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Bradyrhizob ium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming 
rod that was isolated from an effective nitrogen- (N2) fixing  root nodule formed on the annual  
legume Ornithopus p innatus (Miller) Druce growing at Oyster Harbour, Albany district, 
Western Australia in 1982. This strain is in commercial production as an inoculant for 
Lupinus and Ornithopus. Here we describe the features of Bradyrhizob ium sp. strain 
WSM471, together with genome sequence information and annotation. The 7,784,016 bp 
high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-
coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes se-
quenced as part of the DOE Joint Genome Institute 2010 Community Sequencing  Program. 

Introduction 
The most abundant form of nitrogen (N) occurs in 
the atmosphere as a chemically inert dinitrogen 
(N2) gas. However, N2 needs to be converted first 
into a biologically useable form through the 
unique process of N2 fixation [1]. The incorpora-
tion of fixed N into biologically essential macro-
molecules provides the basis for the continuance 
of life on Earth. Bioavailable N can be chemically 
synthesized (primarily through the products ob-
tained from the Haber-Bosch process) or biologi-
cally fixed by N2-fixing diazotrophs. The highest 
contribution to biological fixation occurs from the 
process of symbiotic nitrogen fixation (SNF). The 
estimated total annual input from SNF ranges 
from 139 - 175 million tons [2] which provides 
~70% of the N currently utilized in agriculture. 
However, various constraints from edaphic condi-
tions can limit SNF capacity in certain agricultural 

areas. To extend productive crops and pastures 
into these regions, considerable efforts have been 
devoted to sourcing legume hosts and their com-
patible microsymbionts from different geograph-
ical locations that are edaphically and climatically 
suited to the challenging areas into which they are 
to be introduced [3]. 
These selection programs have enabled the do-
mestication of new Mediterranean legume species 
that have overcome the deficiencies of the use of 
traditional species [4]. Seven species new to Aus-
tralian agriculture have been commercialized 
since 1993 including the Papilionoid legume 
Ornithopus sativus (serradella) [4]. This hard-
seeded deep-rooted and acid tolerant pasture leg-
ume has shown particular promise in acidic sandy 
soils exposed to low rainfall [4], with the potential 
to be established in four million hectares of sandy 
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soils for which no other suitable legume pasture 
exists [5]. The hard seeded nature of this legume 
makes it well adapted to crop rotation systems 
[4]. Currently, serradella is the most widely sown 
pasture in Western Australia and has proven to be 
a highly productive legume with high nutritive 
value [4]. 
The strains of lupin-nodulating Bradyrhizobium 
that also nodulate seradella are unusual since they 
have the capacity to establish symbioses with 
Mediterranean derived herbaceous and crop leg-
umes endemic to the cool climatic regions of the 
world. Before the 1990s, the commercial inoculant 
for serradella (Ornithopus spp.) in Australia was 
Bradyrhizobium sp. strain WU425, however during 
the breeding and evaluation of well adapted culti-
vars of O. sativus, it was revealed that WSM471 
produced 15% more biomass with this legume 
than did WU425 [5]. Strain WSM471 was isolated 
from nodules of O. pinnatus collected in Western 
Australia, in 1982, although it was almost certain-
ly accidentally introduced to Australia [6]. Be-
cause of its superior capacity to fix nitrogen with 
O. sativus relative to other strains of 
Bradyrhizobium, strain WSM471 was released as a 
commercial inoculant for this legume in Australia 
in 1996 [7] and remains in current usage. This 
strain is also the commercial “back-up” for inocu-
lation of lupins in Australia. Here we present a 
summary classification and a set of general fea-
tures for Bradyrhizobium sp. strain WSM471 to-
gether with the description of the complete ge-
nome sequence and its annotation. 

Classification and general features 
Bradyrhizobium sp. strain WSM471 is a motile, 
Gram-negative, non-spore-forming rod (Figure 1 

Left, Center) in the order Rhizobiales of the class 
Alphaproteobacteria. It is slow growing, forming 
colonies within 7-10 days when grown on half Lu-
pin Agar (½LA) [8] at 28°C. Colonies on ½LA are 
white-opaque, slightly domed, moderately mucoid 
with smooth margins (Figure 1 Right). 
Minimum Information about the Genome Se-
quence (MIGS) is provided in Table 1. Figure 2 
shows the phylogenetic relationship of 
Bradyrhizobium sp. strain WSM471 in a 16S rRNA 
sequence based tree. This strain clusters closest to 
Bradyrhizobium canariense LMG 22265T and 
Bradyrhizobium japonicum LMG 6138T with 99.9% 
and 99.5% sequence identity, respectively. 

Symbiotaxonomy 
Bradyrhizobium sp. strain WSM471 was isolated 
from nodules of Ornithopus pinnatus collected 
from Oyster Harbour, near Albany, Western Aus-
tralia (34.98 lat; 117.96 long), in 1982. The pur-
pose of the collection of the nodules that gave rise 
to WSM471 was to seek strains of nodulating bac-
teria that might improve the winter nitrogen fixa-
tion capacity of the symbiosis with Lupinus 
angustifolius. This symbiosis seemed to be limited 
by low winter temperatures, which was later con-
firmed by Peltzer et al. [22]. Strain WSM471 is 
highly effective for nitrogen fixation with the grain 
legumes L. pilosus, L. angustifolius and L. 
atlanticus, and also the forage legumes O. pinnatus, 
O. sativus and O. compressus [5,23]. Because 
WSM471 has a broad range for symbiotic nitrogen 
fixation across both pulse and forage legumes, and 
is in commercial usage, it was chosen as a candi-
date strain for sequencing. 

 

 
Figure 1. Images of Bradyrhizob ium sp. strain WSM471 using  scanning (Left) and transmission (Center) elec-
tron microscopy as well as light microscopy to visualize colony morphology on a solid medium (Right). 
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Table 1. Classification and general features of Bradyrhizob ium sp. strain WSM471 accord-
ing  to the MIGS recommendations [9].  

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [10] 

Phylum Proteobacteria  TAS [11] 

Class Alphaproteobacteria  TAS [12,13] 

Order Rhizob iales TAS [13,14] 

Family Bradyrhizob iaceae TAS [13,15] 

Genus Bradyrhizobium  TAS [16] 

Species Bradyrhizob ium sp. IDA 

  

 Gram stain Negative TAS [16] 

 Cell shape Rod TAS [16] 

 Motility Motile TAS [16] 

 Sporulation Non-sporulating TAS [16] 

 Temperature range Mesophile TAS [16] 

 Optimum temperature 28°C TAS [16] 

 Salinity Not reported  

MIGS-22 Oxygen requirement Aerobic TAS [16] 

 Carbon source  Varied TAS [16] 

 Energy source Chemoorganotroph TAS [16] 

MIGS-6 Habitat Soil, root nodule on host  IDA 

MIGS-15 Biotic relationship Free living , symbiotic IDA 

MIGS-14 Pathogenicity Non-pathogenic NAS 

 Biosafety level 1 TAS [17] 

 Isolation Root nodule IDA 

MIGS-4 Geographic location Albany, Western Australia IDA 

MIGS-5 Nodule collection date 1982  IDA 

MIGS-4.1  Longitude 117.96 IDA 

MIGS-4.2 Latitude -34.98 IDA 

MIGS-4.3 Depth Not recorded  

MIGS-4.4 Altitude 69m IDA 

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., 
a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not di-
rectly observed for the living , isolated sample, but based on a generally accepted property 
for the species, or anecdotal evidence). These evidence codes are from the Gene Ontolo-
gy project [18]. 
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Figure 2. Phylogenetic tree showing the relationships of Bradyrhizob ium sp. strain WSM471 (shown in blue 
print) with some of the root nodule bacteria in the order Rhizobiales based on aligned sequences of the 16S 
rRNA gene (1,310 bp internal reg ion). All sites were informative and there were no gap-containing  sites. Phy-
logenetic analyses were performed using  MEGA, version 5.05 [19]. The tree was built using  the maximum 
likelihood method with the General Time Reversible model. Bootstrap analysis [20] with 500 replicates was 
performed to assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a 
genome sequencing  project reg istered in GOLD [21] are in bold print and the GOLD ID is mentioned after 
the accession number. Published genomes are designated with an asterisk. 
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Genome sequencing and annotation  
information 
Genome project history 
This organism was selected for sequencing on the 
basis of its environmental and agricultural rele-
vance to issues in global carbon cycling, alterna-
tive energy production, and biogeochemical im-
portance, and is part of the Community Sequenc-
ing Program at the U.S. Department of Energy, 
Joint Genome Institute (JGI) for projects of rele-
vance to agency missions. The genome project is 
deposited in the Genomes OnLine Database [21] 
and an improved-high-quality-draft genome se-
quence in IMG. Sequencing, finishing and annota-
tion were performed by the JGI. A summary of the 
project information is shown in Table 2. 

Growth conditions and DNA isolation 
Bradyrhizobium sp. strain WSM471 was grown to 
mid logarithmic phase in TY rich medium [24] on 
a gyratory shaker at 28°C. DNA was isolated from 
60 mL of cells using a CTAB (Cetyl trimethyl am-
monium bromide) bacterial genomic DNA isola-
tion method [25]. 

Genome sequencing and assembly 
The genome of Bradyrhizobium sp. WSM471 was 
generated at the DOE Joint Genome Institute (JGI) 
using a combination of Illumina [26] and 454 tech-
nologies [27]. An Illumina GAii shotgun library 
which generated 67,039,982 reads totaling 5,095 
Mb and 1 paired end 454 library with an average 
insert size of 5 Kb which generated 397,976 reads 
totaling 83.7 Mb of 454 were generated for this ge-
nome. All general aspects of library construction 
and sequencing performed at the JGI can be found 
at the JGI website [25]. The initial draft assembly 

contained 236 contigs in 2 scaffolds. The 454 Tita-
nium standard data and the 454 paired end data 
were assembled together with Newbler, version 
2.3. The Newbler consensus sequences were com-
putationally shredded into 2 Kb overlapping fake 
reads (shreds). Illumina sequencing data was as-
sembled with Velvet, version 1.0.13 [28], and the 
consensus sequence were computationally shred-
ded into 1.5 kb overlapping fake reads (shreds). We 
integrated the 454 Newbler consensus shreds, the 
Illumina Velvet consensus shreds and the read 
pairs in the 454 paired end library using parallel 
phrap, version SPS - 4.24 (High Performance Soft-
ware, LLC). The software Consed [29-31] was used 
in the following finishing process. Illumina data 
was used to correct potential base errors and in-
crease consensus quality using the software Polish-
er developed at JGI (Alla Lapidus, unpublished). 
Possible mis-assemblies were corrected using 
gapResolution (Cliff Han, unpublished), Dupfinisher 
[32], or sequencing cloned bridging PCR fragments 
with subcloning. Gaps between contigs were closed 
by editing in Consed, by PCR and by Bubble PCR (J-
F Cheng, unpublished) primer walks. A total of 327 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence. 
The estimated genome size is 7.8 Mb and the final 
assembly is based on 53.8 Mb of 454 draft data 
which provides an average 6.9× coverage of the 
genome and 4,879.9 Mb of Illumina draft data 
which provides an average 625.6× coverage of the 
genome. 

Table 2. Genome sequencing  project information for Bradyrhizob ium sp. strain WSM471.  
MIGS ID Property Term 
MIGS-31 Finishing  quality Non-contiguous Finished 
MIGS-28 Libraries used Illumina GAii shotgun and paired end 454 libraries 
MIGS-29 Sequencing platforms Illumina GAii and 454 GS FLX Titanium technologies 
MIGS-31.2 Sequencing coverage 6.9× 454 paired end, Illumina 625.6 
MIGS-30 Assemblers Velvet1.0.13, Newbler 2.3, phrap 4.24 
MIGS-32  Gene calling  methods Prodigal 1.4, GenePRIMP 
 Genbank ID CM001442 
 Genbank Date of Release February 2, 2012 
 GOLD ID Gi06491 
 NCBI project ID 61807 
 Database: IMG 2508501009  
 Project relevance Symbiotic N2-fixation, agriculture 
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Genome annotation 
Genes were identified using Prodigal [33] as part 
of the DOE-JGI Annotation pipeline [34] followed 
by a round of manual curation using the JGI 
GenePRIMP pipeline [35]. The predicted CDSs 
were translated and used to search the National 
Center for Biotechnology Information (NCBI) non-
redundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. These 
data sources were combined to assert a product 
description for each predicted protein. Non-
coding genes and miscellaneous features were 
predicted using tRNAscan-SE [36], RNAMMer [37], 
Rfam [38], TMHMM [39], and SignalP [40]. Addi-
tional gene prediction analyses and functional an-

notation were performed within the Integrated 
Microbial Genomes (IMG-ER) platform [41]. 

Genome properties 
The genome is 7,784,016 nucleotides with 63.40% 
GC content (Table 3) and comprised of 1 scaffold 
(Figure 3a, Figure 3b) of 2 contigs. From a total of 
7430 genes, 7,372 were protein encoding and 58 
RNA only encoding genes. Within the genome, 274 
pseudogenes were also identified. The majority of 
genes (74.10%) were assigned a putative function 
whilst the remaining genes were annotated as hy-
pothetical. The distribution of genes into COGs 
functional categories is presented in Table 4. 

 

Table 3. Genome Statistics for Bradyrhizob ium sp. strain WSM471.  
Attribute Value % of Total 

Genome size (bp) 7,784,016 100.00 

DNA coding reg ion (bp) 6,519,740 83.76 

DNA G+C content (bp) 4,935,436 63.40 

Number of scaffolds 1  

Number of contigs 2  

Total genes 7,430 100.00 

RNA genes 58 0.78 

rRNA operons 1 0.01 

Protein-coding genes 7,372 99.22 

Genes with function prediction 5,506 74.10 

Genes assigned to COGs 5,507 74.12 

Genes assigned Pfam domains 5,758 77.50 

Genes with signal peptides 834 11.22 

Genes with transmembrane helices 1,739 23.41 

CRISPR repeats 0  
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Figure 3a. Graphical circular map of the chromosome of Bradyrhizobium sp. strain 
WSM471. From outside to the center: Genes on forward strand (color by COG categories as 
denoted by the IMG platform), Genes on reverse strand (color by COG categories), RNA 
genes (tRNAs green, sRNAs red, other RNAs black), GC content, GC skew. 

 

Figure 3b. Graphical circular map of the plasmid of Bradyrhizobium sp. 
strain WSM471. From outside to the center: Genes on forward strand (color 
by COG categories as denoted by the IMG platform), Genes on reverse 
strand (color by COG categories), RNA genes (tRNAs green, sRNAs red, 
other RNAs black), GC content, GC skew. 
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Table 4. Number of protein coding genes of Bradyrhizob ium sp. strain WSM471 associat-
ed with the general COG functional categories. 

Code Value %age Description 

J 208 3.37 Translation, ribosomal structure and biogenesis 

A 1 0.02 RNA processing  and modification 

K 395 6.41 Transcription 

L 268 4.35 Replication, recombination and repair 

B 2 0.03 Chromatin structure and dynamics 

D 33 0.54 Cell cycle control, mitosis and meiosis 

Y 0 0.00 Nuclear structure 

V 85 1.38 Defense mechanisms 

T 369 5.98 Signal transduction mechanisms 

M 327 5.30 Cell wall/membrane biogenesis 

N 121 1.96 Cell motility 

Z 1 0.02 Cytoskeleton 

W 0 0.00 Extracellular structures 

U 102 1.65 Intracellular trafficking and secretion 

O 191 3.10 Posttranslational modification, protein turnover, chaperones 

C 410 6.65 Energy production conversion 

G 406 6.58 Carbohydrate transport and metabolism 

E 645 10.46 Amino acid transport metabolism 

F 88 1.43 Nucleotide transport and metabolism 

H 234 3.79 Coenzyme transport and metabolism 

I 335 5.43 Lipid transport and metabolism 

P 304 4.93 Inorganic ion transport and metabolism 

Q 238 3.86 Secondary metabolite biosynthesis, transport and catabolism 

R 770 12.49 General function prediction only 

S 634 10.28 Function unknown 

- 1,923 25.88 Not in COGS 
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