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Cancer Dependency Map (CDM) genes comprise an extensive series of genome-scale RNAi-based loss-of-function tests; hence, it
served as a method based on the CRISPR-Cas9 technique that could assist scientists in investigating potential gene functions.
/ese CDM genes have a role in tumor cell survival and proliferation, suggesting that they may be used as new therapeutic targets
for some malignant tumors. So far, there have been less research on the involvement of CDM genes in breast cancer, and only a
tiny percentage of CDM genes have been studied. In this study, information of patients with breast cancer was extracted from/e
Cancer Genome Atlas (TCGA), from which differentially expressed CDM genes in breast cancer were determined. A variety of
bioinformatics techniques were used to assess the functions and prognostic relevance of these confirmed CDM genes. In all, 290
CDM genes were found differentially expressed. Six CDM genes (SRF, RAD51, PMF1, EXOSC3, EXOC1, and TSEN54) were
found to be associated with the prognosis of breast cancer samples. Based on the expression of the identified CDM genes and their
coefficients, a prognosis model was constructed for prediction, according to which patients with breast cancer were separated into
two risk groups. /ose with high risk had substantially poorer overall survival (OS) than patients in the other risk group in the
TCGA training set, TCGA testing set, and an external cohort fromGene Expression Omnibus (GEO) database./e area under the
receiver operating characteristic (ROC) curve for this prognostic signature was, respectively, 0.717 and 0.635 for TCGA training
and testing sets, demonstrating its reliability in predicting the prognosis of patients with breast cancer. We next created a
nomogram using the six CDM genes discovered to create a therapeutically useful model. /e Human Protein Atlas database was
used to acquire all immunohistochemistry staining images of the discovered CDM genes. /e proportions of tumor-infiltrating
immune cells, as well as the expression levels of checkpoint genes, varied substantially between the two risk groups, according to
the analyses of immune response. In conclusion, the findings of this research may aid in the understanding of the prognostic value
and biological roles of CDM genes in breast cancer.

1. Introduction

Breast cancer is one of the most prevalent malignancies in
women [1]. Meanwhile, male breast cancer accounts for
approximately 1% of all breast cancer cases globally, and
clinical data suggest that it has been on the increase in recent
years [2]. Breast cancer screening has been shown to de-
crease mortality from the disease [3]. Patients with breast
cancer have a five-year survival rate of almost 98% if the
illness is identified early [4]. Although the survival rate for

breast cancer patients has improved, the survival rate for
advanced-stage patients remains low, particularly for pa-
tients with locally advanced breast cancer [5], which affects
up to 20% of patients with breast cancer [6]. Hence, un-
derstanding the molecular processes that cause breast cancer
remains an important challenge for us to develop new
treatments [7].

/e Broad Institute and the Dana-Farber Cancer In-
stitute started a project called “Defining a Cancer Depen-
dency Map” to find genes that encouraged cancer cell
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development [8]. /is significant research demonstrated the
significance of certain genes in the development and prolif-
eration of cancer cells. /ese certain genes may be used as
targets for the development of new targeted medicines. More
than 500 human cancer cell lines that were often used to
investigate the impact of shutting off specific genes on pro-
liferation and growth for their ability of growing indefinitely
were examined in this research. In detail, cancer cell lines were
transformed with a lentiviral vector expressing Cas9 nuclease
under cystatin selection (pXPR-311Cas9) [9]. Cas9 activity
assays were performed on each Cas9-expressing cell line to
characterize the effect of CRISPR/Cas9 on these cell lines. Cell
lines that detected Cas9 activity below 45%were not eligible for
further screening. Although the majority of these identified
certain genes were cancer-specific, approximately 10% of them
were shown to be involved in various malignant tumors, in-
dicating that they had important biological roles. /is research
also found that studying gene activity patterns rather than
concentrating on whether a particular gene was faulty was the
best method to anticipate this dependency [10]. More relevant
genes were identified and uploaded to the website (https://
depmap.org/portal/) as the study progressed and real-time
updates were made [9]. A total of 1246 CDM genes were
included in the study in the most recent update of the dataset,
and they were shown to be frequent and important in the
incidence and development of different malignancies.

In this research, breast cancer data from TCGA was
downloaded, and differentially expressed CDM genes were
identified, as well as their potential roles and processes. A
CDM gene-based prognosis signature was then created and
further validated, based on which, some CDM genes may be
utilized as possible prognostic biomarkers.

2. Materials and Methods

2.1. Data Collection and Processing. RNA-sequencing and
clinical feature information of breast cancer were all down-
loaded online from a database named /e Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/). A total of 1,246
CDM genes were acquired from a project named Cancer
Dependency Map online (https://depmap.org/portal/) [9].
CDM genes with FDR adjusted P values <0.05 along with the
log2|fold change| values >0.5 were identified as candidate
ones since they were significantly differentially expressed
between breast cancer patients and normal samples in TCGA
training set using packages of R software (version 4.0.5).
Volcano plots and heatmaps were, respectively, visualized
with the “ggplot2” [11] and “pheatmap” [12] packages in R
software. /e TCGA testing set was used to validate the
results from training set. An external validation dataset of
breast cancer, which included transcription profiles and
clinical information, were downloaded from the Gene Ex-
pression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc�GSE53031).

2.2. Enrichment and Pathway Analyses. To explore the
function of identified prognosis-related CDM genes, func-
tion and pathway enrichment analyses were carried out.

Pearson correlation test was also used to assess those can-
didate CDM genes. Genes were further classified via the
package named “clusterProfiler” [13] in R software
according to the projection of GO [14] (http://www.
geneontology.org/) or KEGG [15] (http://www.genome.jp/
kegg/pathway.html) pathways at a specific level. Of course,
GO terms or KEGG pathway with a corrected-P< 0.05 were
considered as significant enrichment.

2.3. Construction and Validation of a CDM Gene-Based Risk
Model. /e samples in the breast cancer cohort from TCGA
were randomly separated into two sets: a training set con-
taining 524 samples and a testing set containing 522 samples.
Univariate Cox regression analysis was carried out on those
identified prognosis-related CDM genes using R software.
/e log-rank test was performed to analyze the statistical
significance. Multivariate Cox regression analysis was further
carried out on the genes chosen by univariate Cox regression
analysis to identify ones with independently prognostic value.
/e six CDM genes that were finally identified bymultivariate
Cox regression analysis were then used to construct a risk
model using their expression levels and coefficient values./e
risk score (RS) was calculated for each sample in TCGA
training set, the median one of which was chosen as cut-off.
According to the cut-off value, patients with breast cancer
were divided into the high-risk group or low-risk group.
Overall survival (OS) and receiver operating characteristic
(ROC) curve analyses were carried out by packages in R
software to evaluate the predictive value of the risk model in
breast cancer, which was further confirmed by the TCGA
testing set. Besides, we established a nomogram based on the
constructed risk model and independent clinical factors,
where significance was taken at P< 0.05.

2.4. Human Protein Atlas Database Analysis. To investigate
the protein expression levels of the hub CDM genes involved
in the signature in human normal and breast cancer tissues,
we downloaded the representative images of the immuno-
histochemical assay from the Human Protein Atlas (http://
www.proteinatlas.org) [16].

2.5. Immunity-RelatedAnalysis. We further used the Tumor
Immune Estimation Resource (TIMER) [17], CIBERSORT
[18], QUANTISEQ [19], XCELL [20], MCP counter [21],
and Estimating the Proportion of Immune and Cancer cells
(EPIC) [22] to comparatively assess cell immune responses
or cellular components between two different risk groups.
Moreover, single-sample GSEA (ssGSEA) was utilized to
compare and quantify the subgroups of the tumor-infil-
trating immune cells, as well as their immunological
function, in two groups with different risks. Previous re-
search yielded a list of possible immunological checkpoints.

2.6. Statistical Analysis. Chi2 tests were used to examine
relationships between categorical and continuous variables
in testing and training sets from TCGA. Univariate Cox
proportional hazards regression (CPHR) analysis and the
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Kaplan–Meier technique were used to confirm candidate
CDM genes that were substantially linked to the OS of
patients with breast cancer. Stepwise multivariate CPHR
studies were used to identify both important clinical factors
and the risk score calculation. Survival curves were produced
using the Kaplan–Meier technique, which were then eval-
uated using the log-rank test method. A time-dependent
ROC curve was used to evaluate the risk model’s specificity
and sensitivity in predicting patients’ survival. /e t-test was
carried out to compare the differences between two risk
groups in training and testing sets. R software with packages
was used to conduct the statistical analyses in this research.
Statistical significance was determined when the P value was
less than 0.05.

3. Results

3.1. Differentially ExpressedCDMGenes andRelated Pathway
Enrichment Analyses in Breast Cancer. We first analyzed the
expression levels of 1246 CDM genes between the patients
and controls to identify differentially expressed ones. As
shown in Figure 1(a), a total of 290 CDM genes were chosen,
which composed of 116 downregulated genes and 174
upregulated ones. /e heatmap in Figure 1(b) revealed the
290 differentially expressed genes between patients and
controls with FDR<0.05 and log2|fold change|>0.5. To in-
vestigate these identified CDM genes’ function and related
mechanisms, we carried out functional analyses of them,
which mainly concluded KEGG and GO pathway enrich-
ment analyses. As shown in Figures 1(c) and 1(d), down-
regulated CDM genes were enriched in RNA splicing,
translational initiation, and so on, while upregulated CDM
genes were enriched in DNA replication, chromosome
segregation, nuclear division, and so on. GO enrichment
analysis revealed that those downregulated genes mainly
enriched in RNA transport and citrate cycle, and upregu-
lated genes enriched in cell cycle, DNA replication, and
homologous recombination (Figures 1(e) and 1(f)).

3.2. Identification of Prognostic-Related CDM Genes and
Construction of the Prognostic Model. To explore the effects
of CDM genes in predicting the prognosis of patients with
breast cancer, we studied the relationship between the 290
differentially expressed CDM genes and the OS of patients
with breast cancer by univariate Cox regression analysis. As
shown in Figure 2(a), 22 CDM genes were selected as
candidate genes for their significantly association with the
OS of breast cancer patients./en, we further carried out the
multivariate Cox analysis and identified six hub genes with
an independent prognostic value (Figure 2(b)). Based on the
six candidate hub genes, we established a model to predict
the prognosis for those patients with breast cancer: risk
score� coef (i)∗ exp (i), where coef (i) meant the multi-
variate Cox regression coefficient and exp (i) meant the
expression level. We assessed the risk score of each sample
from the TCGA training set, and the median value was
identified as the cut-off, based on which patients with breast
cancer were divided into the low-risk or high-risk group.

3.3. Validation of the Risk Model in the TCGA and GEO
Databases. To evaluate the prognostic value of the con-
structed risk model, we performed Kaplan–Meier survival
analysis and found that patients with high risk in the training
set had poorer prognosis than those with low risk
(Figure 3(a)). /e time-dependent ROC analysis showed the
area under the ROC curve (AUC) was 0.717 at 1 year
(Figure 3(b)), which indicated the good prognostic value of
the identified model in the TCGA training set. /e heatmap
of the hub 6 CDM genes and patients’ survival status in the
training set are shown in Figures 3(c) and 3(d). To further
explore the predictive value of the identified risk model
composed of 6 CDM genes in the TCGA testing set, we
carried out survival analysis and ROC analysis. As shown in
Figure 4(a), patients with lower risk scores in the testing set
had significantly longer survival time than those with higher
risk scores. Also, the AUC was 0.635 at 1 year in the testing
set (Figure 4(b)). /e survival status and risk scores of
patients in the testing set, along with the expression heatmap
of the 6 hub genes in testing set are shown in Figures 4(c) and
4(d).

Further validation of the risk model on the patients with
breast cancer by GSE53031 cohort from the GEO database
were carried out, and the results (Figure S1) showed that the
six identified CDM genes were closely linked to the prog-
nosis of patients not only from TCGA but also from an
external dataset from GEO. To further validate the efficiency
of the signature based on CDM genes in predicting the
survival, we compared the constructed signature with an-
other two signatures reported recently in the TCGA-breast
cancer cohort./e nine-gene signature derived fromWang’s
research (WangSig) was built based on the analyses of the
ferroptosis-related information from breast cancer [23].
However, the six-gene signature from Mo’s study (MoSig)
was constructed based on integrated multiomics data
analysis [24]. As shown in Figure S2, CDMSig had a higher
AUC value (AUC� 0.684) than that of the WangSig
(AUC� 0.587) and the MoSig (AUC� 0.478), suggesting
that the CDM gene-based signature we built had a good
predictive performance.

3.4. Establishment of a Nomogram Combining with Clinical
Characteristics. Considering that the constructed risk model
was significantly associated with poor prognosis, we com-
bined the OS of breast cancer patients with their clinical
features and performed univariate and multivariate Cox
analysis to explore whether the signature we constructed
could serve as an independent factor to predict the prog-
nosis. As shown in Figure 5, all the P values were less than
0.001, indicating that the signature had an independent
prognostic value. /e heatmap in Figure 6(a) showed the
association between the six identified CDM genes in the
prognostic risk model and clinical manifestations of all
breast cancer samples from TCGA. /en, by combing all
these clinical features and the constructed signature, we
established a nomogram to expand the application and
availability of the constructed risk model in clinic
(Figure 6(b)).
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Figure 1: Identification of differentially expressed Cancer Dependency Map (CDM) genes in breast cancer and pathway enrichment
analyses. (a) Volcano plot of CDM genes in patients with breast cancer from the TCGA database. (b) Heatmap of CDM genes. KEGG
pathway enrichment of those downregulated CDM genes (c) and those upregulated ones (d). GO pathway enrichment of those down-
regulated CDM genes (e) and those upregulated ones (f ).
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multivariate (b) Cox regression analyses on the differentially expressed CDM genes.
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3.5. Protein Expression Levels of Identified Hub CDM Genes.
We used the Human Protein Atlas online to evaluate the
protein expression levels of the 6 CDM genes in breast
cancer sample and normal human mammary tissue. As
shown in Figure 7, SRF and EXOSC3 expression levels were
lower in tumor tissues than in control tissues, while RAD51
and EXOC1 were significantly higher in tumor tissues./ese
results indicated that RAD51 and EXOC1 might be path-
ogenic factors, while SRF and EXOSC3 might be protective
factors in breast cancer, which were consistent with their
coefficients in the risk model.

3.6. Immune-Related Analysis of the Established Risk Model.
As the immune status has been reported significantly as-
sociated with breast cancer [25], we further explored the
immune responses between two risk groups via TIMER
algorithms, CIBERSORT, QUANTISEQ, XCELL, MCP
counter, and EPIC (Figure 8). /e enrichment fractions of
immune cells were analyzed to explore the association be-
tween the immune status and risk scores in patients with
breast cancer from the TCGA database. As shown in Fig-
ure 9, the antigen presentation process contents, including
HLA, B cells, NK cells, and mast cells, were significantly
declined in the high-risk group. Also, comparing with the
patients in the low-risk group, the scores of Tfh cells, T cell
co-stimulation, and CD8+ Tcells were obviously lower in the
patients with higher risk scores, which indicated the dif-
ference in the regulation of T cells between the two risk
groups. In addition, the fractions of checkpoints, CCR, and
the activity of type II IFN response were lower in patients in
the high-risk group, while the macrophages scores showed
the opposite. Furthermore, we explored the expression levels

of immune checkpoints and found that LAG3, CD27,
PDCD1, CD40, and TNFRSF14 were significantly different
between two groups with different risk scores (Figure 10).

4. Discussion

It still remains difficult for us to identify genes whether they
are essential for the survival of tumor, for that most tumors
especially malignant ones are closely associated with genetic
mutations. /ese genetic mutations are often related with
the cell growth and specific vulnerabilities to specific
damages [26]. It has been reported that some of these
mutations have potential as therapeutic targets [27]. Hence,
the challenge nowadays for us is how to identify specific
targetable vulnerabilities for every cancer by using current
tools [28]. Scientists have profiled about hundreds of cell
models to elucidate genomic information. Large-scale da-
tabases have also been searched for hoping that the iden-
tification of genetic targets would help a lot in developing
novel therapies, identifying the certain treatments for pa-
tients and allowing physicians to better understand the
weaknesses of cancers. Actually, a project named Cancer
Dependency Map, has committed to remain freely available
to the public. /e related information could be downloaded
online freely (https://depmap.org/portal/depmap/). CDM
has been used as a novel method to explore the priority
targets, as well as the drug sensitivity to different cancers.
Hence, it will help scientists discover new targeted therapies
as soon as possible, thus facilitating progress in precision
therapy [29].

To date, studies on the roles of CDM genes are scarce
[30, 31]. In this study, 1246 CDM genes were analyzed and a
total of 290 differentially expressed CDM genes had been
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Figure 5: Validation for the prognostic value of the constructed risk model along with different clinical characteristics. Univariate (a) and
multivariate (c) COX regression analysis of the signature and different clinical features in the TCGA training set. Univariate (b) and
multivariate (d) COX regression analysis of the signature and different clinical features in the TCGA testing set.

N
M
T
Stage
Gender
Age
risk

SRF

RAD61

PMF1

EXOSC3 risk

Age

Gender

Stage

T

M

N
N0
N1
N2
N3
unknow

T1
T2
T3
T4
unknow

Stage I
Stage II
Stage III
Stage IV
unknow

FEMALE
MALE

high

<=65
>65

low

M0
M1
unknow

EXOC1

TSEN54

−2

0

2

4

−4

(a)

Figure 6: Continued.

10 Journal of Oncology



identified. /e univariate and multivariate Cox regression
analysis revealed that six CDM genes (SRF, RAD51, PMF1,
EXOSC3, EXOC1 and TSEN54) were associated with the
survival of patients with breast cancer. Hence, a CDM gene-
related risk model was established in the training set based
on the six genes and was further validated in TCGA testing
set. It was further proven by ROC analysis to be reliable in
predicting the prognosis of breast cancer patients. In ad-
dition, we constructed a nomogram to improve clinical
practicality of the constructed risk model for patients with
breast cancer. /ese results might make it easier for us to
understand the mechanisms of breast cancer and help us
explore new biomarkers for patients with breast cancer.
Functional and enrichment pathway analyses revealed that
upregulated CDM genes mainly took part in DNA repli-
cation, nuclear division, chromosome segregation, cell cycle,
DNA replication, and homologous recombination, while
downregulated CDM genes were mainly involved in RNA
splicing, translational initiation, RNA transport, and citrate
cycle. During the past few years, it has been reported that
abnormal metabolism [32–34] and processing [35–37] of
DNA play critical roles in many neoplastic diseases.

/e results of the multivariate Cox regression analysis of
the six identified CDM genes revealed that all of them had

prognostic value for breast cancer. Consistent with our
findings, He et al. [38] demonstrated that SRF could regulate
the promoter activity of HOTAIR, a negative prognostic
factor for breast cancer, thus affecting the invasiveness and
proliferation of breast cancer cells. /e overexpression of
RAD51 has been found in various cancers, including breast
cancer, and it is revealed closely associated with poor sur-
vival [39]. Also, by combining with Nrf-2, PMF1 could
regulate the expression of SSAT [40], which affects the
apoptotic cell death in breast cancer cells [41]. Although
there has been few researches on the roles of EXOSC3 and
EXOC1 in breast cancer, the results from theHuman Protein
Atlas (Figure 8) showed that the expression of EXOSC3 and
EXOC1 were significantly different between tumor tissues
and control tissues, and their expression levels showed the
same trend with the results of multivariate Cox regression
analysis.

As breast cancer is characterized by tumor heterogeneity
[42, 43], which is also the main reason that leads to the
complexity of treatment [44], a more reliable model with
prediction value is urgently needed. Although there have
been several signatures constructed for predicting the
prognosis of patients with breast cancer [45–47], the rela-
tionship between these indicators and breast cancer remains
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Figure 6: Construction of a nomogram for prediction. (a) Heatmap for the CDM gene-based signature with clinicopathological man-
ifestations in TCGA-breast cancer set. (b) Nomogram for predicting 1-, 3-, and 5-year OS of patients with breast cancer.
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unclear. /en, using the six identified CDM genes, we
established a risk model with prognostic value for patients
with breast cancer by combining the data from the TCGA
training set. /e ROC analysis demonstrated that the
constructed signature could select out patients with poor
prognosis by calculating their values. /e ROC analysis
based on data from the TCGA testing set showed the same
results. Further confirmation of the reliability of the con-
structed signature was done by Kaplan–Meier analysis.

What is more, the multiple Cox regression analyses in the
TCGA training set and testing set both revealed that the
CDM gene-based signature could serve as an independent
indicator for predicting the prognoses of patients with breast
cancer. All of the findings aforementioned pointed out the
CDM gene-based prediction risk model had clinical prac-
ticality. A nomogram was further constructed to provide an
easier method to enable the physicians predict the survival of
patients with breast cancer.

EXOC1

EXOSC3

RAD51

SRF

Control Tumor

Figure 7: /e representative images of the immunohistochemical images of identified CDM genes from the Human Protein Atlas database.
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Figure 9: Immune-related analyses for the patients with breast cancer from TCGA. (a) Correlation analysis for immune cell subpopulations
between the two breast cancer risk groups. (b) ssGSEA for the association between immune cell subpopulations and related functions
between two risk groups.
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It is well known that in the pathogenesis of breast cancer,
tumor-infiltrating immune cells play important roles [48]
since over 70% of patients with breast cancer contain tumor-
infiltrating lymphocytes [49]. To investigate the relationship
of the constructed risk model and the immune status of
patients with breast cancer, we divided all samples from
TCGA into two risk groups according to their scores. Of
note, consistent with previous researches, immune check-
point genes, CD40, and TNFRSF14 were negatively related
with the CDM gene-based signature. /e activation of CD40
is important in the generation of T cell immunity [50].
Besides, the absence of TNFRSF14 would change the mi-
croenvironment of tumors [51, 52].

However, this study also has limitations. First, the in-
formation fromTCGA database did not contain information
of the preoperative and postoperative parameters, which
made it impossible to carry out more comprehensive ana-
lyses with these potential and important factors. Second,
since the data of this study were downloaded from TCGA, it
was more in line with the characteristics of a retrospective
study. Hence, to further validate the results, we need to carry
out prospective clinical studies.

In summary, we explored the potential functions of the
differentially expressed CDM genes in patients with breast
cancer. A CDM gene-based risk model was constructed,
which could predict the prognoses of patients with breast
cancer. Besides, a clinically practical nomogram that can
predict prognoses of breast cancer patients was constructed
to help individual management in clinic.
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