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Abstract: The pathogenesis of several neurodegenerative diseases such as Alzheimer’s or Hunting-
ton’s disease has been associated with metabolic dysfunctions caused by imbalances in the brain
and cerebral spinal fluid levels of neuroactive metabolites. Kynurenine monooxygenase (KMO) is
considered an ideal therapeutic target for the regulation of neuroactive tryptophan metabolites. De-
spite significant efforts, the known KMO inhibitors lack blood–brain barrier (BBB) permeability and
upon the mimicking of the substrate binding mode, are subject to produce reactive oxygen species as
a side reaction. The computational drug design is further complicated by the absence of complete
crystal structure information for human KMO (hKMO). In the current work, we performed virtual
screening of readily available compounds using several protein–ligand complex pharmacophores.
Each of the pharmacophores accounts for one of three distinct reported KMO protein-inhibitor
binding conformations. As a result, six novel KMO inhibitors were discovered based on an in vitro
fluorescence assay. Compounds VS1 and VS6 were predicted to be BBB permeable and avoid the
hydrogen peroxide production dilemma, making them valuable, novel hit compounds for further
drug property optimization and advancement in the drug design pipeline.

Keywords: kynurenine monooxygenase; flavoprotein hydroxylase; virtual screening; pharma-
cophore; structure-based drug design; hydrogen peroxide; Alzheimer’s disease; neurodegeneration

1. Introduction

Kynurenine-3-monooxygenase (KMO, in the past also referred to as kynurenine-3-
hydroxylase), has emerged as a therapeutic target for the treatment of numerous neurologi-
cal disorders including Alzheimer’s disease (AD) [1–3], Huntington’s disease (HD) [4,5],
Parkinson’s disease (PD) [6], schizophrenia [7–9], depression [10,11], and neuropathic
pain [12–14] and its inhibition has been found to be protective against cancer [15] and mul-
tiple organ disorder in acute pancreatitis [16]. Located at a critical branch point in the main
metabolic pathway of L-tryptophan, KMO facilitates the hydroxylation of L-kynurenine
(L-kyn) to 3-hydroxy-kynurenine (3-HK) as opposed to the kynurenine aminotransferase
(KAT) branch, which catalyzes the cyclization of L-kyn to form kynurenic acid (KynA)
(Figure 1). For neurological disorders, the positive effect of KMO inhibition is associated
with reducing elevated levels of the downstream metabolites 3-HK and quinolinic acid
(QUIN), both of which are highly reactive free radicals, and the latter is well-known to
induce excitotoxicity in neurons such as NMDAR and AMPAR receptor agonists [17].

Over the past 25 years, several classes of novel and highly potent KMO inhibitors
(sulfonamides [18,19], aryl-pyriminides [20], benzoylalanin derivatives [21,22], oxazolidi-
nones [23,24]) have been discovered through substrate-based rational design approaches
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(Figure 2A). Independent in vivo studies performed with several promising KMO inhibitors
UPF 648 [25], Ro 61-8048 [26], and 4,4-dichlorobenzoylalanine [27] have demonstrated a
positive therapeutic effect of decreasing the QUIN/KynA ratio in the brain, mainly via an
increase of KynA levels. However, the absolute majority of current KMO inhibitors contain
a carboxylic acid group or are considered BBB impermeable; hence they have a very limited
effect on reducing the elevated levels of neurotoxic QUIN in the brain. Therefore, it has
been suggested that the BBB permeability of KMO inhibitors should be enhanced to achieve
both therapeutic benefits of increased levels of KynA and decreased levels of downstream
neurotoxic metabolites 3-HK and QUIN for the treatment of CNS disorders [28,29]. Modest
success in identifying a BBB permeable KMO inhibitor was first achieved only very recently
via a prodrug strategy [30], whereas the first BBB permeable KMO inhibitor had just been
reported upon the writing of the current article [31].

Figure 1. Simplified scheme of the kynurenine pathway of tryptophan metabolism. Neuroprotective metabolites are labeled
in green color, neurotoxic in red.

Another substantial disadvantage of known substrate-like KMO inhibitors is that
they act as non-substrate effector molecules (Type I inhibitors) by stimulating the flavin
reduction by NADPH and, as a consequence, generate cytotoxic hydrogen peroxide [32]. It
has been reported that upon binding of L-kyn or non-substrate effectors, a conformational
change occurs in the active site, which would facilitate the NADPH cofactor binding and
hydride transfer [33]. Afterward, quick O2 binding produces a highly reactive hydrox-
yflavin intermediate, which, in the absence of a hydroxable position and proper solvent
shielding, decomposes, producing hydrogen peroxide. This undesirable and potentially
toxic side reaction is known as the oxygen dilemma [34], and inhibitors that can overcome
it have been named as competitive inhibitors (Type II inhibitors). Crystallographic and
biochemical studies performed on human KMO (hKMO) and its Saccharomyces cerevisiae
(ScKMO) and Pseudomonas fluorescens (PfKMO) homologues have proposed two possible
approaches to designing competitive inhibitors. In the first approach, Kim et al. reported
two distinct binding modes of the Ro 61-8084 inhibitor (PDB ID: 5x6r, 5x6q) [33]. Ro 61-8084
acquired a non-substrate effector binding mode in PfKMO, however, in ScKMO and hKMO,
it acted as a competitive inhibitor. It was proposed that Ro 61-8084 is capable of binding
to the KMO apo conformation, thus not causing any conformational changes that would
stimulate NADPH binding [33]. In an alternative approach, benzisoxazole compounds
were found to capture the FAD cofactor in a “tilted”, unproductive conformation (PDB
ID: 5nae, 5nag, 5nah) and thereby prevent either NADPH binding or the hydride transfer
reaction [35].

The crystal structure of hKMO has been reported only in an auto-inhibited con-
formation, unsuitable for structure-based drug design (PDB id: 5x68) [33]. Neverthe-
less, both ligand-based (similarity search [36], multiple-QSAR [37]) and structure-based
(pharmacophore-based virtual screening [30,38] and docking-based virtual screening [39])
computational modeling approaches have been exploited to discover novel KMO inhibitors
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(Figure 2B). However, in all of the mentioned studies, the pharmacophores, active com-
pounds, or KMO crystal structures used to create the models were based on L-kyn or
potent non-substrate effector compounds. As a result, the discovered novel inhibitors
lacked structural diversity compared to previously reported inhibitors, shared too much
structural similarity with non-substrate effectors, and almost always contained a carboxylic
acid moiety, thereby limiting the BBB permeability.

Figure 2. Chemical structures and potency of known KMO inhibitors. (A) Compounds discovered
by applying substrate-based rational design. (B) Novel inhibitors discovered using molecular
modeling approaches.

Herein, we address the disadvantages of the previous studies and aim to discover
novel, structurally diverse competitive KMO inhibitors that would overcome the oxygen
dilemma and be BBB permeable. Three crystal structures of ScKMO and PfKMO were
chosen to represent all of the known binding modes of KMO inhibitors: two competitive
inhibitor (Type II, not producing H2O2) structures and one non-substrate effector (Type I,
substrate-like binding) structure. Three separate hKMO homology models were created to
account for the structural and amino acid sequence differences, and used in a protein-ligand
complex-based pharmacophore virtual screening approach to identify novel compounds.

2. Results
2.1. Homology Modeling and Structure Validation

The amino acid sequences of ScKMO and PfKMO respectively shared 35.3% and 33.7%
identity and 59.6% and 56.7% similarity to hKMO. Although the overall sequence similarity
was not high, the active site was mostly conserved among all three proteins, with only
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minor differences within 6Å of the co-crystallized ligands (Figure S1). The most notable
difference was the Phe313 residue of a loop above the isoalloxazine ring system of FAD,
which was replaced by Tyr323 in ScKMO or His320 in PfKMO. To best represent hKMO
and consider the protein sequence differences, we decided to apply homology modeling.
The following three homology models were created, each accounting for a different ligand
binding mode:

• Model 1: Competitive inhibitor model (Type II), which represents the Ro 61-8084
binding mode in ScKMO. As mentioned previously, Ro 61-8084 inhibits KMO without
producing H2O2 in ScKMO and hKMO.

• Model 2: Non-substrate effector model (Type I) created based on a high-resolution
crystal structure of PfKMO bound to the native substrate L-kyn.

• Model 3: Competitive inhibitor model (Type II) based on PfKMO, in which FAD is
trapped in an unproductive, tilted conformation. This inhibitor binding mode is also
reported not to cause H2O2 production.

The 3D protein structure validation methods showed all models to be of high quality
and comparable to the initial structural templates’ quality, as summarized in Table 1. The
RMSD to the template structures was within 1 Å, indicating close amino acid chain positions
to the initial templates. Over 90% of residues had a valid 3D-Profiles score, indicating a
correct environment (secondary structure, polarity, buried surface) close to each residue.
The total 3D profile score was close to the expected high score. The backbone dihedral
angles of 95% of non-glycine, non-proline residues were in the energetically allowed region
of the Ramachandran plot. All invalid residues were further than 15 Å away from the
active site, hence they were considered insignificant discrepancies, which would have little
effect on the quality of further docking studies and virtual screening. Finally, the protein
reliability report confirmed the high quality of the models, indicating only slight deviations
in peptide planarity and buried donor and acceptor atom surfaces (Figure S2).

Table 1. Final structure quality validation of the hKMO homology models.

Validation Parameter Model 1 Model 2 Model 3

Ramachandran plot residues in allowed region, % 95.5 97 96.7

PDF total energy −8089.32 2595

RMSD to template, Å 0.939 0.503

3D-Profile score,
verify score/expected high score 165.55/170.026 169.78/202.672 171.19/202.672

2.2. Reference Inhibitor Docking Studies

In addition to the protein structure validation, the capability of the prepared homology
models to reproduce known KMO inhibitor binding modes and correctly score them was
investigated. In all three homology models, the co-crystal ligand binding poses from 11
different KMO inhibitors were reproduced accurately—within 1 Å heavy atom RMSD or
less (Table S2). We expanded the inhibitor validation set to include not only highly active
co-crystallized compounds, but also their moderately active analogues as well as known
highly active inhibitors for which there are no reported crystal structures. The predicted
binding modes for this enlarged validation set compounds were in line with the crystal
structure poses, and the -CDOCKER docking score adequately represented the change
in inhibitor activity, with correlation coefficients R2 more than 0.8 for all three models
(Figure S3). Overall, the performed docking study confirmed the ability of the homology
models and docking protocols to produce correct ligand binding modes with docking
scores that correspond to the inhibitor activity.
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2.3. Pharmacophore Generation

For virtual screening, protein–ligand complex-based pharmacophores were generated.
The docking poses of KMO inhibitors Ro 61-8084, GSK428, and GSK775 were chosen to
represent the inhibitor binding mode in Models 1–3, respectively. For each protein–ligand
complex, 10 pharmacophore models were created and subjected to an enrichment and
decoy molecule recognition test (refer to Methods section for details). The best models
exhibited a strong ability to distinguish active inhibitors from the decoy molecules: the
sensitivity and specificity for all three models was over 0.85, as shown in Table 2. All
three models included five features (Figure 3). Notably, it was necessary to add a structure
shape feature to the pharmacophores of Models 2 and 3 in order to obtain high specificity,
whereas the pharmacophore for Model 1 did not require such a feature to pass the validation
tests successfully.

Table 2. Protein–ligand complex-based pharmacophores and their validation.

Pharmacophore
Characteristic

Model 1 Model 2 Model 3

Pharmacophore
Ro 61-8084 Based

Pharmacophore
GSK428 Based

Pharmacophore
GSK775 Based

Total Features 5 5 5

Feature Set * AAADH AAHNS AHHNS

Sensitivity 0.846 0.956 1.00

Specificity 0.816 0.843 0.981

AUC ** 0.858 0.951 0.999
* A—hydrogen bond acceptor feature, D—hydrogen bond donor feature, H—hydrophobic feature, N—negative
ionizable feature, S—shape feature. ** AUC—area under the receiver operating characteristic (ROC) plot.

Figure 3. Protein–ligand complex-based pharmacophores. (A) Ro 61-8084 based (Model 1); (B) GSK428 based (Model 2);
(C) GSK775 based (Model 3). Features are drawn as spheres (green—hydrogen band acceptor, magenta—hydrogen bond
donor, sky blue—hydrophobic, dark blue—negative ionizable), the distance between features (Å) is labeled in blue, shape
feature is represented as a grey transparent surface.

Respectively, the pharmacophore model’s receiver operating characteristic (ROC)
curves predicted excellent model quality (Figure S4): the area under the curve was ~0.9
or higher for all three models, indicating a substantial predictive ability in comparison to
random guessing.

2.4. Virtual Screening

In the designed virtual screening workflow, both the validated protein–ligand complex
pharmacophores and molecular docking protocols were applied to screen a composite
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library of available on-demand compounds (Figure 4). The screening was performed for
each pharmacophore and corresponding KMO homology model separately. As shown in
Table 3, the pharmacophore screening based on Models 2 and 3 produced a significantly
smaller number of compounds compared to Model 1, which is probably due to the presence
of the shape feature in the former, which limited the size of the hit molecules. For the same
reason, more than 95% of compounds detected by Models 2 and 3 pharmacophores passed
the libdock screening, whereas 17% of Model 1 compounds failed to produce a preliminary
docking pose.

Figure 4. General overview of the virtual screening workflow.

Table 3. Number of compounds that passed the screening criteria at each step.

№ Screening Step Model 1 Model 2 Model3 Total

1 Pharmacophore filter 143,205 1043 1109 145,357

2 Libdock filter 120,006 1039 1058 122,103

3 Toxicity filter 61,067 654 672 62,393

4 Selected for docking 6925 654 672 8251

5 Final Selection 163 50 42 255

After the toxicology filtering, the number of Model 1 compounds remained too large
to directly perform molecular docking within reasonable time scales; therefore, 6925 com-
pounds with the highest pharmacophore fit value and number of favorable protein–ligand
interactions in the preliminary libdock pose were selected. The final compound selection
was based on the compounds’ CDOCKER docking score and the presence of favorable
interactions with important KMO residues. As a result, 64% of the final selection com-



Molecules 2021, 26, 3314 7 of 20

pounds were from the Model 1 screening, and the least-represented were Model 3 com-
pounds (16%).

The 255 final selection compounds were grouped according to their structural simi-
larity, and the best-performing compounds from each cluster were included in the final,
diverse compound list for biological screening.

2.5. Identified Novel KMO Inhibitors

As a result of the virtual screening, 95 compounds were purchased from the corre-
sponding chemical vendors and subjected to in vitro hKMO enzyme inhibition activity
measurements via the KMO fluorescence-based assay. The known competitive inhibitor
Ro 61-8084 served as the positive control for the assay setup validation. In the obtained
dose-response curve, the Ro 61-8084 IC50 value was equal to 0.727 ± 0.088 µM (Figure S5),
which is in agreement with previously reported inhibitor activity [31,40,41]. The compound
screening resulted in identifying six novel KMO inhibitors with IC50 ≤ 10 µM (Table 4 and
Table S4). After discovering the hit compounds, they were docked into all three hKMO
models, according to the setup docking protocol, to see which binding modes appear to be
more favorable.

Among the discovered hit compounds, VS2 and VS5 contain a carboxylic acid moiety
and are structurally similar to previously reported KMO inhibitors by Zhang et al. [30]
(compounds 1 and 8). Four out of six hit compounds contain an amide moiety, whereas
VS4 is a sulfonamide compound. The docking poses of compounds VS2 and VS5 have a
strong resemblance with non-substrate effector compounds (Figure 5B,E): the carboxylate
moiety forms hydrogen bonds and attractive charge interactions with Arg85 and Asn363
as well as π–charge interactions with Tyr398. The methoxy oxygen of VS2 and the carbonyl
oxygen of VS5 form a hydrogen bond with Tyr 398. Finally, the compounds’ fused core
exhibits π–sulfur interactions with Met367 and hydrophilic interactions with Ala57, Ile206,
Leu224, and Leu226, which are known to comprise the hydrophobic KMO binding pocket
region. Together, these interactions are also present in the binding pattern of the initial
pharmacophore-modeling compound GSK428 (Figure 6).

Compounds VS3 and VS4 also share a resemblance with non-substrate effectors
(Figure 5C,D), when docked into Model 2, the central placement of the compounds is
directed by π–sulfur interactions between aromatic groups and Met367, whereas a pleura of
hydrogen and attractive charge interactions with Arg85 and Asn363 occurred via the amide
and sulfonamide moiety, respectively. At the same time, VS3 and VS4 were also capable
of acquiring a binding mode, similar to that of Ro 61-8084 in Model 1 (Figure 7C,D): the
compounds’ aromatic groups were involved in the π–π interactions with Phe312, where the
amide or sulfonamide groups form a hydrogen bond with the backbone atoms of Phe312,
achieving in general a very similar shape to Ro 61-8084. Additionally, the sulfonamide
group of VS4 forms hydrogen bonding with FAD, whereas the VS3 carbonyl forms a
hydrogen bond with Arg85 (Figure 8C,D).

The binding mode of compound VS1 closely resembles that of the competitive inhibitor
Ro 61-8084 (Figure 7A,B). The compound’s amide bond bends to acquire a similar shape
and forms the characteristic π–π and backbone hydrogen-bonding interactions with Phe312.
VS1 also forms a hydrogen bond with Arg85 through its imidazopyridine core. Compound
VS6 partially acquires both the non-substrate effectors and the competitive inhibitors’
binding modes (Figures 5F and 7E).

Compounds VS1 and VS6 were the only hit compounds, which were successfully
docked into Model 3 and exhibited the characteristic π–π stacking interaction with the
tilted FAD moiety (Figure 9). The two compounds also shared π–π stacking interactions
with Tyr398 and π–charge interactions with Arg85 (Figure 10).
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Table 4. Structures and activity of identified novel KMO inhibitors and reference compounds.

Vendor Code Vendor Structure MW
% Inhibition, µM -CDOCKER Score, kcal/mol

10 1 0.1 Model 1 Model 2 Model 3

P323-0389 Chemdiv

VS1

356.43 97.8 21.3 6.3 27.49 28.01 27.56

D715-2857 Chemdiv

VS2

332.33 109.4 23.9 3.1 * ND 40.48 ND

Z354-0210 Chemdiv

VS3

396.45 107.5 15.1 3.6 37.99 37.53 ND

L921-0479 Chemdiv

VS4

374.53 109.7 21.2 8.4 42.11 42.32 ND

BDE 33672567 Asinex

VS5

246.27 66.3 17.8 16.8 ND 45.25 ND
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Table 4. Cont.

Vendor Code Vendor Structure MW
% Inhibition, µM -CDOCKER Score, kcal/mol

10 1 0.1 Model 1 Model 2 Model 3

F6548-0495 Life Chemical

VS6

438.59 60.4 27.1 4.3 41.52 25.82 35.53

Ro 61-8084

421.449 97.3 60.5 7.5 23.43 ND ND

L-kyn

208.22 ND 46.09 ND

GSK065

376.77 ND ND 43.07

* ND—docking score not determined because the compound binding mode did not resemble the shape and interaction pattern of the model inhibitor.
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Figure 5. 3D docking poses of compounds GSK428 (A), VS2 (B), VS3 (C), VS4 (D), VS5 (E), VS6 (F) in Model 2. Docked
compounds are shown in stick format, the interacting residues and FAD cofactor are drawn in line representation. Favorable
interactions shown as dashed lines: green—hydrogen bonds, yellow—π–sulfur, orange—π–charge, dark pink—π–π stacking
interactions, purple—π–sigma interactions, light pink—hydrophobic interactions.

Figure 6. 2D interaction patterns of compounds GSK428 (A), VS2 (B), VS3 (C), VS4 (D), VS5 (E), VS6 (F) in Model 2.
Favorable interactions are color coded as follows: green—hydrogen bonds, yellow—π–sulfur, orange—π–charge, dark
pink—π–π stacking interactions, purple—π–sigma interactions, light pink—hydrophobic interactions. Residues shown in
light green form weak van der Waals interactions.
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Figure 7. 3D docking poses of compounds Ro 61-8084 (A), VS1 (B), VS3 (C), VS4 (D), VS6 (E) in Model 1. Docked compounds
are shown in stick format, the interacting residues and FAD cofactor are drawn in line representation. Favorable interactions
shown as dashed lines: green—hydrogen bonds, dark pink—π–π stacking interactions, purple—π–sigma interactions, light
pink—hydrophobic interactions.
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Figure 8. 2D interaction pattern of compounds Ro 61-8084 (A), VS1 (B), VS3 (C), VS4 (D), VS6 (E) in Model 1. Favorable
interactions are color coded as follows: green—hydrogen bonds, dark pink—π–π stacking interactions, purple—π–sigma
interactions, light pink—hydrophobic interactions. Residues shown in light green form weak van der Waals interactions.

Figure 9. 3D docking poses of compounds GSK065 (A), VS1 (B), VS6 (C) in Model 3. Docked compounds are shown in
stick format, the interacting residues and FAD cofactor are drawn in line representation. Favorable interactions shown
as dashed lines: green—hydrogen bonds, yellow—π–sulfur, orange—π–charge, dark pink—π–π stacking interactions,
purple—π–sigma interactions, light pink—hydrophobic interactions.

Figure 10. 2D interaction patterns of compounds GSK065 (A), VS1 (B), VS6 (C) in Model 3. Favorable interactions are color
coded as follows: green—hydrogen bonds, yellow—π–sulfur, orange—π–charge, dark pink—π–π stacking interactions,
purple—π–sigma interactions, light pink—hydrophobic interactions. Residues shown in light green form weak van der
Waals interactions.
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3. Discussion

KMO is an outer mitochondrial membrane-bound protein, which is expressed in
peripheral tissues (liver, kidney), in phagocytes (macrophages, monocytes), and in the CNS,
predominantly in microglia [42]. Due to the enzyme’s pivotal position in the kynurenine
pathway, it is considered as a promising target for regulating most inflammatory neuro-
logical diseases by affecting the ratio between excitotoxic and neuroprotective kynurenine
pathway metabolites.

It is well-known that the membrane-bound KMO C-terminal transmembrane domain
is inherent for both the membrane anchoring and hKMO enzymatic activity [43–45], which
poses a challenge for the solubilization, purification, and crystallization of the protein
in a stable and correctly folded state [46,47]. Nevertheless, the structural basis of KMO
inhibition and its enzymatic mechanism have been extensively studied using Sc and
PfKMO [33,45,48,49], which exhibit a high rate of sequence identity within the active
site, however, overall share very low sequence similarity. PfKMO is considered not to be
membrane-bound, whereas ScKMO does not require its C-terminal region for activity.

Since numerous KMO crystal structures have been published, attempts have been
made to design KMO inhibitors using computational approaches, especially to find BBB
permeable inhibitors with the same promising neuroprotective effects as Ro 61-8084. In
the current work, we attempted to exploit Sc and PfKMO crystal structures as templates
for homology modeling and pharmacophore-based screening, taking into account the
recent advances in elucidating KMO inhibitor binding modes that overcome the damaging
production of hydrogen peroxide, which comes from a KMO inhibition side reaction.

The homology models were prepared to account for all of the known KMO inhibitor
binding modes. The protein structural validation confirmed the models to be of high quality,
whereas docking studies performed with known KMO inhibitors established the ability
of the homology models to reproduce known inhibitor binding modes and score them in
accordance with their enzymatic activity. Based on the docking modes of representative
inhibitors Ro 61-8084, GSK428 and GSK775 protein–ligand complex pharmacophores were
generated. The pharmacophore models demonstrated an excellent ability to distinguish
true active compounds from decoy molecules in a 50-to-1 enrichment test.

Our virtual screening approach focused on a self-arranged composite compound
library, which included readily available for purchase compounds and diverse or CNS-
targeting datasets. The workflow was based on primary pharmacophore-based screening,
assessment of potential compound toxicity and, in the final step, substantial, detailed
docking studies, where compounds were prioritized based on their docking score and
resemblance of the binding pattern to that of known active KMO inhibitors.

Out of 95 purchased compounds for screening, only six showed less than 10 µM activ-
ity in the fluorescence-based assay. The low hit rate of our screening can be explained by
the well-known disadvantage of rigid docking, which cannot account for protein flexibility.
In the current work, we did not perform post-docking molecular dynamics simulations,
which could improve the quality of decision-making in structure-based approaches [50].
However, we think that a more crucial shortcoming of our homology models and the
protein–ligand complex-based pharmacophores is that the initial temple structures do not
account for the hKMO C-terminal region. New evidence from the full-length mammalian
KMO in meso crystal structure suggests that there are drastic differences between Pf and
Rattus norvegicus KMO C-terminal regions [31]. In contrast to predictions, the Rat KMO
C-terminal region contained only one transmembrane helix, whereas the second helix laid
laterally along the membrane surface. Furthermore, a dimeric interface inherent for enzyme
activity has been reported, which puts into question the appropriateness of modeling KMO
as a monomeric unit.

Nevertheless, our virtual screening successfully identified novel KMO inhibitors.
Compared to the representative inhibitors, only compound VS1 showed a relatively high 2D
similarity to Ro 61-8084 (Table 5), whereas the structural similarity of other hit compounds
was 0.6 or lower when checked against all three representative compounds Ro 61-8084,
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GSK428, and GSK775. Analysis of the compounds’ structure and binding modes suggests
that compounds VS1 and VS6 could bind to KMO as competitive inhibitors via both of
the known mechanisms (apo structure binding or FAD-tilting). Compounds VS2 and VS5
exhibit a typical non-substrate effector binding pattern, making them prone to hydrogen
peroxide production. However, these compounds can be considered the core of an inhibitor
series, which, if modified by adding aromatic groups such as alkoxyl-linked pyridyl could
become competitive inhibitors with altered binding kinetics [24,35].

Table 5. Assessment of the hit compounds’ inhibition type, BBB permeability, and structural novelty.

Comp Presumed Binding Mode Tanimoto Similarity logBB Penetration Ability

VS1 Competitive inhibitor 0.709 −0.057 Medium

VS2 Non-substrate effector 0.532 −1.574 Low

VS3 Undetermined, both possible 0.395 −1.677 Low

VS4 Undetermined, both possible 0.482 −0.641 Low

VS5 Non-substrate effector 0.605 −1.42 Low

VS6 Competitive inhibitor 0.596 0.02 High

The Discovery Studio ADMET-BBB model predicted compounds VS1 and VS6 to
be potentially BBB permeable, therefore, they were our prioritized hit compounds for
further chemical modification to improve the compounds’ inhibition activity and drug-
likeness profile.

4. Materials and Methods
4.1. hKMO Homology Modeling

The target amino acid sequence of hKMO for homology modeling was retrieved from
the UniProtKB database entry O15229 (https://www.uniprot.org/). The following tem-
plate crystal structures were chosen from the protein data bank (https://www.rcsb.org/)
as the best representatives of different KMO inhibitor binding modes: 5x6r (Model 1), 5nak
(Model 2), and 5nag (Model 3). When several crystal structures were available to represent
the same protein conformation and/or bound ligand, structures with lower resolution
were preferred. A detailed description of the models’ representative conformations and
bound ligands are provided in the Results section. For further information on the template
parameters, please refer to Table S1.

Homology modeling was performed using the Discovery Studio v.18 software package
(Accelrys, San Diego, CA, USA) [51] based on the sequence alignment in Figure S1. For
all template structures, chain A was chosen to perform homology modeling. In chain
B of the 5x6r structure, the C-terminal α-helix shifted outward, making the active site
inappropriately solvent-exposed. In 5nak and 5nag structures, chains A and B were
identical, so chain A was chosen systematically. Template protein preparation for Models
1 and 2 included deleting alternate residue conformations, removing water molecules,
adding missing protein loops, completing all side chains, adding hydrogen atoms, and
protonating titratable residues. The added missing loops (total five loops for Model 1
and 1 for Model 2) were further optimized by using the Looper refinement tool [52].
After protein preparation, homology models were created using MODELER [53]. The
coordinates of the FAD cofactor and bound ligands were preserved and copied directly to
the homology models.

A total of 10 homology models were prepared for each template. The best model was
selected by considering the PDF (probability density function) total energy, heavy atom
RMSD (root-mean-square deviation) between the model and template and Profiles-3D
score [54] of important protein regions. Homology model loop regions with low 3D profile
scores and invalid dihedral angles were optimized the same way as during protein prepara-
tion. To fully optimize and relax the final model structure, restrained energy minimization

https://www.uniprot.org/
https://www.rcsb.org/
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within 0.3 Å heavy atom displacement was performed in Schrodinger Maestro [55]. The
structure quality of the final model was assessed based on the Ramachandran plot, total
Profiles-3D score, and the Maestro protein reliability report [55], which checks metrics such
as the average B-factors, steric clashes, protein packing, and peptide planarity, bond angle
and length deviations, improper torsions, etc.

Model 3 was prepared by replacing FAD molecules and the bound ligand in the final
Model 2 with those from the 5nag crystal structure. After small molecule replacement,
the Arg52-Leu56 loop was optimized and minimized, followed by restrained energy
minimization within a 0.3 Å heavy atom displacement of the whole protein structure. This
simplified model preparation method was chosen, because according to the literature, upon
FAD tilting, the active site residues remain unaltered, and only slight rearrangements occur
below the FAD isoalloxazine ring system [35]. The final structure quality was verified the
same way as the previous models.

4.2. Docking Protocol

All active KMO inhibitors were first drawn in ChemDraw Professional 16.0, and
afterward, imported into Discovery Studio, where the ligands were prepared. Ligand
preparation included the generation of the ligand 3D conformations, enumerating all iso-
mers (in cases when stereochemistry was not indicated in the publications), tautomers, and
appropriate ionization states at pH 7. Full ligand energy minimization was performed un-
der the general-purpose all-atom forcefield CHARMm. Molecular docking was performed
using the Discovery Studio CDOCKER docking algorithm [56]. The optimal binding sites
for docking were defined as co-crystallized ligand-centered spheres with the following
radii: Model 1—9.25 Å, Model 2—8 Å, Model 3—10 Å.

The docking protocol was validated based on docking pose accuracy and scoring
ability. The docking pose accuracy corresponded to heavy atom RMSD between the
top-scoring dock pose and a corresponding ligand co-crystal pose. A total of 11 KMO
inhibitor-bound crystal structures were chosen as verification standards (5x6r, 5nak, 4j36,
5n7t, 5nab, 5mzc, 5mzi, 5mzk, 5nag, 5nah, 5nae). The model scoring ability refers to the
correlation between the inhibitor activity and the docking score of its first dock pose. A
total of 45 competitive inhibitor analogues (Type II) from three different scaffolds were
chosen to validate Model 1, 30 non-substrate effectors (Type I) from two different scaffolds
were chosen to validate Model 2, and 14 competitive inhibitor analogues (Type II) from
one scaffold were chosen to validate Model 3. The compounds were chosen based on
several factors: their 2D structural similarity to the co-crystallized inhibitors, available
experimental confirmation of hydrogen peroxide production, and overall set activity range
coverage. All of the active compounds, which were included in the docking score validation
sets, are highlighted in bold in Table S3.

4.3. Pharmacophore Generation and Validation

The Discovery Studio Interaction Pharmacophore Generation Tool was used to create
and validate pharmacophores from the non-bond protein–ligand interactions between each
homology model and a chosen representative inhibitor docking pose. KMO inhibitors Ro
61-8084 [18], GSK428, and GSK775 [35] were selected as representative compounds for
Models 1–3, respectively. The choice of compounds was based on similarity to the crystal
structure pose, inhibitor activity and –CDOCKER docking score. During pharmacophore
generation, hydrogen bond donor, hydrogen bond acceptor, hydrophobic, ring aromatic,
negative and positive ionizable ligand feature types were included and cross-checked for
correspondence to the binding pocket features. The matched features were afterward mixed
and selected to create all possible four to six feature options. The top 10 pharmacophores
for each protein–ligand complex were outputted based on the highest selectivity score
predicted by the software’s embedded genetic function approximation (GFA) algorithm.
The latter is a crude estimation of the uniqueness of the feature combination compared to a
standard built-in library of pharmacophore models.
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All top 10 pharmacophores for each model were validated based on the scoring
difference between active and non-active compounds. The validation set of true active
compounds was the same as during the docking protocol validation, but with an increased
number of compounds (refer to Table S3). In the absence of a published large set of true
inactive compounds, decoy molecules were generated from the active compound validation
set using the DUD-E online service (http://dude.docking.org/). Decoy molecules are
compounds that have a similar molecular weight, logP, number of rotatable bonds, and
other features to the input actives but low 2D structural similarity [57]. For the current
study, we generated a validation dataset in which there were at least 50 decoy molecules per
active compound. Since Model 3 is represented by a scarce number of active compounds,
the number of decoys was increased to 100 per active compound. It should be noted that
for Model 1, 15% of decoys failed the 2D structure generation from the SMILES format
and ligand preparation steps, whereas for Models 2 and 3, the loss was insignificant (less
than 5%).

The pharmacophores were evaluated based on their sensitivity and specificity.

Sensitivity = TP/(TP + FP) (1)

Specificity = TN/(TN + FN) (2)

where TP is the true positives (actives that were correctly predicted active), TN is the true
negatives (decoys that were correctly predicted inactive), FP is the false positives (decoys
that were incorrectly predicted active), and FN is the false negatives (actives that were
incorrectly predicted inactive).

The pharmacophore validation also included plotting of the receiver operating charac-
teristic (ROC) curves. The area under the curve (AUC) of the ROC accounts for both the
sensitivity and specificity of the pharmacophore in a single characteristic.

4.4. Compound Library Generation

For the purpose of the current study, we aimed to screen against a diverse set of
readily available, potentially CNS-penetrant compounds. A total of 12 compound libraries
from four different vendors were accessed in May 2019, downloaded, and merged into a
single composite compound library, according to Table 6. All compounds were included in
a 3D conformational database created in Discovery Studio in which for each structure 255
3D conformations were generated.

Table 6. List of compound libraries included in the virtual screening.

Vendor Library Name Total Compounds Available at

ChemDiv

CNS Library 22,306

https://www.chemdiv.com/Accessed
Accessed 17 May 2019

Representative Diversity Library 150,000
3D-Biodiversity Library 30,073

New Chemistry (NC) Library 325,760
Smart Library 52,504

Life Chemical
Stock HTS compounds 45,589 https://lifechemicals.com/Accessed

Accessed 17 May 2019CNS screening Library 7024
Low MW Fragment Library 36,080

Asinex
Signature Library 7815 http://www.asinex.com/Accessed

Accessed 6 May 2019BioDesign Library 195,039

Specs Screening Compounds (10mg) 210,419 https://www.specs.net/Accessed
Accessed 7 May 2019Building blocks Library 8985

Total 1,091,594

http://dude.docking.org/
https://www.chemdiv.com/Accessed
https://lifechemicals.com/Accessed
http://www.asinex.com/Accessed
https://www.specs.net/Accessed
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4.5. Virtual Screening

The 3D pharmacophore search of the complete compound database was performed
separately for each of the three prepared and validated pharmacophore models, as sum-
marized in Figure 4. In the first screening step, we applied Discovery Studio’s Search DB
protocol, which was optimized for speedy and efficient single pharmacophore screening.
In the second step, libdock was applied to all compounds of the search results to eliminate
those compounds that do not fit the ligand binding pocket despite compliance with the
pharmacophore features. As a third step, potentially toxic compounds were eliminated
based on Discovery Studio extensible toxicity prediction QSAR models. Compounds with a
predicted toxicity probability of more than 0.65 were eliminated. The prediction algorithm
considered carcinogenic potency TD50, Ames mutagenicity, and rat oral LD50 properties.
Next, the previously validated CDOCKER docking algorithm was applied to the predicted
non-toxic compounds. In the case of pharmacophore Models 2 and 3, all compounds (654
and 672, respectively) were docked, whereas for pharmacophore model 1 out of 60,850 com-
pounds, 6925 were selected based on the preliminary docking results: these compounds
had a fit value of more than 2.5 and exhibited at least three hydrophobic interactions with
residue Phe312 and at least one favorable interaction with Arg85. The final compound
selection was made based on visual inspection of the dock pose interactions among the top-
scoring 25% of the compounds. For Model 1 screening results, favorable interactions with
residues Arg85, Phe312, Asn363, and Met367 were considered important. For Models 2 and
3, the selection criteria included favorable interactions with Arg85, Tyr99, Tyr398, Ala57,
or π–π stacking interactions with FAD, respectively. The final selection compounds were
grouped based on their functional-class fingerprints (FCFP_6), and the best representative
compounds from each group were purchased for biological activity testing.

4.6. Structure Similarity and BBB Permeability Calculations

The novelty of the discovered hit compound molecules was assessed by calculating
the 2D Tanimoto similarity coefficient between the hit compounds and the representative
inhibitors used to create the pharmacophore screening models: Ro 61-8084, GSK428, and
GSK775. All hits were checked against all representative inhibitors regardless of their ability
to acquire a similar binding mode or not in the docking studies. The highest Tanimoto
coefficient served as the novelty assessment criteria.

Hit compound BBB permeability was estimated in the Discovery Studio software
package using the Calculate ADMET Descriptors tool. The prediction model was previously
validated on a dataset of 881 CNS compounds from the CMC dataset [58]. The prediction
model was based on quantitative linear regression between BBB permeability and the
compounds 2D polar surface area (PSA) and logP. Compounds with calculate log B more
than 0 are considered high BBB penetrants, capable of having a blood–brain ratio between
1:1 and 5:1. If the logBB is less than 0.52, then BBB permeability is considered low, with a
blood–brain ratio less than 0.3:1.

4.7. KMO Inhibitor Screening Assay

The BPS Bioscience KMO Screening Kit (79513-2) was used to measure the hKMO
enzyme inhibition. The assay is based on the consumption of the fluorescent enzymatic
cofactor NADPH during the KMO catalytical reaction [41]. Self-fluorescent inhibitor
compounds were first excluded from the screening if their 10 µM solution exhibited a
substantial fluorescence signal compared to the blank. The screening was performed in a
96-well plate, with all samples and controls duplicated. A total of 50 µL of purified KMO
protein with C-terminal His-FLAG-tag was mixed in 40 µL of substrate mixture (containing
NADPH, L-kyn, and the assay buffer) and 10 µL of inhibitor solutions. The time-dependent
NADPH absorbance change was measured at λ = 340 nm and compared with the blank
negative control after incubation at room temperature. Ro 61-8084 served as a positive
control to confirm the correct setup of the screening assay. Compounds that showed IC50
less than 10 µM were considered inactive.
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Supplementary Materials: The following are available online. Figure S1: Alignment of KMO
sequences for human, Sc, and Pf, Figure S2: Protein structure validation for homology Models
1–3, Figure S3: Validation of homology models via docking of known active inhibitors, Figure S4:
ROC plots for Ro 61-8084, GSK428, and GSK775 based pharmacophores, Figure S5: Obtained dose-
response curve for Ro 61-8084 in the KMO fluorescence assay, Table S1: Homology modeling template
parameters, Table S2: Homology model docking accuracy, Table S3: Compound validation sets for
the docking protocol and protein–ligand complex pharmacophore performance, Table S4: Results of
the KMO screening assay (excluding self-fluorescent compounds).
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48. Özkılıç, Y.; Tüzün, N.Ş. Mechanism of Kynurenine 3-Monooxygenase-Catalyzed Hydroxylation Reaction: A Quantum Cluster
Approach. J. Phys. Chem. A 2019, 123, 3149–3159. [CrossRef]

49. Beaupre, B.A.; Reabe, K.R.; Roman, J.V.; Moran, G.R. Hydrogen movements in the oxidative half-reaction of kynurenine 3-
monooxygenase from Pseudomonas fluorescens reveal the mechanism of hydroxylation. Arch. Biochem. Biophys. 2020, 690, 108474.
[CrossRef]

50. Fischer, A.; Smieško, M.; Sellner, M.; Lill, M.A. Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking
Results. J. Med. Chem. 2021, 64, 2489–2500. [CrossRef] [PubMed]

51. BIOVIA, Dassault Systèmes. Discovery Studio Modeling Environment, Release 2019; Dassault Systèmes: San Diego, CA, USA, 2021.
52. Shen, M.-Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524.

[CrossRef] [PubMed]
53. Sánchez, R.; Šali, A. Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Struct. Funct. Genet. 1997,

29, 50–58. [CrossRef]
54. Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles Roland. Nature 1992, 356,

83–85. [CrossRef] [PubMed]
55. Schrödinger Release 2017-3; Maestro Schrödinger LLC: New York, NY, USA, 2021.
56. Wu, G.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER

-A CHARMm-based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [CrossRef]
57. Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and

Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [CrossRef] [PubMed]
58. Egan, W.J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2002, 54, 273–289. [CrossRef]

http://doi.org/10.1016/j.bmcl.2016.10.058
http://doi.org/10.1016/j.bmcl.2017.02.080
http://doi.org/10.1016/j.jmgm.2020.107701
http://doi.org/10.1177/1087057113489731
http://www.ncbi.nlm.nih.gov/pubmed/23690293
http://doi.org/10.1177/2472555218757180
http://doi.org/10.1016/j.neuropharm.2016.01.011
http://doi.org/10.1096/fj.201700397RR
http://doi.org/10.1093/jb/mvq099
http://www.ncbi.nlm.nih.gov/pubmed/20802227
http://doi.org/10.1038/nature12039
http://doi.org/10.1016/j.pep.2013.11.015
http://doi.org/10.1046/j.1432-1327.2000.01104.x
http://www.ncbi.nlm.nih.gov/pubmed/10672018
http://doi.org/10.1021/acs.jpca.8b11831
http://doi.org/10.1016/j.abb.2020.108474
http://doi.org/10.1021/acs.jmedchem.0c02227
http://www.ncbi.nlm.nih.gov/pubmed/33617246
http://doi.org/10.1110/ps.062416606
http://www.ncbi.nlm.nih.gov/pubmed/17075131
http://doi.org/10.1002/(SICI)1097-0134(1997)1+&lt;50::AID-PROT8&gt;3.0.CO;2-S
http://doi.org/10.1038/356083a0
http://www.ncbi.nlm.nih.gov/pubmed/1538787
http://doi.org/10.1002/jcc.10306
http://doi.org/10.1021/jm300687e
http://www.ncbi.nlm.nih.gov/pubmed/22716043
http://doi.org/10.1016/S0169-409X(02)00004-2

	Introduction 
	Results 
	Homology Modeling and Structure Validation 
	Reference Inhibitor Docking Studies 
	Pharmacophore Generation 
	Virtual Screening 
	Identified Novel KMO Inhibitors 

	Discussion 
	Materials and Methods 
	hKMO Homology Modeling 
	Docking Protocol 
	Pharmacophore Generation and Validation 
	Compound Library Generation 
	Virtual Screening 
	Structure Similarity and BBB Permeability Calculations 
	KMO Inhibitor Screening Assay 

	References

