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Abstract

Standard treatment for active tuberculosis (TB) requires drug treatment with at least four

drugs over six months. Shorter-duration therapy would mean less need for strict adherence,

and reduced risk of bacterial resistance. A system pharmacology model of TB infection, and

drug therapy was developed and used to simulate the outcome of different drug therapy sce-

narios. The model incorporated human immune response, granuloma lesions, multi-drug

antimicrobial chemotherapy, and bacterial resistance. A dynamic population pharmacoki-

netic/pharmacodynamic (PK/PD) simulation model including rifampin, isoniazid, pyrazina-

mide, and ethambutol was developed and parameters aligned with previous experimental

data. Population therapy outcomes for simulations were found to be generally consistent

with summary results from previous clinical trials, for a range of drug dose and duration sce-

narios. An online tool developed from this model is released as open source software. The

TB simulation tool could support analysis of new therapy options, novel drug types, and

combinations, incorporating factors such as patient adherence behavior.

Author summary

A comprehensive in-silico model of pulmonary tuberculosis successfully predicted previ-

ous clinical trials and could simulate future therapeutics.

Introduction

Standard treatment for active pulmonary infection with Mycobacterium tuberculosis (TB) usu-

ally involves lengthy therapy based on four different drugs taken over 6 months. Adherence

has been shown to be a major predictor of treatment failure and shorter-duration therapy has

been suggested to lower risk of treatment failure and bacterial resistance [1–4]. Pharmacoki-

netic/pharmacodynamics (PK/PD) mathematical models for TB have mostly focused on
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short-term drug effects during the initial ten days of treatment rather than overall therapy out-

come. Most earlier in-vitro experiments and in-silico simulations of TB drug effectiveness have

been based on monodrug therapy, even though standard patient treatment for TB involves

four or more drugs. Further, previous simulation models often have been relatively determin-

istic, and done at individual patient level, thus offering limited ability to assess therapy out-

comes on a broader population basis [5–7].

Short- and long-term infection dynamics of TB are believed to be strongly influenced by

immune system response of an affected patient. Goutelle et al., provided an integrated simula-

tion of TB inflammation and immune response [8]. However, the study scope is limited to

rifampin mono-therapy during the initial 2 to 14 days of drug therapy. In the real-world clini-

cal setting, multi-drug therapy is needed to control risk of development of bacterial resistance.

Additionally, the effectiveness of different antibacterial drugs is thought to have different level

of bacteriostatic and bactericidal effect on fast- vs. slow-growing bacteria, and will also depend

on bacteria population in distinct compartments, such as inside vs. outside of macrophages

[9].

The primary objective of this study was to establish an integrated PK/PD population-based

in-silico model, incorporating immune system and bacterial resistance dynamics, to estimate

predicted relative effectiveness of drug therapy alternatives for pulmonary tuberculosis infec-

tion. This paper describes the resulting integrated simulation model, underlying mathematical

formulation, parameter selection, numerical and computational methods, and validation and

calibration with experimental data and several clinical drug trials.

TB drug considerations for building the model

The unusual cell wall of the bacterium, and its ability to persist inside infected macrophages,

renders many types of antibiotics effectively useless. Standard drug therapy for pulmonary

tuberculosis infection in adults, with no suspicion of multi-drug resistance (MDR), involves

four drugs. Daily rifampin 600 mg, isoniazid 300 mg, pyrazinamide 1500 mg and ethambutol

1200 mg for two months’ intensive therapy followed by a continuation phase of rifampin 600

mg, and isoniazid 300 mg, daily for 4 months. It is recommended these drugs be given as

directly observed therapy (DOT), when possible [10].

Rifampin hinders bacterial DNA-related RNA synthesis by inhibiting bacterial DNA-

dependent RNA polymerase by binding and physically preventing extension of RNA [11]. The

precise intracellular concentration dynamics in macrophages is not fully understood, and may

be affected by the local environment and metabolic state of macrophages and bacteria. Rifam-

pin is believed to act on both intracellular and extracellular bacteria, and it is believed to have

both bactericidal and sterilizing effect [12]. Rifampin will bind to human plasma proteins at

around 85–90% [13]. Rifampin is an inducer of many enzymes of the cytochrome P450 super-

family—resulting in significant auto-induction leading to approximately twice steady state

clearance [14,15].

Isoniazid is a prodrug, activated by catalase-peroxidase enzyme KatG in M. tuberculosis
[16]. The drug inhibits synthesis of mycolic acid, needed to maintain the bacterial cell wall.

Isoniazid is considered to be highly bactericidal on rapidly dividing extracellular mycobacteria,

but only marginally bacteriostatic on intra-cellular bacteria, and minimally effective on slow-

growing bacteria [17,18]. Metabolism of isoniazid is affected by an individual’s acetylation rate

—fast vs. slow acetylators. Fast acetylators have approximately twice the clearance rate of slow

acetylators [19].

Pyrazinamide is a prodrug inhibiting growth of M. tuberculosis, and can act both inside and

outside of macrophages. The active form, pyrazinoic acid, is believed to accumulate inside
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bacteria, and reach a relatively higher concentration at acidic pH [20]. Pyrazinoic acid binds to

the ribosomal protein S1 (RpsA) and inhibits trans-translation, and it is thought to inhibit syn-

thesis of fatty acids [21,22]. It is considered mostly effective on slowly replicating “persisting”

bacteria found in pulmonary lesions often considered to result in anaerobic conditions [20].

The activity on slow-growing bacteria is opposite that of many other drugs used in TB therapy,

which act mainly on actively growing bacteria. Pyrazinamide’s accumulation in epithelial lin-

ing fluid has been observed as relatively high [23], while other studies looking at lesion and

lung tissues showed significantly lower concentrations in lung tissue compared to plasma [24].

Ethambutol is believed to be mainly bacteriostatic [25]. The drug is believed to work by

inhibition of arabinosyl transferase, interfering with synthesis of arabinogalactan, thereby dis-

rupting formation of the bacterial cell wall [26]. Changes in the structure of the mycobacterial

cell wall may increase permeability to other drugs.

Immune response considerations

TB infection can lead to a host immune-bacteria reaction resulting in formation of nodules of

inflamed tissue. Over time these nodules can expand and evolve to distinct granulomatous

lesions. Lesions can become increasingly fibrous and even calcified–and this may help contain

the bacteria, but also may provide a more protective microenvironment promoting sustained

bacterial survival. Granuloma lesions are highly heterogeneous, depending on multiple factors

such as size, vascularization, and caseation–affecting drug diffusion and concentration charac-

teristics [27]. Recent analysis of dissected lung samples suggest drug diffusion and accumula-

tion in granuloma may vary greatly among different commonly used TB drugs [28,29]. The

precise mechanisms underlying the varied penetration of TB drugs are still being investigated

[27].

The immune system response to infection with M. tuberculosis can be understood in terms

of the interaction between bacteria, immune cells in alveoli of the lung, and lymph nodes. The

primary mode of infection is per aerosolized bacteria entering the lung. Upon infection, resi-

dent macrophages undergo a sequence of transformation steps–from recruitment, infection,

to activation. As an increasing number of macrophages are recruited, this triggers release of

cytokines, including IL-4, which in turn regulate macrophage activation. The macrophages,

not able to clear the infection, may become chronically infected. Chronic infection ultimately

can result in killing of the macrophage which releases TB bacteria contained within it, which

then can go on to trigger extended infection [30].

The University of Michigan group has extensive experience modeling within-host infection,

summarized in their review [31]. Their models are able to reconstruct the immune response

involved in forming granulomas and has advanced to an agent-based model that provides 2D

and 3D spatial models of the lung parenchyma, immune cells and their interaction over time

[32,33], and they have investigated various regimen optimization approaches within their

computational model (GranSim) [34]. We considered one of their simpler models as a scaffold

to add PK/PD interaction [30].

Multi-drug considerations

Previous studies of commonly used TB drugs have shown kill rates decline over time [35].

This decline may occur due to multiple factors, such as growth of resistant sub-populations of

bacteria and overall reduction in absolute remaining number of bacteria. The decline in kill

rate is more pronounced with mono-drug therapy, likely due to its inherent higher risk of bac-

terial resistance. Multi-drug therapy is a key aspect of effective long-term TB treatment since

mono-drug therapy has been show to lead to increased bacterial resistance, sometimes in as
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short a period as a few weeks or months [20]. One inherent complication of analyzing the

effectiveness of multi-drug therapy is the difficulty in determining specific contributions of

individual drugs. Furthermore, drug combinations may result in both synergistic and antago-

nistic effects at different dose levels. TB drug combinations may be slightly antagonistic at

lower dose levels and neutral or slightly synergistic at higher dose levels as some studies suggest

[36].

Results

General

The simulation system was based on a series of connected underlying models, each represent-

ing distinct portions of the overall dynamic host-pathogen-drug system. Major sub models

included:

1. Bacterial infection and growth

2. Immune system response

3. Patient drug therapy adherence

4. Pharmacokinetics, including drug diffusion into macrophages and granuloma lesions

5. Pharmacodynamics

6. Bacterial drug resistance

7. Population modeling and patient outcomes

The host system was defined as a series of linked compartments, including plasma, lung,

lymph node, extracellular vs. intracellular macrophages, and inside/outside of granuloma

lesions. The simplified structural model is illustrated in Fig 1. The different sub models apply

to one or several of these compartments. The immune model [30] and description of bacterial

infection and growth is briefly described in the Materials and Methods section and the equa-

tions used for the immune system is presented in the S1 Text document. The other subsections

are described in detail with equations in their specific subsections of Materials and Methods.

The section on pharmacokinetics provides a more detailed description of drug transfer

between compartments, and use of effect compartments to model drug concentration inside

macrophages and lesions.

Much of the ultimate utility of an in-silico simulation model generally hinges on its ability

to consistently generate patient outcomes similar to real-world clinical results. The primary

response metric for the simulation model was the share of the patient population without TB

infection (cleared TB) defined by the final number of bacteria present at the end of the drug

therapy period. The criteria of the response metric are defined in Table 1 and specifically take

into account bacteria in granulomas with differentiation between fully cleared (<1) and latent

TB (between 1 and 1000). The model is able to differentiate between an active infection and

latent TB which is important when considering that patients may reach a point of low enough

bacterial burden to suppress the infection but are still at risk of relapsing at a later time. Clini-

cal trials show that standard 6-month multi-drug TB therapy can remove TB infection in

approximately 95 percent of affected patients in a population[1]. Validation of outputs from

the simulation model is described in four steps, 1) check basic simulation model outputs, 2)

review simulation of standard TB therapy, 3) comparison with a wider set of clinical trials, and

4) test impact of other drug therapy parameters and population characteristics.
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Basic simulation outputs

Simulation of bacterial dynamics for TB infection without drug therapy is illustrated in Fig 2.

After a bacterial inoculate of 100 CFU/mL infects extracellularly, rapid intra- and extracellular

bacterial growth is triggered. The infection approaches a steady-state level after 9 (270 days) to

Fig 1. Complete structural model. Bacterial dynamics is illustrated in the Bacterial dynamics cutout and is modelled in each respective compartment. The immune

system response is based on a model from literature[30] and is illustrated in blue. The immune system follows activation of macrophages by the initial infection, leading to

a cascade of additional white cells in the lymph, finally leading to increased macrophage involvement and the formation of lesions. Drug therapy is illustrated in red and

can be modelled with multiple drugs and their respective penetration into lesion, macrophages and lung. Drug resistant bacteria (dark green) is modelled using both

natural and drug pressure mutation rates (kn and kd respectively). Bacteria killing is determined by both immune and drug related increase in bacterial elimination.

https://doi.org/10.1371/journal.pcbi.1008107.g001

Table 1. Rules for patient drug therapy outcomes.

Infection Status Extracellular Granuloma (CFU/mL) Intracellular Granuloma (CFU/mL) Patient Drug Therapy Outcome

Not infected 0 0 N/A

TB infection > 1 or > 1000 > 1 or > 1000 Failure

Latent TB < 1 1 < x < 1000 Success

Cleared TB < 1 < 1 Success

https://doi.org/10.1371/journal.pcbi.1008107.t001
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12 months (360 days). Inoculation size was within the suggested range from Marino et al.,

2004. Untreated infection results in steadily growing bacterial population, both intra- and

extracellularly, reaching steady state level after 9 to 12 months, in line with the validated model

from Marino et al., 2004 [30]. The simulation model generates unique pharmacokinetic pro-

files, per drug and patient, as shown in S1 Fig. Pharmacokinetic profiles summarized at a pop-

ulation level for all active drugs are shown in S2 Fig.

Simulation of standard TB therapy

Simulation of outcome of standard drug therapy (2HREZ/4HR) with perfect patient adher-

ence, suggest 70% of patients are cleared of infection after approximately 60 days, and this

grows to most patients (~95%) after 120 to 150 days, with a small increase in cleared infection

after treatment, due to influence from the immune system as shown in Fig 3. This outcome

level is generally consistent with results from major clinical trials, such as the RIFAQUIN

study [4]. Intracellular bacterial load is higher compared with extracellular bacteria, and

Fig 2. Bacterial dynamics of simulated TB infection. Intra- (red) and extracellular (blue) bacteria count in lung tissue for TB infection without drug therapy, for 5000

patients, with infection starting on day 0. Respective shaded areas represent first and third quantiles of population.

https://doi.org/10.1371/journal.pcbi.1008107.g002
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requires longer time to clear, as illustrated in Fig 4. It is possible bacteria inside infected mac-

rophages form a continued reservoir that may sustain extended infection.

Comparing TB simulation results with previous clinical trials

Simulation results for standard TB therapy were compared with several previous clinical trials

that included variations of standard therapy, such as shorter or longer duration, increased or

reduced dose, and daily vs. intermittent therapy. The analysis was an extension on a previous

extensive review of TB clinical trials [37,38]. It is inherently challenging to compare absolute

outcome levels for simulations compared with clinical trials, for trials performed 10 to 20 or

more years ago. Therefore, the comparison was done based on change in outcome in

Fig 3. Population TB treatment outcome with standard drug therapy. Summary of outcome of median standard drug treatment of TB infection, based on

simulation of 5000 patients, with standard drug therapy (2HREZ/4HR). The TB infection occurs on day 0, and drug therapy is started on day 180.

https://doi.org/10.1371/journal.pcbi.1008107.g003
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alternative trial arms vs. standard TB therapy. Studies included in the summary analysis are

provided in Table B in S2 Text.

The simulated therapy outcome was found to be mostly consistent with risk of relapse

found in the summary of previous clinical trials [37], including

1. Standard 6-month TB therapy

2. Shorter 4-month TB therapy

3. Longer 9-month TB therapy

4. Intermittent TB therapy (with dosing 2/week during continuation phase).

In Fig 5 is shown the results of 5000 simulated patients in comparison to clinical trials,

where clinical trial outcomes for 4-month, 6-month, and 9-month, and for intermittent

Fig 4. Intra- vs. extracellular bacterial load in TB infection. Intra- and extracellular bacteria count in lung tissue for TB infection with standard drug therapy (2HREZ/

4HR). The TB infection occurs on day -180, and drug therapy is started on day 0, triggering rapid intra- and extracellular bacterial death. The grey shaded block

represents the cut-off of CFU/ml equal to 1 for a patient to be considered cleared of bacteria at the end of treatment.

https://doi.org/10.1371/journal.pcbi.1008107.g004
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therapy alternatives are based on differential relapse rates from 27 different regimens, shown

in S2 Text. Intermittent therapies had daily dosing during intensive phase, and twice-a-week

dosing during continuation phase.

Simulating drug therapies and patient characteristics

The inherent flexibility and speed of an in-silico simulation approach allows for rapid evalua-

tion of numerous different treatment parameters, such as drug combinations, drug dosing,

therapy start time and duration, and patient adherence. Infection dynamics and patient out-

comes for drug therapy variations are illustrated through a number of simulation scenarios.

Impact of dose changes and therapy duration for drugs in standard of care

regimen

We evaluated the change in percentage of population cured when changes are made to stan-

dard therapy, including increased or decreased dose levels and therapy duration. Eliminating

Fig 5. Comparison of therapy outcome for simulation vs. summary of previous clinical trials. Comparison of simulated population consisting of 5000 patients

(boxplot) therapy outcome vs. summary of previous clinical trials in terms of risk of relapse as percentage of overall population grouped by changes in duration and

frequency of standard therapy. Clinical trial data with individual therapy simulations used for this figure is summarised in the Addendum B.

https://doi.org/10.1371/journal.pcbi.1008107.g005
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isoniazid from the regimen resulted in 87% of patients being cleared of disease. (Fig 6).

Increased drug dose may drive more effective bacterial killing, but could also increase risk of

adverse drug effects. It has been argued many patients may be able to tolerate increased dosing

of rifampin, such as using a dose of 1200 mg rather than regular 600 mg, Fig 6. Simulations

suggest increased dosing has potential to improve patient outcomes, but not allow for drasti-

cally shorter-duration therapy. A scenario with shorter overall therapy duration includes 2

months of intensive ethambutol, isoniazid, pyrazinamide and rifampin, followed by 2 months

continuation phase of isoniazid and rifampin–using standard drug dose and schedule, results

in approximately 12 percent reduced clearing of infection compared to 6 month treatment.

Improvement in therapy start

The time delay from initial infection to start of drug therapy, and overall duration of drug ther-

apy can affect patient outcome. Simulations suggest that a shorter time from initial infection to

start of drug therapy could decrease treatment duration. To clear 90 percent of infection for

the default simulation of 180 days infection, 150 days are necessary. If treatment starts 30 days

earlier then a 90% clearance of infection occurs 20 to 25 days earlier. Simulations for 60 and 90

days earlier treatment (i.e. after 120 and 90 infection days) also show improved slope with 90%

patients treated in 100 and 60 days, Fig 7. All simulations used inter-individual variability on

patient pharmacokinetics and disease progression as defined by their respective literature

values.

Effect of patient adherence

Patient behaviors of adherence affect therapy outcomes [1]. We simulated 4 scenarios to evalu-

ate the effects of missing doses during treatment. Missing 80% of doses (a cut off described by

recent clinical trials as still adherent [2,3] randomly throughout the full course of treatment

results in 5% less people cured. When the doses are missed more during the intensive or con-

tinuation phase of treatment, we observe much worse outcomes for those that missed doses

during their intensive phase. We also evaluated data from real medication event monitoring

system (MEMS) and found this data to share similar trends to our 80% doses missed in the

continuation phase simulations, Fig 8.

Effect of lowered immunity

It is common for TB patients to have comorbidities reducing overall immune system function,

including but not limited to HIV infection. We simulated lower percentages of immune kill on

bacterial dynamics to observe the magnitude of immune killing on our final outcomes. Simula-

tions results suggest such patients may respond well to initial drug treatment for TB with

seemingly only 10% reduced cure rate for those with severely reduced immune function. How-

ever, 6 months after treatment, the lack of immune system has a reduced ability to suppress

long-term tuberculosis regrowth. In Fig 9 is shown how the number of successful outcomes

decrease long term depending on the strength of the immune system.

Role of monotherapy on resistance

We evaluated the change in bacterial resistance when removing isoniazid from standard ther-

apy. As shown in Fig 8, treatment outcome is worse when no INH is present. Mono-drug ther-

apy for TB is known to increase risk of bacterial drug resistance. Comparing rifampin resistant

bacteria under normal standard therapy and without isoniazid on board, we see isoniazid acts

to protect against resistant bacteria crossing above the threshold of our cleared definition. In
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the isoniazid absent scenario, rifampin resistant bacteria grows faster and is able to proliferate

above the definition of cleared after treatment stops, continuing to grow and produce full

blown resistance, Fig 10.

Considering all tuberculosis drugs might not have optimized pharmacokinetics and could

result in long windows of monotherapy, we examined drug concentrations relative to their

minimum inhibition concentrations (MIC) and see that drug coverage in granulomas are esti-

mated between 49% and 62% of expected number of hours above MIC, Fig 11.

Sensitivity analysis of parameters

A sensitivity analysis was performed to measure the impact of individual parameters on the

number of unfavorable outcomes expressed as the percent change in patients relapsing, includ-

ing drug parameters Fig 12, and initialization and immune parameters in supporting S3 Fig.

For the drug parameters, rifampin parameters had the largest impact in increasing unfavorable

outcomes at the end of treatment. The parameter defining intracellular kill rate after 15 days

had a greater than 16-fold change in unfavorable outcomes when scaled by 0.1 and changing

the bacterial killing hill factor saw an increase in unfavorable outcomes by approximately

11-fold. This is an important consideration as estimating this parameter in the hollow fiber

model occasionally results in high standard deviation and could lead to significant changes in

the outcomes. Potentially restructuring to a binding kinetics model could improve precision in

our model [39]. An increase in parameters related to clearance, (elimination rate and auto-

induction factor) resulted in a 16-fold increase in unfavorable outcomes. Isoniazid parameters

did not have as large an impact as rifampin and the highest observed change was when isonia-

zid elimination was increased resulting in a greater than 2.5-fold increase in the total popula-

tion left with unfavorable outcomes. Pyrazinamide and ethambutol showed little to no change

in outcome, with the largest change observed for EC50 at a 1.2-fold increase in unfavorable

outcome.

The initialization parameters showed that adherence was the largest contributing parameter

to the number of patients with unfavorable outcomes at the end of treatment. Reducing the

adherence to 0.1 resulted in zero patients cured. An adherence of 0.5 resulted in 18.76-fold less

patients cured. Other important parameters contributing to a large increase in unfavorable

outcome was an increase in bacterial kill rate, drug killing level inside granuloma vs outside of

granuloma (granuloma kill level) and the threshold of active infections (free bacteria level).

The immune parameters showed that the immune system had a large impact on total unfa-

vorable outcomes at the end of treatment with 7 out of 17 parameters related to macrophage

response showing a 11-fold or greater decrease in unfavorable outcome. The 2 highest impact

parameters were related to macrophage infection. Cytokines showed an increase in unfavor-

able outcomes of greater than 8-fold for 3 out of 20 parameters, and variables affecting IL-12

production having the highest impact. The parameter responsible for the elimination of T-

cells was responsible for the highest increase in unfavorable outcomes of all the immune

parameters at 16.5-fold. Parameters related to differentiation and migration of T-cells had an

increase in unfavorable outcomes greater than 8-fold. Parameters responsible for draining

lymph nodes and dendritic cells had less impact than other immune parameters and the great-

est increase in unfavorable outcome was seen for the elimination of mature dendritic cells

(MDC) with an approximately 6-fold increase. Parameters controlling bacteria in the model

Fig 6. Reduced successful therapy outcome with variations of standard drug therapy. Comparison of patient outcomes for treatment of the median

outcome of TB infection, with standard drug therapy (2HREZ/4HR) vs. median outcome of therapy excluding isoniazid, 1200 mg rifampin and reduced

treatment time. Based on simulation of 5000 patients.

https://doi.org/10.1371/journal.pcbi.1008107.g006
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responsible for the highest change in unfavorable outcome were related to bacterial growth

and the number of bacteria released from macrophages after apoptosis with a greater than

16-fold change.

Fig 7. Population TB treatment outcome for different treatment start scenarios. Comparison of median patient outcomes for treatment of TB infection, with

standard drug therapy (2HREZ/4HR) of earlier diagnosis and the impact on patient outcomes if treatment is started earlier. Based on simulation of 5000 patients. Shaded

areas show the 95 percentile range of the simulations.

https://doi.org/10.1371/journal.pcbi.1008107.g007
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Web application and R package

A web application was developed to provide a graphical interface of the model, Fig 13, available

at www.saviclab.org/systems-tb/. The application code and the underlying R package allows

simulation of individual patients as well as populations of patients. All settings related to the

considerations mentioned in the sections above can be customized in the web app, or in R

using functions exposed in the package. New drugs and drug regimens can be created and

used in simulations, and various adherence patterns can be selected and customized.

Fig 8. Population TB treatment outcome for different adherence patterns. Comparison of median patient outcomes for treatment of TB infection, with standard drug

therapy (2HREZ/4HR) at 100% adherence, 80% adherence randomly spaced throughout treatment, 80% during intensive or continuation phase and simulations from

medication event monitoring system (MEMS) data. Based on simulation of 5000 patients. Infection occurs 180 days before treatment.

https://doi.org/10.1371/journal.pcbi.1008107.g008
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Discussion

This study presented an integrated systems pharmacology model and simulation tool to sup-

port prediction of outcomes of different therapies for pulmonary tuberculosis infection. The

simulation model allows rapid and flexible assessment of impact of various drug therapy and

population parameters, such as drug selection, drug dose and dosing patterns, multi-dose

combinations, and therapy start time and duration.

Simulation results vs. real-world outcomes

Tuberculosis is an unusual pathogen given its relatively slow growth rate, its ability to survive

and multiply inside macrophages, and interaction with the host’s immune system leading to

Fig 9. Population TB treatment outcome for reduced immune strength. Comparison of median patient outcomes for treatment of TB infection, with standard drug

therapy (2HREZ/4HR) and patients with reduced immune response calculated as a percentage of full immune system present. Based on simulation of 5000 patients.

Infection occurs 180 days before treatment.

https://doi.org/10.1371/journal.pcbi.1008107.g009
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granuloma lesions. The simulation was based on a multi-compartment model with various

immune cell types, cytokines, and TB bacteria strains. The simulated time estimate needed to

resolve TB infection was consistent with therapy timelines seen in clinical trials. Further, the

simulated population therapy outcome was similar to clinical trial results, i.e., approximately

95% resolution among infected individuals receiving standard 6-month TB therapy. There are

numerous ways the simulation model may be further extended to allow for even closer align-

ment with real-world patient outcomes, such as pharmacokinetic model considerations, bacte-

rial resistance considerations, and bacterial fitness over time.

Fig 10. Faster growth of drug-resistant bacterial strains due to incomplete drug therapy. Comparison of growth of rifampin mono-resistant bacterial strain during

treatment of TB infection, with standard drug therapy (2HREZ/4HR) vs. therapy excluding isoniazid. Based on simulation of 5000 patients. Infection occurs on day -180,

and drug therapy is started on day 0.

https://doi.org/10.1371/journal.pcbi.1008107.g010
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Optimizing standard therapy

Our simulations on standard therapy showed that the current standard therapy is well opti-

mized. Number of patients cured might not benefit from dose changes as the increase in popu-

lation cured was slight when compared to standard therapy. Decreasing therapy duration

results in a loss of 15% patients cured and increased therapy is able to kill all. This aligns with

recent work that some patients may benefit from longer duration of treatment and others

could be cured after 4 months, based on disease severity. The tool could further help regimen

development by better optimizing intensive and continuation phase drug selection and dura-

tions of these phases. Toxicity would have to be carefully considered however and this is not

taken to account in the model. Future optimization of the tool could include toxicity thresh-

olds to provide safer and effective regimens by allowing more exploration of the therapeutic

margins of these drugs.

While we found the quantitative systems pharmacology methodology appropriate for our

objectives, alternative modeling methods investigating drug regimens have shown new ways to

explore multi-drug therapies [40]. A model-based adaptive optimal design could navigate the

risk-benefit space and provide optimized regimens more accurately than adding toxicity

thresholds to our existing model.

Our model does not stratify patients based on their disease severity but does allow for vari-

ance of disease development. In future it could be interesting to see patients stratified by their

risk groups and cater regimen selection to at risk groups, rather than a one-size-fits all

approach.

Fig 11. Number of drugs above MIC by compartment. Number of drugs above MIC at steady state of standard therapy drugs at steady state over a 24h dosing interval

for 5000 simulated patients. Each colored block represents one hour that a drug is above its MIC. The drugs are stacked for each hour with different colors representing

different drugs. Empty squares show no drug on board. The percentage of drug onboard hours vs expected drug hours is shown above each plot to compare total

compartment exposure in a 24h period.

https://doi.org/10.1371/journal.pcbi.1008107.g011

PLOS COMPUTATIONAL BIOLOGY Mathematical model and tool to explore shorter multi-drug therapy options for tuberculosis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008107 August 18, 2020 17 / 36

https://doi.org/10.1371/journal.pcbi.1008107.g011
https://doi.org/10.1371/journal.pcbi.1008107


The best change in outcomes was seen with earlier start of treatment. This suggests that

though dose and duration changes of standard therapy might be slight, we can hope to see real

therapy improvements with improved biomarker detection and more advanced screening of

patients.

Patient considerations

Patient adherence is a known barrier to successful outcomes [1]. In recent clinical trials

patients that had 80% or more doses taken were still considered adherent and included in the

Fig 12. Sensitivity analysis of drug parameters. Parameters were scaled by factor 0.1, 0.5, 2 and 10, and the final change in percentage of the population with TB (mean

5% under normal conditions) recorded to measure individual parameter impact on TB outcome.

https://doi.org/10.1371/journal.pcbi.1008107.g012
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final analysis [2,3]. We included random selection of doses taken in our model to simulate out-

comes based on missing 20% of doses. We also investigated missing more doses in either the

intensive or continuation phases of treatment to assess if an earlier or late drop in adherence

has worse outcomes. Finally we used real world Medication Event Monitoring System

(MEMS) data [41], to simulate observed patterns of missed doses and found that it followed a

similar trend to our simulations of missing majority of doses in the continuation phase. For an

earlier drop in adherence outcomes were much worse (86.0%). Missing doses closer together

results in more patients failing treatment. This is often the case as treatment can be stopped

and started depending on a clinician’s intervention due to side effect, illness or a patient’s

access to care etc. Finding regimens that are more forgiving to these real world scenarios

should be a priority.

Many patients with tuberculosis have reduced immune systems. This can be due to factors

such as HIV or their disease severity. With this in mind we simulated a range of decreased

immune system functions (25–75%). We found that in our model, drug treatment is able to

treat a large number of patients successfully, however 6 months after treatment many patients

start to relapse as their lowered immune systems is not able to fight off latent bacterial infec-

tion. These simulations suggest that patients with a lowered immune system may appear cured

but are at higher risk of relapse after treatment.

Important pharmacokinetic and pharmacodynamic model considerations

The assumed plasma clearance rate is a key factor in the concentration profile generated. It is

common to find relatively large inter-person variations in drug metabolism and resulting

plasma clearance rate. Model parameters were based on published experimental data of rifam-

pin, isoniazid, pyrazinamide, and ethambutol. The clearance rate of these drugs was assumed

Fig 13. Screenshot of web application. Graphical user interface of the TBsim tool. User can adjust regimen, drug parameters, adherence, and immune and resistance

inputs. Outputs include pharmacokinetic profiles, bacterial load in intra and extracellular compartments, and immune system plots.

https://doi.org/10.1371/journal.pcbi.1008107.g013
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to be independent of each other and of other drugs. Rifampin use can result in cytochrome

P450 (CYP)-mediated drug-drug interactions with a wide set of drugs–in particular those

metabolized by CYP2B6, CYP3A4/5, and CYP2A6. One common drug combination is the use

of efavirenz, as part of HIV therapy, at the same time as rifampin for TB. This combination

may increase the plasma clearance rate of rifampin by 15 to 35 percent [42]. Numerous other

patient factors, such as renal and hepatic function, can affect the rate of metabolism and clear-

ance of TB drugs. Further investigations of the impact of differences in TB drug net clearance

among patients is warranted.

PK/PD dynamics were simplified and described minimal drug interaction effects. PK/PD

interactions were only considered as related to drug concentration at the site of infection, where

one drug might affect more efficacy in one area than another and therefore together increase or

decrease each other’s efficacy. Simulations to show this effect are shown in S4 Fig, where the

immune system response is responsible for killing in the extracellular space until drug is onboard.

This simplified approach should be improved with the use of combination drug models that take

into account the antagonistic or synergistic effects seen with multi-drug therapy. From drug treat-

ment start RIF and INH have the largest kill on bacteria kill and fluctuate based on their respective

penetration and therefore concentration is each compartment. PZA and EMB have minimal

effect the first 60 days that they are onboard compared to RIF and INH.

We used a mechanistic bacteriostatic and bactericidal component in our model to mimic

antibiotic classification where drugs can either inhibit the growth of bacteria, or increase their

kill rate. Though the EC50 of bacteriostatic effects are much lower than bactericidal EC50’s and

their contribution could seem minimal, our sensitivity analysis showed otherwise. Though the

static influence is slight when concentrations fall below bactericidal but stay above static con-

centrations, growth inhibition still provides an effect. This is important in granuloma lesions

where drug concentration can be limited, and a smaller effect is observed.

Bacterial resistance considerations

The simulation model incorporated a basic representation of bacterial resistance with muta-

tion rate parameters based on data from published in-vitro experiments. Naturally, many dif-

ferent types of mutations and other metabolic adaptations may occur. Bacterial mutations may

also result in increased or reduced overall fitness, thus affecting rate of immune system killing

of resistant bacteria strains. The mutation rate for isoniazid is an order of magnitude greater

than for rifampin.

We investigated coverage of our multidrug therapies in intracellular and extracellular gran-

ulomas. We observed long periods of monotherapy (8 hours plus) and drug coverage in extra-

cellular granulomas were estimated as 49%. Within this site of infection there was also no

observed rifampin concentration greater than MIC, showing an area where resistance can

therefor occur quickly. Some studies indicate bacteria which develop isoniazid resistance may

have an increased probability of also achieving rifampin resistance, with a rate of 10–5 h-1[43].

We performed additional simulations looking at already INH resistant bacteria and the rate of

then acquiring RIF resistance. Under full adherence conditions a patient is able to complete

treatment without acquiring INH or multi-drug resistance. However in our simulations, when

adherence falls to 60% a patient may develop multidrug resistant strains before the end of their

treatment that will continue to grow and be selected for, S5 Fig.

Model assumptions and suggested improvements

To implement the model, key assumptions often including simplification of the interplay

between bacteria, host and drug were necessary. The model in its current phase of
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development does not include intracellular specific dynamics, which is an important consider-

ation for bacterial growth and drug effects for total treatment duration as continuing research

shows that drug MBC90 values are higher in some lesions compared to other and an shift in

EC50 could be expected due to environment [44]. Similarly, the resistance model was narrowed

down to mono-resistant strains and would greatly benefit from inclusion of mutation between

different resistant strains to better understand the progression of multi-drug resistance and

importantly how to optimize treatments to prevent this.

Though therapy outcomes included latent tuberculosis this was not related to dormant bacte-

ria and there is no inclusion of slow replicating/dormant bacteria versus fast replicating bacteria.

Therefore, the drug dynamics on these different states of bacterial growth are not captured,

including a mechanistic approach to describing the reduction in killing rate which in our model

is estimated from raw data for specific time ranges. This decline may be due to several reasons,

including growth of resistant sub-populations of bacteria, reduction in absolute remaining num-

ber of bacteria, and incomplete mixing of active drugs and bacteria thus limiting its therapeutic

effect. In addition to these cellular considerations, our model also did not take into account actual

tissue mass, protein binding or physical lesion size and distance from vascularity. A physiological

based pharmacokinetic (PBPK) approach could offer insight into these mechanisms, for e.g.

Edginton and colleagues were able to build a whole-body PBPK model that described penetration

of moxifloxacin into macrophages using colorectal biopsies [45].

The model was limited to HRZE to first assess its outcomes to clinical literature, but new

drugs and drug therapies should be added to keep the model up to date with future regimens.

Only acetylator status was added as a categorical covariate, but the population PK models used

had additional covariates on sex, HIV status to name a few that could be incorporated in the

pharmacokinetic models to look at individuals at risk of low exposure and poor outcomes.

Finally, the model was parameterized based on a wide array of available literature and

would benefit from further experiments that may be able to refine or validate parameter values

used and consolidate the model complexity with similar sources. The advantage of this systems

model approach is that the experiments could be diverse including mouse, in-vitro hollow

fiber system experiments, physiologically-based pharmacokinetic results and or ongoing clini-

cal trial data to clarify and update parameters and build on the structural model. Additionally

a limitation of our model is the fairly complex parameter space with low certainty about the

variance-covariance structure, which is inherent when applying parametric distributions.

Access to reliable parameter correlations and potentially nonparametric distributions would

improve the performance of the model.

Clinical relevance and applications

Numerous large-scale clinical trials are under way to evaluate new drugs and drug therapy

combinations to treat pulmonary TB infection [46–48]. The simulation model presented in

this study could be used to help focus such clinical trial investments on those new drug combi-

nations predicted to offer greatest likelihood of having performance that is better than existing

standard TB therapy. The model has the great advantage of focusing limited resources and

speeding up the trial planning process. By fine-tuning drug dosing parameters and adapting

drug therapy to additional patient populations, models like these can help predict study suc-

cess and eliminate insufficient studies.

Materials and methods

The model building process did not include studies with human participants, animals or field

work performed by any of the authors and did not require ethics approval.
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Bacterial infection and growth

Pulmonary infection is assumed to be transmitted through aerosolized droplets containing M.

tuberculosis bacteria. Once in the lung, characterized by our model as extracellular space, bac-

teria penetrate into alveolar macrophages, where they proceed to grow according to rates char-

acteristic for pulmonary tuberculosis. In line with the originally validated model from Marino

et al., 2004 uncontrolled infection with M. tuberculosis eventually results in sustained high bac-

terial density, both outside and inside of macrophages, often reaching maximum levels of 107

to 109 CFU/mL in the lung compartments, after 100 to 200 days from initial infection. Sus-

tained infection may trigger a complex host immune-bacteria reaction leading to formation of

encapsulation of infected tissues. The inflamed tissue forms nodules, and may grow to become

larger granulatomous lesions. Here the immune system is actively sequestering the infection

into lesions to help prevent further spread of bacteria. If no immune system was on board the

infection would grow further without stopping, S6 Fig. A major contribution of the immune

effect in our model is to simulate the environment of lung lesions and provide the necessary

barrier to drug diffusion that we expect from macrophages and other immune cells. The

lesions can be considered a distinct compartment, and may contain substantial concentrations

of bacteria. The integrated disease model and immune model compartments are illustrated in

Fig 14 [30].

Fig 14. Overview of disease model. Description of key aspects of the disease model. Bacterial infection occurs by aerosolized

bacteria reaching the lungs. The bacteria remain in lung tissue, and may be absorbed into macrophages. With long-standing disease

granulomatous lesions may form, which in-part may work to contain the bacteria, but also may limit effectiveness of drug therapy

and thus form a partial reservoir of bacteria. Bacterial growth, killing, mutation, and drug effects are present for each model

compartment. Dotted lines represent movement of immune cells and solid lines represent movement of bacteria.

https://doi.org/10.1371/journal.pcbi.1008107.g014
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Net bacterial growth was defined as the sum of inherent bacterial growth and death rates,

adjusted for effects from pharmacodynamics, immune system, and bacterial mutation. The

general form of growth of bacteria population Bi was described by Eq (1),

dBi

dt
¼ Bi � ðg

max
i � fi � Gi þ Ki þ diÞ þ DB

im
i þ DB

mu
i ð1Þ

where gmax
i was maximum hourly growth rate (h-1), fi was relative fitness level {0. . .1}, Gi was natu-

ral bacterial growth adjusted for drug bacteriostatic effects, and Ki is the drug bactericidal effect,

DBim
i was the immune system effect, and di was the natural death rate of bacteria population i.

The term DBmu
i represented the effect due to mutation from wild-type to mono-resistant strains.

Additionally, for bacteria inside macrophages, net growth rate was limited by maximum bacteria

capacity inside a macrophage, per immune system model by Marino & Kirschner [30]. The

growth limitating factor applied to bacteria inside macrophages was described by Eq (2),

1 �
Bm

I

Bm
I þ ðNMIÞ

m

� �

ð2Þ

where BI was the number of bacteria inside macrophages, N was the maximum number of bacte-

ria inside macrophages, MI was the number of infected macrophages, and m a constant.

Immune system response

The immune system model portion was based on an approach developed and validated by

Marino & Kirschner, originating from an extensive line of work by the Kirschner group. The

immune system was defined by a system of differential equations, representing different constitu-

ent cell types—macrophages, cytokines, T cells, and dendritic cells–driving cell-mediated immune

system response to bacteria in pulmonary TB infection. The immune system model incorporated

dynamics of intra- vs. extracellular bacteria, cytokine signaling, and T-cell response in lung and

lymph node. The original immune system models were extended to support multiple mutated

bacterial strains, and additional compartments to represent lung granuloma lesions [30]. Typical

values for the immune system and bacterial model parameters were based on data provided,

except as described in Table T1, in the S1 Text that contains all immune system components.

Patient-specific parameter values were generated using inter-individual variance, as well as sto-

chastic errors applied at each time step. Initial values for model variables were based on [30,49]

for TB infection, as summarized in Table T2, in S1 Text. This allowed simulated patients to have

an active case of TB infection at the start of treatment.

Patient drug therapy adherence

High patient adherence status is critical to achieve effective outcome of long-term TB therapy.

In the simulation model, patient-level adherence is determined at daily level based on an inte-

grated adherence probability module. The adherence module generates single- or multi-day

non-adherence events using a normal distribution, or a discrete probability distribution Γ(p,d)

for probability p of non-adherence event of length d days, and where each patient has a unique

long-term adherence profile. Note: for validation of the standard TB therapy simulation

model, patient drug therapy adherence was set to 1.

Pharmacokinetics model

A population pharmacokinetic simulation model including rifampin, isoniazid, pyrazinamide,

and ethambutol was developed and configured with previously validated parameters and
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published model structures and parameters. These parameter values were based on data from

published research studies with references shown with final pharmacokinetic parameters in

Table 2 and a bibliography of parameters and models with their respective reference can be

found in S3 Text.

Drug concentration in plasma and extracellular alveolar fluid was based on a one-compart-

ment model, with first order absorption and linear elimination. Drug concentration inside

macrophages and inside granuloma were modeled as separate effect compartments, with fac-

tors for attenuation, accumulation, and time delay in concentration relative to plasma. In this

simulation, granuloma was modeled as a single virtual compartment, thus representing a com-

posite of various such lesions in the lung, likely to vary greatly in size, caseation, fibrosis, and

vascular access. The overall pharmacokinetic model is depicted in Fig 1. The effect compart-

ment parameters were assumed to be independent of drug concentration, and fixed over time.

Auto-induction effects on clearance were added where applicable. Auto-induction effects were

simplified to prorated based on actual number of days of drug administration during preced-

ing period for e.g. rifampin applied an auto-induction multiplier of 2.02 after 17 days to sim-

plify the model structure and resulting computation time. Parameter values for individual

patients were simulated based on defined typical values and applying inter-individual variance,

as well as stochastic errors for each time increment.

Rifampin. Rifampin will enter TB cell cytoplasm and is believed to interfere with bacterial

DNA replication. Concentration of rifampin inside macrophages (“intracellular”) is believed to

be higher than outside macrophages (“extracellular”), and may have a residual concentration

profile creating an extended antibiotic effect [12]. The precise intracellular concentration dynam-

ics is not fully understood, and likely is affected by changes in resistance and metabolic state of

bacteria. Earlier published simulation of intracellular rifampin concentration was done using a

3-compartment pharmacokinetic model [49,52]. For this study, effect compartment parameters

were set so intracellular rifampin concentration was at three to four times extracellular concentra-

tion. Intracellular rifampin concentration was set to decay at lower rate vs. in the extracellular

space. Auto-induction was modeled with a steady-state multiplier of approximately two times

vs. base line, increasing linearly over 17 days, thus resulting in twice the rate of elimination

[14,53].

Isoniazid. For the isoniazid pharmacokinetic model, the patient population was divided

into two categories based on rate of drug metabolism—so called fast vs. slow acetylators. Fast

acetylators are estimated to have approximately twice the clearance rate of slow acetylators.

The proportion of fast vs. slow acetylators varies for different ethnic and geographic popula-

tions [19,50,54]. For the base simulation, it was estimated fast acetylators represented approxi-

mately half of the total patient population (48%) [55].

Table 2. Pharmacokinetics core model parameter values.

Drug Absorption rate, Ka (h-

1)

Clearance rate, CL/F (L/

h)

Apparent vol.

of distribution V/F

(L)

Elimination rate, Ke (h-

1)

Other factors

Rifampin [14] 1.81 (48%) 8.1 (37%) 49.6 (24%) 0.18 (34%) Auto-induction factor 2.02, over 17 days

Isoniazid [19] 2.21 (76%) 17.8 (20%) 75.0 (17%) 0.22 (18%) Clearance rate multiplier for “fast

acetylators” 2.50

Pyrazinamide

[50]

3.42 (62%) 4.3 (16%) 39.4 (9%) 0.104 (23%)

Ethambutol [51] 0.57 (28%) 61.1 (24%) 230 (33%) 0.129 (30%)

Note: value in parenthesis is %CV due to inter-individual variability.

https://doi.org/10.1371/journal.pcbi.1008107.t002
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Pyrazinamide. The pyrazinamide effect compartment parameters assumed relatively sim-

ilar drug concentration for intra- and extracellular compartments [56]. No auto-induction

effects were assumed for pyrazinamide.

Ethambutol. Ethambutol is assumed to reach similar concentration outside vs. inside of

macrophages. It has been suggested ethambutol may have synergistic effect with rifampin and

isoniazid, due to the ability of ethambutol to reduce integrity of the bacterial cell wall to allow

increased concentration of other drugs to enter the bacteria [57]. The current simulation

model did not include any drug-drug synergy effects.

Mathematical model for pharmacokinetics. Plasma drug concentration C(t) for drug n
is derived by calculating the quantity of drug in plasma A(t) following the drug dosing sched-

ule D(t), with adherence a(t) per patient. The model is based on a single-compartment system

with first-order absorption and elimination, based on Eqs (3) and (4).

dA
dt
¼ ka � DðtÞ � aðtÞ � keðtÞ � AðtÞ ð3Þ

dD
dt
¼ � ka � DðtÞ � aðtÞ ð4Þ

where A(t)�0 and D(t)�0, and a(t) was {0..1}. Parameter ka was the rate of oral absorption of

drug n, ke(t) is derived by total clearance (CL/F) divided by apparent volume of distribution

(V/F) for drug n; and A(0) and D(0) were set to 0. Patient adherence a(t) is defined at daily

level and applied equally for all drugs on that day. The concentration C(t) is calculated inde-

pendently for each drug, and derived as A(t) divided by V/F. The coefficient of elimination

ke(t) for any drug n includes factors for auto-induction and acetylation rate per patient, as

shown in Eq (5). Increased clearance rate due to auto-induction is approximated with a linear

function from kmin
e at day 0 to steady-state kmax

e , reached after tmax days.

keðtÞ ¼ kmin
e � ð1þ ðk

max
e =kmin

e � 1Þ � t=tmax ð5Þ

for t0<t<d, and keðtÞ ¼ kmax
e , when t>tmax, and prorated for actual number of days of drug

administration during the preceding time period to account for a lack of adherence if included.

This auto-induction effect takes place relatively quickly within the context of total treatment

days. The mathematical structure differed from the original semi-mechanistic model proposed

by Smythe et al 2012 [14], but the improved computation speeds and similar PK output simu-

lations were found suitable account for these17 days.

Concentration of drug and active metabolites in the intracellular compartment, is modeled

using an effect compartment model which describes a time delay in drug transfer between

extra and intra cellular space. This process is described both in lung and lesion compartments,

Fig 15. The parameters describing uptake into intracellular space were determined from mac-

rophage uptake studies, see S3 Text. We simulated drug distribution from the plasma directly

to macrophages and lesions due the experiments used to estimate the parameters and therefore

equalize our “lung” to the plasma to allow correct drug levels in the highest bacterial burden

compartments of interest. From the lung compartment drug can move into macrophages and

is defined as intracellular concentration, or into granuloma lesions and defined as extracellular

granuloma concentration. From the extracellular granuloma space, drug can distribute into

macrophages inside granulomas and are then defined as intracellular granuloma concentra-

tion. The absolute quantity of drug in these compartment types is assumed to be several orders

of magnitude lower than in plasma, therefore having minimal effect on the plasma compart-

ment concentrations. Effect compartment factors are assumed to be independent of plasma

and compartment drug concentration, and fixed over time. The effect compartment dynamic
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is described by Eq (6).

dCe

dt
¼ meq � k

D

eqðCp � CeÞ ð6Þ

where Cp is concentration in plasma, Ce is concentration in effect compartment, meq is concen-

tration multiplication factor for effect compartment, and kDeq is the equalization constant, kDeq ¼
kþeq when Cp is increasing, and kDeq ¼ k�eq when Cp is declining to account for drug entering and

exiting the compartment. Larger values for keq will result in faster equalization of concentra-

tion ratios between compartments. Selected values for effect compartment parameters are

summarized in Table 3 and their bibliography of sources can be found in S3 Text in the phar-

macokinetic section of each drug.

Fig 15. Overview of pharmacokinetic model. Description of the integrated pharmacokinetic (PK) model. Drug

concentration in plasma and extracellular alveolar fluid was based on a one-compartment model, with first order

absorption and linear elimination. Drug concentration inside macrophages and inside granuloma were modeled as

separate effect compartments.

https://doi.org/10.1371/journal.pcbi.1008107.g015

Table 3. Pharmacokinetics effect compartment parameter values.

Drug Intracellular (macrophage) multiplier, meq Intracellular time constant (h-1), kDeq Granuloma multiplier, meq Granuloma time constants (h-1), kDeq
Rifampin 3.7 In: 0.1

Out: 1.0

0.15 In: 5.0

Out: 5.0

Isoniazid 0.95 In: 0.1

Out: 0.9

0.28 In: 0.1

Out: 1.0

Pyrazinamide 0.83 In: 0.1

Out: 0.9

1.25 In: 0.1

Out: 1.0

Ethambutol 1.5 In: 0.1

Out: 0.9

0.45 In: 0.1

Out: 1.1

https://doi.org/10.1371/journal.pcbi.1008107.t003
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Pharmacodynamics

Bacterial survival and growth is influenced by bacteriostatic and bactericidal effects from all

drugs acting on any given bacteria population in each specific compartment. The effects of

bacterial mutation and development of resistance are detailed in its relevant section. Using

principles defined by Gumbo et la., 2004, drug concentration for each drug n, per compart-

ment, may have both bactericidal Ki and bacteriostatic Gi effects on each bacteria population i
[58]. The total pharmacodynamic effects of each drug are calculated based on the actual drug

concentration at any given point in time, relative to the EC50 level, and integrating over time.

The parameter EC50 represents the concentration where 50 percent of a bacteria population is

affected. The simulation model incorporates two EC50 values per drug, one for bactericidal

effect, and one for bacteriostatic effect. The same EC50 value is applied for both intra- and

extracellular bacteria, and the parameter is assumed to remain fixed over time. The EC50

parameter values are based on research studies using the Hollow Fiber Model [57–60], as sum-

marized in Table 4, bibliography of sources for these parameters can be found in S3 Text. The

combined growth dynamics of each bacteria population within each model compartment is

illustrated in Fig 16 and effect compartment parameters are summarized in Table 5.

Table 4. Pharmacodynamics model parameter values.

Drug Bacteriostatic effect Bactericidal effect

EC50 (mg/L) Hill factor EC50 (mg/L) Hill factor

Rifampin 1.5 0.36 5.0 0.79

Isoniazid 0.1 1.05 0.4 1.05

Pyrazinamide 50.0 1.21 100.0 1.21

Ethambutol 1.0 1.0 4.0 1.0

https://doi.org/10.1371/journal.pcbi.1008107.t004

Fig 16. Overview of pharmacodynamic model. Description of the integrated pharmacodynamic (PD) model for each

compartment of the simulation model, incorporating bacterial growth, death, exchange with other compartments,

bacterial drug resistance, and killing by immune system effects and active drug concentrations.

https://doi.org/10.1371/journal.pcbi.1008107.g016
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Bactericidal effects. Total bactericidal effect on bacteria population i was described by Eq

(7),

Ki ¼
XN

n¼1

kmax
n;i ðtÞ � pn;iðtÞ

1

1þ ðC50k
n =CnÞ

akn
ð7Þ

for all drugs n{1..N} acting on bacteria population i, where N was the number of drugs, kmax
n;i ðtÞ

was maximum kill rate, for drug n on population i at time t. Max kill rate may vary per time

period after therapy start, i.e., day 0–2, 3–14, and 15+. The maximum kill rate is defined as

greatest bacterial killing possible to achieve at very high drug concentrations. The parameter is

expressed in unit of h−1 used in the standard expression for bacterial growth and killing, dB/dt
= (g−Ki)

�B(t), where B(t) is the bacterial population at time t in hours, and Ki is hourly kill

rate, and g represents growth rate factors as described further below. Research studies often

report maximum bacterial kill rate in terms of log10 kill per day. The log10 kill per day, (Emax)

log10, can be transformed to hourly kill rate, Ki, using the expression Ki = (Emax)log10
�ln(10)/

24. The parameter pn,i(t) has values {0. . .1} to incorporate effectiveness of killing by drug n
given current growth rate of bacteria population i at time t, as some drugs are thought to have

higher or lower ability to kill slow-growing, aka "persisting,” bacteria." The factor akn is the Hill

coefficient of sigmoidicity for bacterial killing of drug n, and C50k
n is the median effect concen-

tration for bacterial killing for drug n and finally Cn is the concentration of drugn as described

by our longitudinal PK model. Bacterial killing is assumed to occur independently by each

drug, and total bactericidal effect on a bacteria population was additive.

Bacteriostatic effects. Total bacteriostatic effect on bacteria population i is described by

Eq (8),

Gi ¼
YN

n¼1

1 �
1

1þ ðC50g
n =CnÞ

a
g
n

 !

ð8Þ

for all drugs n{1..N} acting on bacteria population i, where N was number of drugs, agn is the

Hill coefficient of sigmoidicity for bacterial growth inhibition of drug n, and C50g
n is the median

effect concentration for bacterial growth inhibition by drug n and Cn is the concentration of

drugn as described by our longitudinal PK model. Bacterial growth inhibition is assumed to

occur incrementally among drugs, and total bacteriostatic effect is calculated additively across

all active drugs.

Bacterial kill rates. The bacterial kill rate for each drug depends on numerous factors,

including intra- and extracellular drug concentrations, drug therapy duration, bacterial growth

Table 5. Effect compartment parameter values.

Granuloma (k14) Macrophage (k23, k45)

Drug Tin
1/2 (h) Tout

1/2 (h) Rise factor Decay factor

Rifampin 5 5 1.0 0.3

Isoniazid 0.1 1.1 1.0 0.9

Pyrazinamide 0.1 1.1 1.0 0.9

Ethambutol 0.1 1.1 1.0 0.9

� Decay factor defines decay characteristics for drug concentration elimination from macrophages, where a value 0.0

is no decline, and value 1.0 is immediate decline due to falling concentration outside of macrophage. The rise factor

is set to 1.0 for all drugs, reflecting immediate uptake of increased drug concentration from outside to inside of

macrophages.

https://doi.org/10.1371/journal.pcbi.1008107.t005
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characteristics, bacterial resistance development, and local microenvironment characteristics

such as pH. Many in-vitro studies have reported “net kill rates” of commonly used TB drugs

decline over time, see S3 Text. The decline in drug effectiveness over time is modeled with

time-dependent effective bacterial “kill rates”; with time structured into three periods: day 0–2,

day 3–14, and day 15+, measured from day of therapy start. Maximum effective bacterial kill

rates are estimated based on data from published research reports: for rifampin [36,49,57,60–

64]; for isoniazid [57,62,65]; for pyrazinamide [50,56,62,65,66], and for ethambutol

[25,35,57,67], as summarized in Table 6.

Bacterial drug resistance. Bacterial drug resistance may develop during tuberculosis

treatment with antibacterial agents, in particular following plasma drug concentrations at sub-

therapeutic levels. The pharmacodynamic and immune system models were extended to

incorporate bacterial mono-resistance to each individual drug, and bacterial exchange of resis-

tant bacteria between intra- and extra- macrophage compartments. The probability of multi-

resistant mutations typically is several orders of magnitude lower–as long as the patient popu-

lation does not have pre-existring resistance to drugs used.

Development of bacterial drug resistance is modeled using distinct sub populations, i.e.,

four mono drug-resistant bacteria strains for each compartment. Resistance to specific drugs

occurs naturally, and resistant strains are selected for when drug monotherapy occurs increas-

ing overall resistance in that population. To model this we include a natural resistant rate due

to random mutation from wild-type to become drug-resistant, per Eq (9) and a drug pressure

rate that increases the number of resistant bacteria when drug is on board.

DBmu
i ¼ Bw �

dBw

dt
� rw;i ð9Þ

where the factor Bw �
dBw
dt is net growth of wild-type bacteria in the same compartment, rw,i is

mutation rate of wild type bacteria to the drug resistant bacteria population i, in h-1, and where

DBmu
i � 0. The number of mutated bacteria is derived based on the base growth rate of wild-

type bacteria before subtracting bactericidal effects of drugs and immune system, and natural

death rate. The net growth of wild-type bacteria thereafter is reduced accordingly. The initial

population of resistant extracellular bacteria is set as a very small ratio of the extracellular bac-

terial inoculate, e.g., (1�10−9). Parameters values for mutation rate of wild-type to different

drug mono-resistant strains, rw,i, are based on data from published studies [43,68,69], as sum-

marized in Table 7.

Population modeling and patient outcomes

Patient individual values are generated for parameters in each sub model, including initial bacte-

rial infection, pharmacokinetic, pharmacodynamic, immune system, and bacterial drug resis-

tance. There are assumed to be no systematic changes in pharmacokinetic parameters during the

Table 6. Effective bacterial kill rates for tuberculosis drugs (outside/inside macrophages).

Drug Kill rate

day 0–2 (h-1)

Kill rate

day 3–14 (h-1)

Kill rate

day 15+ (h-1)

Rifampin 0.5 / 0.5 0.4 / 0.4 0.4 / 0.4

Isoniazid 0.4 / 0.05 0.2 / 0.02 0.1 / 0.01

Pyrazinamide 0.0 / 0.0 0.02 / 0.04 0.02 / 0.04

Ethambutol 0.05 / 0.05 0.04 / 0.04 0.03 / 0.03

Note: the above parameter for “kill rate per hour,” is different from the “Δ Log CFU/mL per day” kill rate metric

sometimes reported in experimental studies.

https://doi.org/10.1371/journal.pcbi.1008107.t006
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treatment period, besides auto-induction effects. Patient variability for other parameters, such as

immune system effects and pharmacodynamics, are based on a log-normal distribution, unless

the referenced experiment stated otherwise. To replicate inter-occasional variability small random

error perturbations are applied to the pharmacokinetic parameters per time step of the simula-

tion, using a uniform distribution. This represents the real world scenario where a patient’s clear-

ance might be slightly different between doses [70]. Key inter-individual variability and time

error methods and parameter values are summarized in Table 8.

The simulation program is set up to monitor infection level per patient, per compartment,

at each time point during the simulation, and this is used to derive a disease status, defined as

either TB infection, Latent TB, or Cleared TB. A patient is considered to have a Cleared infec-

tion status if total bacterial load is measured to be below a certain threshold level, such as 1

CFU/mL. Rules for classification of different therapy outcomes are summarized in Table 1.

Relapse is defined as patients that have TB infection still present.

Patient therapy is considered successful when total bacterial concentration, i.e., wild type

and various resistant strains, present outside of granuloma is less than 1 on the last day of phar-

maceutical therapy and the patient infection set to 0. Simulation outcomes are found to be rel-

atively consistent across a range of values from 1 to 100 CFU/mL. Any residual concentration

of bacteria inside granuloma may be used to distinguish between a possible Latent TB infection

or Cleared TB, this aspect of the simulation model may be further explored in follow-on

research work.

Numerical methods and simulation calculation flow

Key steps in simulation calculation flow were as follows,

1. Initialize overall model and simulation parameters: drug PK/PD parameters, patient adher-

ence, drug therapy timing and dosing, immune system parameters, bacterial drug resistance

mutation rates, and simulation threshold levels and other configurations.

2. Generate effective dosing vectors per day for each drug and patient, based on selected drug

therapy schedule, and simulated adherence profile per patient.

3. Calculate pharmacokinetics using the Euler method, with 100 steps per time period (hour),

to create a vector of hourly concentration level, per drug and per compartment.

Table 7. Resistant mutation rates.

Drug Natural rate of drug resistance (kn) Mutation rate during drug therapy (per generation�) (kd)

Rifampin 1�10−9 8.9�10−9

Isoniazid 1�10−9 2.2�10−8

Pyrazinamide 1�10−9 1.1�10−5

Ethambutol 1�10−6 5.5�10−6

� Note: bacterial mutation rates per generation. Average replication time for M. tuberculosis assumed to be 24 hrs.

Hourly mutation rate is 1/24th of the per-generation mutation rate.

https://doi.org/10.1371/journal.pcbi.1008107.t007

Table 8. Standard deviation of population patient parameter values.

Drug Ka Ke V EC50

Rifampin 0.66 0.31 0.25 0.10

Isoniazid 0.58 0.20 0.11 0.10

Pyrazinamide 0.52 0.14 0.10 0.10

Ethambutol 0.27 0.08 0.40 0.10

https://doi.org/10.1371/journal.pcbi.1008107.t008
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4. Calculate immune system and pharmacodynamic effects at hourly level, using a fourth-

order Runge-Kutta approximation to solve system of differential equations, with strict non-

negative conditions for all bacteria populations, immune cell types, and cytokines.

5. Transform bacterial infection and immune system results from hourly to daily averages.

6. Censor very low infection levels, i.e., if sum of all bacteria per time period is less than 1

CFU/mL–then infection is considered eliminated.

7. Determine patient infection status and therapy outcome, per rules described above.

8. Repeat calculation steps (2) to (7) for each patient in a simulated population of N patients,

from time of initial infection for the duration of simulation (up to 1000 days).

9. Use bootstrap method to generate M populations of N patients each

10. Generate statistics for infection and outcome variables across M different populations

Numerical computations, including bootstrap processing, were implemented with a pro-

gram written in GNU C++ (64-bit), using OpenMP libraries to optimize multi-core calcula-

tions. Reporting and visualization of simulation results were performed using R. The

simulation model was tested using numerous different drug therapy and population scenarios,

with up to 10,000 patients and 1,000 days. Typical execution times, using a mid-sized Intel

quad-core computer running at 2.6 GHz, for a simulation involving 1000 patients, with 1000

bootstrap populations, over 500 days, with standard 4-drug TB therapy, bacterial drug resis-

tance, and granuloma dynamics, was approximately 60 seconds. The computer code used for

simulation and results visualization is available on https://github.com/saviclab/TBsim.

In addition to the core numerical tool, a wrapper package for R interfacing with the simula-

tion tool was also developed to facilitate easier customization of simulations and generation of

reports and plots. The R package is made available under an open source license at https://

github.com/saviclab/TBsim. In addition, a web application was developed that exposes the

functionality of the simulation tool in an easier-to-use user interface, based on the Shiny web

application framework. The tool is freely available for use at http://www.saviclab.org/systems-

tb/ and includes fast “Single Patient” simulations, either typical or randomly generated, a

“Population” panel that simulates relapse percentage in a population over time and finally a

“Drug” panel where new drugs can be entered and evaluated.

Supporting information

S1 Fig. Individual patient drug concentration profiles show large variations. Intracellular

concentration of rifampin for ten random patients during initial week of drug therapy. Grey

lines represent individual patients while the red line represents the median for this group.

Large variance is observed, for example, maximum concentration varies more than factor 2x

among these patients.

(TIF)

S2 Fig. Summary drug concentration profiles per drug. Population average concentration of

each drug as calculated for extra- (blue) and intracellular (red) compartment, for initial two

weeks of drug therapy. This simulation assumes standard therapy and 100% patient adher-

ence.

(TIF)

S3 Fig. Sensitivity analysis of immune and initialization parameters. Parameters were

scaled by factor 0.1, 0.5, 2 and 10, and the final change in percentage of the population with TB
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(mean 5% under normal conditions) recorded to measure individual parameter impact on TB

outcome.

(TIF)

S4 Fig. Bacterial dynamics of simulated TB infection in different compartments.

(TIF)

S5 Fig. Progression of multi-drug resistance with different adherence settings in intracel-

lular granuloma.

(TIF)

S6 Fig. Bacterial dynamics of simulated TB infection with and without immune system on

board.

(TIF)

S1 Text. Immune System Components.

(PDF)

S2 Text. Clinical Trial Data.

(PDF)

S3 Text. Model parameters and sources.

(PDF)
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