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Gravity‑driven hydromagnetic flow 
of couple stress hybrid nanofluid 
with homogenous‑heterogeneous 
reactions
Muhammad Waseem1, Taza Gul1, Imran Khan2, Arshad Khan3, Anwar Saeed4, Ishtiaq Ali5 & 
Poom Kumam4,6*

This investigation describes the hydromagnetic flow of gravity-driven couple stress hybrid nanofluid 
past a heated plate. The carbon nanotubes (CNTs) are used to characterize the hybrid nanofluid. The 
heated plate is placed vertically with an application of homogenous-heterogeneous reactions to the 
assumed flow system. The homogeneous reaction governs by isothermal cubic autocatalytic kinetics 
while the heterogeneous reaction governs by the first order kinetics. For current study the couple 
stress hybrid nanofluid is presumed to be conducted electrically with impact of non-uniform magnetic 
effects. An appropriate set of dimensionless quantities has employed to governing equations and then 
has solved by homotopy analysis method. The influence of emerging parameters encountered in this 
work has discussed in detail with the help of graphs. In this study it has examined that, flow of fluid 
reduces with upsurge in magnetic parameter and volumetric concentrations, whereas thermal and 
concentration characteristics augment with increase in volumetric concentrations. Moreover, growth 
in Prandtl number leads to a reduction in thermal characteristics and growth in Schmidt number 
result a reduction in concentration profile. The impact of various emerging parameters has also 
studied numerically upon physical quantities. It has established that, with augmentation in values of 
buoyancy parameter there is a growth in the values of skin friction. A comparison has also carried out 
between current and established results with a fine agreement in both results.

The fluids which are conducting electrically are named as magnetohydrodynamics (MHD) fluids such as liquid 
metals, electrolytes and plasma etc. The idea of MHD was first presented by a Swedish electrical engineer Alfven1. 
The MHD waves introduced by him are also known as Alfven waves. The basic idea in the rear of MHD is that the 
electric current is induced by magnetic effects through a conductive moving fluid. This type of fluid has numerous 
applications at industrial level such as reactor cooling, drug targeting etc. Many researchers and scientists have 
carried out a number of studies in the field of MHD. Alotaibi et al.2 examined numerically the effect of MHD 
Casson nanofluid flow upon a nonlinear convectively heated sheet influenced by viscous dissipative and suction-
injection effects. Krishna and Chamkha3 have discussed the Hall effects and ion slip upon the MHD swirling 
flow for nanofluid. In this work the flow has considered past a porous and vertical plate using a constant heat 
source. Lund et al.4 examined the MHD flow for micropolar nanofluid past a shrinking and vertical sheet in the 
presence of buoyancy effects. Islam et al.5 inspected the impacts of thermally radiative Hall current upon MHD 
micropolar hybrid nanofluid flowing between two plates. In this work the base fluid is considered as blood with 
nanoparticles of grapheme oxide and copper. The readers can examined more about MHD fluid flow in Refs.6–12.
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If the nano-sized particles of silver, copper, alumina etc. are suspended in some pure fluid is called nanofluid. 
It has established experimentally that, the coefficient of heat transmission for nanofluids is increased by combin-
ing the nanoparticles with some base fluids. For improving the thermal characteristics of base/pure fluid, the 
quantity of nanoparticles was first proposed by Choi13. Afterwards, many researchers have discussed different 
characteristics of nanfluids flow. Eid et al.14 discussed three dimensional Prandtl nanofluid flow with chemical 
reaction through some permeable materials. In this investigation the Brownian and thermophoresis effects have 
also considered to see the enhancement of heat transfer characteristics of the flow system. Al-Hossainny and Eid15 
have examined the spinning reaction of mono and hybrid nanofluid upon an expanding surface. Hamid et al.16 
have carried out a stability test for transfer of heat for MHD nanofluid using thermal radiations past a moving 
needle. In this article bvp4c technique has introduced for determination of approximate solution. Carbon nano-
tubes (CNTs) are normally prepared with the help of graphite. When hexagonal nano sized sheet are rolled up we 
obtain CNTs. It can be single or multi walled tubes also known as SWCNTs and MWCNTs. Their applications are 
categorized as enhancement of electrical and thermal conductivity and thermal stability etc. Khan et al.17 have 
discussed the entropy production for CNTs nanofluid flow amid two porous stretched revolving disks. In this 
work the lower and upper disks have assumed to be revolving with angular motion. Khan et al.18 have carried 
out an approximate solution for entropy production using peristaltic motion of single and multi-wall CNTs. It 
has established in this work that Brinkman number became a source for increasing the production of entropy for 
flow system. Javed et al.19 have analyzed the single and multi-walled nanotubes for heat transport by employing 
thermal radiation in a channel which was non-uniform. In this work viscosity has assumed to be a function of 
thermal characteristics and exact solution of modeled problem has established. Further investigation about use 
of CNTs in different flow can be examined in Refs.3,20–26.

Due to the extensive and useful applications of couple stress flows in numerous production processes, couple 
stress can be taken in non-Newtonian fluids, liquid crystals and animal blood, lubrication with polymer. Such 
applications comprise of rotary machinery, cooling in the fabrication of metal sheets in a bath. In fluid mechanics, 
the theory of couple stress has introduced in non-Newtonian fluids by Stokes27. The classical theory of viscous 
Newtonian fluids derived the fluid theory influenced by couple stress. The main concept of the couple stress 
theory is to show or analyzed the skin frictions amongst the particles. Khan et al.28 investigated the collective 
transmission of heat and mass through vertical channel. He obtained the solution of highly non-linear problems 
by HAM technique. Many investigations in literature29–33 are available about the couple stress fluids.

In this work, the MHD flow of hybrid nanofluid is examined above a vertically placed heated plate. The flow 
system is assumed under the influence of homogenous and heterogeneous reactions where the former reaction 
is governed by autocatalytic kinetics while the later one is governed by first order kinetics. Moreover, for current 
study the couple stress hybrid nanofluid is presumed to be conducted electrically with application of non-uniform 
magnetic field to flow problem. The modeled equations have transformed into dimensionless form by employing 
set of similar quantities and then have solved using HAM.

Physical and mathematical description
Take a 2-D hybrid nanofluid flow under the influence of gravitational impact. The flow is taken above a verti-
cally placed heated plate using homogenous/heterogeneous reactions (see Fig. 1). In the schematic diagram a 
rectangular coordinates system is selected with x-axis in vertical downward direction of the plate whereas y-axis 
is selected as in normal direction to the plate. Based on the model presented by Chaudhry and Markin34 the 
isothermal cubic autocatalytic reaction is systematically presented as

Figure 1.   Graphical view of the flow problem.
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On the catalyst surface heterogeneous reaction takes place and is given mathematically as

In Eqs. (1, 2) A, B are the chemical species with a, b as their concentrations whereas k1, ks are constants.
Keeping in view the stated supposition we have the flow equations as follows35–37

Here, the Oberbeck Boussinesq assumption is employed for balancing the relation amid ρhnf  and ρf  that is 
described as

In Eq. (9) β describes the thermal expansion coefficient while reference temperature is represented by T∞ . It is to 
be noticed that g (gravitational acceleration) as given in Eq. (4) is linked with downward velocity U(x) =

√
2gx 

by pressure variation in x-direction as

The boundary conditions at y = 0 are stated as

whereas at y → ∞ these conditions are

Assume the stream function as ψ with flow components as

Following transformations has used to flow equations 
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The transformed conditions are as fallow:

In above process we have encountered some emerging parameters which are described in Table 1.
It is to noticed that for holding similarity solutions we must have that k1 and x−1/2 are proportional to each 

other whereas ks and x−1/4 are proportional to each other.
Thermophysical properties of the hybrid nanofluids are described as follows38

In above equations khnf , kf  are thermal conductivities for Fe3O4 and H2O . Also φ1 and φ2 are the respective 
volume fractions for Fe3O4 and CNTs. The thermophysical properties for pure fluid and CNTs are presented in 
Table 2.

Required physical quantities.  The skin-friction coefficient Cfx and local Nusselt number Nux , Sherwood 
number Shx are given mathematically as:
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Table 1.   Description of parameters.

Symbolic representation Mathematical representation Physical interpretation

M σf B
2
0x/ρf U Revised magnetic parameter

K η0A1U/xρf Coefficient of homogeneous reaction

� 1
2
β�T Buoyancy parameter

Pr v/a Prandtl number

RH 23/2x1/2a3∞k1�Hh

3g1/2ρf cpδA�T
Homogeneous reaction heat parameter

KT
23/4v1/2x1/4a∞ks�Hh

31/2g1/4δA�TkT
Thermal conductivity

Sc v/D1 Schmidt number

Le v/DB Lewis number

Ks
23/4v1/2x1/4ks
31/2g1/4D1

Heterogeneous reaction parameter

Table 2.   The numerical properties of blood and CNTs.

Properties

Pure fluid Hybrid nanofluid

Blood MWCNTs SWCNTs

ρ (kg/m3) 1050 1600 2600

k (W/mK) 0.52 3000 6600

Cp (j/kgK) 3617 796 425
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In Eq. (21) τw and qw reveal shear stress and heat flux respectively. Making use of Eq. (14) and incorporating 
values of τw and qw in Eq. (21) we finally have

Method for solution.  In this work the modeled equations are converted to dimensionless notation by 
using some useful dimensionless variables as given in Eq. (14). After this transformation we have obtained Eqs. 
(15–19). These Eqs. (15–18) are then solved by semi analytical technique HAM 39,40 by employing the boundary 
conditions as given in Eq. (19). Following initial guesses have sued:

Here

The expanded forms of these operators as stated in Eq. (24) are expressed as follows

Above in Eq. (25) ci for i = 1, 2, 3, . . . 7 are constants.
By Taylor series expansion we have

Results and discussion
This study determines the MHD flow of gravity-driven couple stress hybrid nanofluid past a heated plate. Carbon 
nanotubes (CNTs) are used to characterize the hybrid nanofluid. The heated plate is placed vertically with an 
application of homogenous-heterogeneous reactions to the assumed flow system. An appropriate set of dimen-
sionless variables has employed to governing equations in order to achieve a set of dimensionless ODEs and its 
solution has then carried out by HAM. The effects of emerging parameters encountered in this work are discussed 
in detail with the help of graphs.

Flow profile F ′(η).  In Figs. 2, 3, 4, 5 we shall discuss the effects of magnetic field (M) , volume fractions 
(φ1, φ2) and coefficient of homogeneous reaction parameter (K) on flow of fluid. Since the augmentation in 
magnetic effects give rise to the production of Lorentz force in fluid flow that declines the fluid motion. Hence 
increase in (M) results in drop of flow as determines in Fig. 2. This impact is more visible for MWCNTs than 
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Figure 2.   Flow characteristics versus M when � = 0.2, ϕ1 = 0.02, ϕ2 = 0.01, K = 0.7.
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SWCNTs, because SWCNTs are denser than MWCNTs. It is also to be noticed that with augmentation in volu-
metric concentrations of Fe3O4 and CNTs denoted by φ1, φ2 respectively, the viscosity of the fluid is augmented. 
With increase in viscous forces, the fluid motion also reduces both for SWCNTs and MWCNTs as depicted 
in Figs. 3, 4. Figure 5 represents the impact of coefficient of homogeneous reaction parameter (K) upon flow 
characteristics. It is revealed that increase in (K) results a reduction in velocity profile both for SWCNTs and 
MWCNTs.

Figure 3.   Flow characteristics versus φ1 when � = 0.2, M = 0.3, ϕ2 = 0.01, K = 0.7.

Figure 4.   Flow characteristics versus φ2 when � = 0.2, ϕ1 = 0.02, M = 0.3, K = 0.7.

Figure 5.   Flow characteristics versus K when � = 0.2, ϕ1 = 0.02, ϕ2 = 0.01, M = 0.3.
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Thermal profile θ(η).  Next we shall discuss the effects of volume fractions (φ1, φ2) , Prandtl number (Pr) 
and homogeneous reaction heat parameter (RH ) upon thermal profile as expressed in Figs. 6, 7, 8, 9. The density 
of SWCNTs and MWCNTs grow up with corresponding augmentation in volumetric concentration of Fe3O4 
and CNTs denoted by φ1, φ2 respectively. Hence with growth in volume fractions of nanofluid there is an aug-
mentation in temperature of the fluid as depicted in Figs. 6, 7. The growing values of Prandtl number declines 
the thermal diffusivity and mass of the nanofluid. So growth in Pr reduces the thermal flow as shown in Fig. 8. It 
is also to be noticed that homogeneous reaction heat parameter is inversely proportional to the difference of heat 
transfer. Hence augmentation in (RH ) leads to a decline in heat transfer as depicted in Fig. 9.

Figure 6.   Thermal profiles versus φ1 when M = 0.5, � = 0.3 ,φ2 = 0.02 ,K = 0.7, Pr = 12 ,RH = 0.6.

Figure 7.   Thermal profiles versus φ2 when M = 0.5, � = 0.3 , φ1 = 0.02 ,K = 0.7, Pr = 12 ,RH = 0.6.

Figure 8.   Thermal profiles versus Pr when M = 0.5, � = 0.3 , φ1 = φ2 = 0.02 ,K = 0.7,RH = 0.6.
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Concentration profile ϕ(η).  Next we shall discuss the influence of volume fractions (φ1, φ2) , Schmidt 
number (Sc) and coefficient of homogeneous reaction (K) upon concentration profile as given in Figs. 10, 11, 
12, 13. The density of SWCNTs and MWCNTs grow up with corresponding augmentation in volumetric con-
centration of Fe3O4 and CNTs denoted by φ1, φ2 respectively. In this process the concentration boundary layer 
of hybrid nanofluid also grows up. Hence with augmentation in volume fraction of nanofluid, there is an aug-
mentation in concentration of the fluid as depicted in Figs. 10, 11. It is to be noticed that with augmentation in 
Schmidt number the mass diffusivity of the liquid reduces. Hence growth in the Schmidt number results a reduc-

Figure 9.   Thermal profiles versus RH when M = 0.5, � = 0.3 , φ1 = φ2 = 0.02 ,K = 0.7,Pr = 12.

Figure 10.   Concentration profile versus φ1 when M = 0.5, φ2 = 0.02 ,K = 0.7, Sc = 0.7,Pr = 12.

Figure 11.   Concentration profile versus φ2 when M = 0.5, φ1 = 0.02 ,K = 0.7, Sc = 0.7,Pr = 12.
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tion in concentration profile as depicted in Fig. 12. Moreover, the augmentation in coefficient of homogeneous 
reaction parameter leads to a drop down in concentration as depicted in Fig. 13.

Discussion of tables.  Table 3 portrays numerically, the impact of different values of emerging parameters 
upon coefficient of skin friction. From this table it is revealed that with augmentation in values of buoyancy 
parameter there is a growth in the values of skin friction coefficient. From Table 4 it is observed that with incre-
ment in Prandtl number the thermal boundary layer decreases due to which Nusselt number reduces gradually. 

Figure 12.   Concentration profile versus Sc when M = 0.5, φ1 = φ2 = 0.02 ,K = 0.7,Pr = 12.

Figure 13.   Concentration profile versus K when M = 0.5, φ1 = φ2 = 0.02 , Sc = 0.7,Pr = 12.

Table 3.   Impact upon skin friction regarding different values of emerging parameters.

� ϕ1 + ϕ2 M K 1/2Re
1/2
x Cfx for SWCNTs 1/2Re

1/2
x Cfx for SWCNTs +MWCNTs

0.0 0.01 0.1 0.1 0.9988 1.2346

0.5 1.0325 2.3457

0.9 1.2436 2.8578

0.02 1.3547 2.9689

0.03 1.4758 3.1799

0.05 1.5869 3.2831

0.2 1.6972 3.3943

0.3 1.8281 3.4452

0.4 1.9321 3.5661

0.2 2.0236 3.6782

0.3 2.1345 3.7971

0.4 2.2435 3.8182
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Moreover, Table 5 portrays that Sherwood number reduces numerically with a corresponding augmentation in 
Schmidt number because the concentration boundary layer gets thinner with augmentation in Schmidt number. 
The comparison between the results of current investigation and those published in the literature41,42 has been 
carried out in Table 6. A reasonable promise among these results has been noticed in this work.

Conclusion
An analytical study is carried out in current article for a gravity driven MHD flow of a coupled stress CNTs over 
a heated plate that is placed vertically upward. The homogenous-heterogeneous reactions are also assumed for 
current flow system. The modeled equations are changed to set of ODEs with the help of dimensionless quantities 
and then have determined its solution by employing HAM. The effects of emerging parameters encountered in the 
work are discussed in detail with the help of graphs. Following points are noticed after detail study of the work.

•	 Since the augmentation in magnetic effects leads to production of Lorentz force in fluid flow that opposes the 
fluid motion. Hence growth in magnetic parameter drops down the flow both for SWCNTs and MWCNTs.

•	 It is also to be noticed in this work that, with augmentation in volumetric concentrations the viscosity of the 
fluid is augmented and hence the fluid motion reduces.

•	 The augmentation in homogeneous reaction leads to decline in velocity profile both for SWCNTs and MWC-
NTs.

•	 The density of SWCNTs and MWCNTs grow up with corresponding augmentation in volumetric concentra-
tion that enhances thermal boundary layer and hence grows thermal characteristics.

•	 The augmentation in Prandtl number and homogeneous reaction heat parameter corresponds to a reduction 
in thermal characteristics of hybrid nanofluid. Moreover, enhancement in Prandtl number also corresponds 
to decline in Nusselt number.

•	 The density of SWCNTs and MWCNTs grow up with corresponding augmentation in volumetric concentra-
tion of CNTs that leads to growth in mass transfer.

•	 It is to be noticed that with augmenting values of Schmidt number the mass diffusivity of the liquid reduces 
and causes a decline in concentration boundary layer. Hence growth in Schmidt number leads to drop down 
in concentration as well as in Sherwood number, both for SWCNTs and MWCNTs.

•	 The impact of various physical parameters upon quantities of interest has been calculated numerically in the 
tabular form.

Table 4.   Impact upon Nusselt number regarding different values of emerging parameters.

Pr ϕ1 + ϕ2 NuxRe
−1/2
x  for SWCNTs NuxRe

−1/2
x  for SWCNTs +MWCNTs

6.5 0.5824 0.4632

6.7 0.4735 0.3521

6.8 0.3642 0.2431

6.9 0.02 0.4721 0.4342

0.03 0.4832 0.4931

0.04 0.5941 0.6021

Table 5.   Impact upon Sherwood number regarding different values of emerging parameters.

Sc ϕ1 + ϕ2 ShxRe
−1/2
x  for SWCNTs ShxRe

−1/2
x  for SWCNTs +MWCNTs

0.1 0.01 0.7215 0.6322

0.2 0.6126 0.5211

0.3 0.5237 0.4123

0.02 0.4348 0.3214

0.03 0.3459 0.2325

Table 6.   Comparison of the ( 1/2Re1/2x Cfx ) for present work with published work. When 
Pr = 10.2, Nt = Nb = 0.2, RH = Le = 0.5, Ks = 0.045.

� Raees and Hang41 Sohail and Hang42 Present

0.0 0.9887653 0.9887964 0.98879988212

0.3 1.0143357 1.01433875 1.0143431240

0.5 1.0321132 1.03212431 1.0321314210
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•	 In future, the influence of variable thermal conductivity, induced magnetic field and Hall effects can be 
incorporated for extension of current study. Moreover, the effects of Casson fluid can also be included in the 
current work.

Data availability
The data that support the findings of this investigation is available from the corresponding author upon reason-
able request.
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