.g., R118,
R152, R224, R292, R371), one aspartic acid (e.g., D151), two glutamic acids (e.g., E227 and
E277) and one tyrosine (e.g., Y406) while five arginines (e.g., R114, R149, R222, R291 and
R373), one aspartic acid (e.g., D148), two glutamic acids (e.g., E225 and E274) and one
tyrosine (e.g., Y408). Arginines can act as both electron acceptor and hydrogen bond donor
and this is well supported by the decision tree model in which LUMO and nHDon were
the highest and second highest feature usage for influenza A NAIs. Aspartic and glutamic
acids can act as hydrogen bond acceptor, which is supported by the decision tree model
where nHAcc were the third highest feature usage for influenza A NAIs and the highest
feature usage for influenza B NAIs. Tyrosine can act as both hydrogen bond donor and
acceptor, which is in line with nHDon and nHAcc descriptors of influenza A NAIs where
it afforded the second and third highest feature usage while the nHAcc descriptor had the
highest feature usage for influenza B NAIs.

Enumeration of neuraminidase inhibitors
Enumerating compound library with robust bioavailability is a challenging task in the drug
discovery process of NAIs. To address this challenge, the Ghose’s criteria was applied for
filtering enumerated ligands in which the lipophilicity was set to be in the range of−0.4–5.6
and molecular weight was set to be in the range of 160–480 Da. Ligand enumeration for
both types of influenza neuraminidase was subsequently performed via the automatic
evolutionary algorithm of AutoGrow 3.0. The enumerated ligands were subjected to
post-filter removal via the decision tree model described above. This resulted in total sets
of 17 and 19 drug candidates for targeting the active site of neuraminidase from influenza
A and B, respectively. These candidates were also subjected to comparison with FDA-
approved drugs (e.g., zanamivir, oseltamivir and peramivir) and the long-acting laninamivir
(i.e., pending FDA approval; approved in Japan). Pariticularly, the binding energy and
molecular properties of enumerated ligands and reference drugs are compared as shown in
Table 4. Herein, the top ten enumerated ligands against influenza A and B neuraminidase
were categorized according to their molecular scaffolds as summarized in Fig. 9.

According to Table 4, the predicted ALogP of the top ten enumerated ligands are in the
range of −0.038–2.512 and −0.086–2.426 for influenza A and B, respectively. It should
also be noted that the average ALogP of enumerated ligands exhibit improved values where
it is higher than the currently approved drugs as well as those under development. MW
of ligands are in range of 338.45–484.59 Da and 381.40–493.61 Da for influenza A and
B, respectively, which is also in agreement with the Lipinski’s rule of five for drug-like
molecules. Furthermore, almost all of the top ten enumerated ligands also afforded TPSA
value of <140 and RBN of <12, which is in the acceptable range according to Veber’s
oral bioavailability (Veber et al., 2002). Moreover, the binding energy of the top five
enumerated ligands are lower than laninamivir and all the FDA-approved drugs against
influenza neuraminidase thereby indicating more stable binding of the protein-inhibitor
complex. Analysis of molecular properties of the top ten enumerated ligands suggested that

Anuwongcharoen et al. (2016), PeerJ, DOI 10.7717/peerj.1958 25/34

https://peerj.com
http://dx.doi.org/10.7717/peerj.1958


Table 4 Summary of binding energy and physicochemical descriptors of top ten enumerated ligands against influenza A and B neuraminidase.

Ligands MW ALogP nHDon nHAcc nCIC RBN TPSA Binding
energy
(Kcal/mol)

Influenza A A1 483.57 2.512 1 10 3 9 131.44 −9.70
A2 448.57 2.503 1 9 3 7 111.24 −9.30
A3 457.58 1.782 3 9 3 8 128.03 −9.30
A4 463.59 1.381 3 10 3 7 137.26 −9.20
A5 485.60 2.624 3 11 3 9 150.25 −9.10
A6 338.45 0.952 2 7 2 5 95.94 −8.30
A7 429.57 1.156 4 8 3 8 121.96 −8.00
A8 387.48 −0.038 4 8 3 7 121.96 −8.00
A9 413.47 0.723 2 9 3 8 125.37 −7.90
A10 382.53 0.061 5 10 2 6 149.97 −7.60
Zanamivir 332.36 −3.669 9 11 1 6 200.72 −7.60
Oseltamivir 284.40 0.446 4 6 1 6 101.65 −6.80
Peramivir 329.48 −1.646 8 7 1 8 150.27 −7.20
Laninamivir 347.40 −4.717 9 10 1 8 188.96 −7.90

Influenza B B1 475.49 2.323 6 12 2 9 136.90 −8.10
B2 477.51 2.426 6 12 2 9 136.90 −8.10
B3 465.56 0.017 6 12 2 9 122.71 −7.80
B4 421.52 1.235 6 9 2 9 136.90 −7.80
B5 463.54 −0.086 6 12 2 9 122.71 −7.70
B6 469.46 2.194 2 12 2 9 125.37 −7.60
B7 403.53 1.325 6 8 2 9 136.90 −7.50
B8 493.61 2.323 5 11 2 8 113.68 −7.50
B9 443.47 1.433 4 11 2 8 121.96 −7.50
B10 381.40 0.400 4 11 1 7 121.96 −7.40
Zanamivir 332.36 −3.669 9 11 1 6 200.72 −7.50
Oseltamivir 284.40 0.446 4 6 1 6 101.65 −7.10
Peramivir 329.48 −1.646 8 7 1 8 150.27 −7.60
Laninamivir 347.40 −4.717 9 10 1 8 188.96 −7.80

these compounds have the potential for further improvement of both their bioavailability
and binding fitness against influenza neuraminidase.

Observation of the molecular structures of the top ten enumerated ligands against
influenza A suggested that the dihydropyran scaffold was mainly selected to support the
chair conformation of ligands. There are 4 substitution sites surrounding this privileged
structure as shown in Fig. 9. The R1 substitution site (e.g., benzamide and butyrolactone
derivatives) bears the cyclic moiety that can possibly mask entrance to the active site by
occupying the 150- or 430-cavity of neuraminidase as well as pointing towards the vdW1
site of the S3 subsite (i.e., R152, I222, E227) of neuraminidase. Hydroxyl substitution at the
R1 site forms the carboxylic moiety that plays amajor role in ligand binding via electrostatic
interaction with the Elec1 site. Most of the R2 substituted moieties (e.g., pyrrolidine and
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Dihydropyran scaffold Cyclohexene scaffold

Cyclohexane scaffold

Cyclopentane scaffold

Figure 9 Molecular structures of enumerated ligands against neuraminidase of influenza A (A1–A10)
and B (B1–B10) are categorized according to their scaffold types and compared to FDA-approved drugs
(e.g., zanamivir, oseltamivir and peramivir) as well as the long-acting laninamivir. It should be noted
that these enumerated ligands passed the decision tree-based post-filter.

amide derivatives) are heterocyclic or aromatic moieties which can exhibit van der Waals
interaction with vdW1 site of the binding pocket. In contrast with other substitution site
of enumerated ligands, all R3 moieties of enumerated ligands for influenza A bears the
methyl group to form the acetamido moiety, which facilitates van der Waals interaction
through either the vdW1 and vdW2 interaction sites. Finally, most of the R4 substituents
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were hydrogen atoms and therefore could not interact with the catalytic site, however, the
amino moiety of R4 may possibly engage in hydrogen bonding with N347 found at the
entrance of the binding pocket.

Analysis of the top ten enumerated ligands against influenza B revealed three scaffold
types (e.g., dihydropyran, cyclohexene and cyclohexane rings) that support the chair
conformation of the ligand inside the catalytic pocket of neuraminidase. Although most
of the enumerated ligands possessed distinct scaffold (i.e., predominantly cyclohexene)
but substitution sites around the privileged structure were found to be the same. The
R1 substitution site of the cyclohexene scaffold (e.g., aminophenol, butyrolactone and
betazole derivatives) is mainly occupied by either the aromatic ring that is attached to
amino and hydroxyl groups or the heteropentacyclic ring that is surrounded by both
polar and non-polar moiety as shown in Fig. 9. This site is responsible for interacting
with the 150-cavity, which may possibly increase the binding affinity as can be seen in the
top five enumerated NAIs against influenza B neuraminidase. The oxygen and nitrogen
atoms linking the core structure and the R1 substitution site could also interact with the
electrostatic side chain of amino acids in the Elec1 site. In contrast with other substitution
sites, the R2 substitution site is mainly occupied by fluorine atoms, which can possibly
interact with nearby positively-charged residues such as E116 and D148. R3 is a part
of long non-polar chain, which facilitated van der Waals interaction with the vdW1 site
inside the neuraminidase active site. Similarly, methyl and trifluoromethyl groups at the R4
substituents could facilitate either van derWaals or hydrophobic interaction with the vdW2
site and adjacent non-polar amino acids. The binding pose of A1 and B1 that afforded
the lowest binding energy against neuraminidase of influenza A and B, respectively, was
selected as a representative structure and shown in Figs. 10A and 10B.

It has been shown that the evolutionary algorithm in combination with bioisosteric
replacement of polar moiety as performed in AutoGrow could improve the lipophilicity
of de novo designed NAIs proposed herein, which may possibly increase the percentage of
bioavailability when administrated orally. Notably, the algorithm enumerated ligands
targeting the 150- and 430-cavity found at the periphery of the catalytic pocket of
neuraminidase. It should be noted that ligands capable of interacting with either the
150- or 430-cavity of influenza neuraminidase had the tendency of exhibiting lower
binding energy. The enumerated NAIs discussed herein have been demonstrated to be
promising candidates for development as drugs against influenza.

CONCLUSION
The emergence of novel influenza strains that possess resistance mutations emphasize
the importance of finding novel therapeutic agents for treatment and prophylaxis. The
increase in the emergence of influenza viruses, particularly mutant variants, calls for the
development of novel promising NAIs, in addition to the three currently approved NAIs,
for preparedness against influenza. Nevertheless, there are several compounds that were
tested to evaluate their inhibitory activity against influenza neuraminidase. Expanding the
chemical space available in public databases of NAIs provides an opportunity to investigate
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Figure 10 Binding pose of enumerated ligands A1 (A) and B1 (B) providing the lowest binding energy against influenza A and B
neuraminidase. The electrostatic potential on the surface of neuraminidase is calculated via APBS and is shown by red, blue and white colors
that represents negative, positive and neutral charge, respectively.

the molecular factors relevant to the bioactivity of NAIs. In addition, a combination
of various computational approaches revealed the structure–activity relationships of
NAIs, which are essential for rational drug design to develop new promising therapeutic
agents against influenza neuraminidase. Therefore, this work reports a large-scale study
of the chemical space of NAIs against influenza type A and B and performs statistical
and QSAR investigations of both molecular and quantum chemical properties that
contribute inhibitory activity against influenza neuraminidase. Moreover, maximum
common molecular substructures and their functional groups were analyzed from a
ligand-based perspective. In addition, the binding modes of active NAIs were investigated
to observe important amino acid residues and their site-moiety preferences that facilitate
protein-ligand interaction.Moreover, informative descriptors leading to good performance
of the QSAR model were achieved in combination with a statistical analysis that revealed
the molecular properties that distinguish between active and inactive classes of NAIs.
The molecular properties of the active group include a higher number of rotatable bonds,
number of hydrogen-bonddonors and acceptor atoms, total energy ofmolecules and kinetic
stability. In addition, the active group also appeared to possess fewer cyclic rings and lower
lipophilicity and charge suggested by the univariate analysis. The maximum common
substructures observed in NAIs are primarily cyclohexene-based, dihydropyran-based and
cyclopentane-based scaffolds in the molecular framework. These fragments were suggested
to be privileged structures contributing to neuraminidase inhibition. Functional group
analysis revealed important functional groups and the characteristic patterns amongst
active and inactive compounds. Results from the decision tree models suggested that the
bioactivity of NAIs can be classified according to their functional groups. Furthermore,
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results from binding mode analysis revealed key interactions that facilitated protein-
ligand binding along with their moiety preferences. Combinatorial library enumeration
in the context of fragment-based molecular docking produced novel NAIs with higher
binding fitness and robust bioavailability when compared to FDA-approved and existing
lead compounds.
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