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Cannabis has been used for centuries for recreational and therapeutic purposes.

Whereas, the recreative uses are based on the psychotropic effect of some of its

compounds, its therapeutic effects range over a wide spectrum of actions, most of which

target the brain or the immune system. Several studies have found cannabinoid receptors

in the auditory system, both at peripheral and central levels, thus raising the interest

in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by

anxiety, memory, and attention circuits where cannabinoid effects are well described.

Available studies on animal models of tinnitus suggest that cannabinoids are not likely to

be helpful in tinnitus treatment and could even be harmful. However, the pharmacology

of cannabinoids is very complex, and most studies focused on neural CB1R-based

responses. Cannabinoid effects on the immune system (where CB2Rs predominate)

are increasingly recognized as essential in understanding nervous system pathological

responses, and data on immune cannabinoid targets have emerged in the auditory

system as well. In addition, nonclassical cannabinoid targets (such as TRP channels)

appear to play an important role in the auditory system as well. This review will focus

on neuroimmunological mechanisms for cannabinoid effects and their possible use as

protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
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INTRODUCTION

Endocannabinoids (ECs; Figure 1) are a class of ubiquitous endogenous lipids regulating essential
processes ranging from energy balance, to pain, to motor control, and involved in pathologies
as diverse as (among others) schizophrenia, glaucoma, multiple sclerosis, and obesity (20). In
the CNS, ECs influence synaptic plasticity (21, 22), modulate neuroinflammation (23), and affect
neurogenesis (24) and may also affect neuronal activity by binding to neurotransmitter receptors
and ion channels (25). These cellular effects are reflected in the EC modulation of several brain
functions, including fear and anxiety (26), or memory (27). Overall, the standard arrangement in
the brain appears to be the presence of multiple EC pathways affecting the same circuits, often with
different or even opposing effect.

In the immune system, ECs affect cell proliferation, migration, differentiation, cytokine
production, and apoptosis (28). The two responses, immune and neural, interact in
neuroinflammation, where ECs play major roles (29). Earlier studies suggested that neural
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effects of cannabinoids are mediated by CB1R activation (30)
whereas immune effects are mediated by CB2R (31). However,
it is important to stress that the separation of these biological
actions is not as clear-cut as initially suggested (32), and other
receptors can also be activated by ECs. The dizzying complexity
of cannabinoid pharmacology (see Supplementary Tables 1, 2)
requires a deep knowledge of the precise “fingerprint” of the
molecular pathways affected by each compound, in each organ
and each species, to dissect its effects.

Cannabinoid Pharmacology
The pharmacology of cannabinoids is very complex, for several
reasons. First, more than one hundred phytocannabinoids (33)
and at least 13 ECs (25) have been identified. Second, their
lipidic nature makes unraveling their molecular interactions
more difficult than for conventional transmitters (34). Third,
CBRs are connected to several intracellular pathways (Figure 1B)
and may produce different (even opposite) results depending on
the particular ligand and its concentration (8, 9, 35) and on the
cell repertoire of signal transduction molecules (36).

ECs are one of the four families of bioactive
lipids (together with classical eicosanoids, SPMs, and
lysoglycerophospholipids/sphingolipids), which are generated
from PUFA precursors esterified into membrane lipids (37). The
EC system includes CBRs, their endogenous ligands, and the
proteins involved in EC formation, transport, and degradation.

The first discovered and best-characterized ECs are AEA
and 2-AG (38–40). Several other EC lipid mediators (41–43)
[and a family of EC peptides, named “pepcans” (44)] have
also been described (see also Supplementary Table 1), but their
endogenous functions have been less characterized.

ECs (Figure 1C) are produced “on demand” from membrane
lipids by several Ca2+-dependent enzymes (17), and metabolic
pathways for production, transport, and degradation differ for
the various ECs, making it possible for cells to tailor their local EC
repertoire (45) by regulating their local concentrations through
modulation of their biosynthesis, transport, and degradation
(46). Once released, ECs are rapidly deactivated by intracellular
enzymes (47): AEA by FAAH1 and 2 [the latter not expressed in
rodents (1)], and 2-AG mainly by MAGL, and less by ABHD6

Abbreviations: 2-AG, 2-arachidonoylglycerol; ABHD4, ABHD6, ABHD12,

αβ-hydrolase domain 4,6,12; ACEA, arachidonyl-2’-chloroethylamide; AEA,

N-arachidonoylethanolamide (anandamide); BDNF, brain-derived nerve factor;

BNST, bed nucleus of the stria terminalis; CBR; CB1R; CB2R, cannabinoid

receptor, type 1, type 2; CBD, cannabidiol; COX-2, cyclooxygenase type

2; CREB, cAMP response element binding protein; DAG diacylglycerol;

DAGL, DAG lipase; DCN, dorsal cochlear nucleus; DSE, Depolarization-

induced suppression of excitation; DSI, Depolarization-induced suppression

of inhibition; EC, endocannabinoid; EMT, endocannabinoid membrane

transporter; ERK, Extracellular signal-Regulated Kinase; FAAH, fatty acid

amide hydrolase; GDE1, glycerophosphodiesterase 1; GPCR, G-protein-coupled

receptor; HPA, hypothalamic-pituitary-adrenal; MAGL, monoacylglycerol lipase;

NAPE, N-arachidoylphosphatidyletanolamine; NAT, N-acyltransferase; NR3C1,

glucocorticoid receptor; PHARC, Polyneuropathy, Hearing loss, Ataxia, Retinitis

pigmentosa, and Cataracts; PLA2, phospholipase A2; PLD, phospholipase D;

PPAR, Peroxisome proliferator-activated receptors; PUFA, polyunsaturated

fatty acids; SPM, specialized pro-resolving mediators; TRP, Transient receptor

potential; 19-THC, 19-tetrahydrocannabinol; VCN, ventral cochlear nucleus.

and ABHD12 (19). In addition, ECs may be transformed in
non-EC bioactive metabolites [e.g., by COX-2 (48)].

ECs (Figure 1B) bind and activate two specific G-protein-
coupled cannabinoid receptors, CB1R and CB2R (49–51), plus
additional targets (52), such as TRP channels (53), PPARs
(54–57), and “orphan” G-protein coupled receptors such as
GPR18 and GPR55 (58, 59). Most EC are able to activate both
CB1R and CB2R, although with different potency and effects
(60), whereas nonclassical targets may interact with limited EC
subsets (Supplementary Table 1) and also non-EC ligands. A
clear example is TRPV1, which is activated by AEA binding to
a cytoplasmic site (16) but is also sensitive to other stimuli such
as heat, vanilloids, protons, N-acyl amides, and arachidonic acid
derivatives (61).

CB1R and CB2R are class A (rhodopsin-like) GPCRs (4),
and both couple to Gi/o G-proteins (5, 6), reducing cAMP
concentration (7). However, the coupling between CBRs and
biochemical pathways is complex and context-dependent. First,
CB1Rs may form homo- or heterodimers with other GPCRs (62),
such as (among others) CB2Rs (63), A2A adenosine receptors
(64), D2 dopamine receptors (65), µ opioid receptors (66),
and orexin-1 receptors (67), whereas CB2R may dimerize with
the CXCR4 chemokine receptor (68) and GPR55 (69). The
presence of CB1R/CB2R heteromers makes it impossible to
clearly separate the biological responses of CB1R and CB2R
in vivo.

Second, CBRs show dimerization- and agonist-biased
response, due to conformation-dependent binding by β-arrestins
(10). Besides blocking interactions with Gi/o proteins, β-arrestin
effects include CBR internalization and ERK pathway/Gs protein
activation (9), so that cAMP levels may increase instead of
decreasing depending on CBR receptor bias. Receptor coupling
flexibility appears more limited (although not absent) for CB2Rs,
which mainly activate Gi proteins, whereas CB1Rs may couple to
Go, Gs, Gq, and G12/13, thus activating a very diverse network
of responses (8). Both receptors are in addition able to activate
ER stress pathways linked to autophagy (70).

The β-arrestin-dependent internalization of plasma
membrane CBRs is linked to receptor degradation (9);
however, functional CBRs have been found in the outer
mitochondrial membrane (12), and in the endoplasmic
reticulum, endosomes, lysosomes, and nuclear membrane
(3). Subcellular localization affect CB-related responses:
mitochondrial localization allows CBRs to modulate cell
energetic balance (13), and ROS production (14), whereas
endolysosomal localization is correlated with inflammation and
phagocytosis (71). Moreover, intracellular receptor sites will be
inaccessible to membrane-impermeant cannabinoid agonists
and antagonists.

Besides G-protein-coupled receptors, TRP nonselective cation
channels are being increasingly recognized as an integral part
of the EC system (ionotropic EC receptors): six of the 28
TRP channels are sensitive to cannabinoids (53). Among these,
TRPV1 is the most studied, mainly due to its expression in
nociceptors and role in pain-related processes: TRPV1 channels
are colocalized with CB1R and/or CB2R in several types of cells,
and TRPV1 block or desensitization underlies analgesia (72); the
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FIGURE 1 | EC and their effects. (A): Principal EC targets in neural and immune systems, and in the cochlea. (a) In most brain areas, 2-AG (purple) is synthetized by

DAGL-α in neuronal dendrites and somata and catabolized by MAGL in presynaptic terminals, where CB1R (red) are also present. 2-AG is produced postsynaptically

in a Ca2+-dependent way upon activation of metabotropic receptors (blue) and inactivated presynaptically near its target (1). For AEA (yellow), on the other hand, the

biosynthetic enzyme NAPE-PLD is both pre- and postsynaptic, and the catabolic enzyme FAAH-1 is predominantly postsynaptic (1). Astrocytes are also involved in

synaptic effects through an EC modulation of gliotransmission, and in addition EC effects on astrocyte mitochondria contribute to neuronal metabolism regulation. (b)

In the cochlea, CB2R (green) are found in the organ of Corti (OC), basal cells of the stria vascularis (SV) and spiral ganglion (SG), whereas TRPV1 channels (blue) are

found in the organ of Corti and marginal cells of the stria vascularis. (c) During neuroinflammation, several changes are seen in the EC system. The overall EC

production increases. Activated microglia increases AEA production (yellow trapezoid) and CB2R expression (green). Astrocytes become activated and BBB is

affected (both effects are counteracted by EC responses). (d) Cell activation may change CB2R expression as in macrophages (purple) (2) or CB2R subcellular

localization as in B lymphocytes (blue) (3). (e) Anti-inflammatory EC responses in immune cells include the block of Th1 responses due to direct effects on T cells

(green) and indirect effects on dendritic cells (yellow), apoptosis induction on several cell types, and the inhibition of proinflammatory cytokines and factors. (B):

Principal EC receptors and their main intracellular pathways. Both 2-AG (purple trapezoid) and AEA (yellow trapezoid) act on CB1R and CB2R, which are class A

GPCRs (4) coupled to Gi/o G-proteins (5, 6), reducing cAMP concentration (7). β-Arrestin binding (light red arrowheads) induces CBR internalization and switches

receptor coupling, especially for CB1, also activating MAP kinase pathways (8–10) linked to nuclear effects (large light blue arrow). MAPK pathways are also activated

through Gi βγ action (dotted line), both by CB1R and by CB2R (11). Functional CBRs have been also found in intracellular compartments such as the outer

mitochondrial membrane (12), where they modulate cell energetic balance (13), and ROS production (14) or endoplasmic reticulum, where they may induce

Gq-related Ca2+ release from intracellular stores (3). Moreover, ECs or related lipids activate nuclear PPARs (15). TRPV1 channels are often colocalized with CB1R

(Continued)
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FIGURE 1 | and/or CB2R and activated by cytoplasmic ECs (16), increasing cytosolic Ca2+. Finally, orphan receptors may activate other pathways, e.g., GPR55 is

linked to Gq-PLC and therefore contributes to cytosolic Ca2+ increase. Most cells only express a subset of these pathways. (C): Metabolism of 2-AG and

anandamide (AEA). 2-AG (purple) is produced from DAG by DAG lipases (DAGLα and β). Biosynthesis of AEA (yellow) is more complex and may involve hydrolysis of

NAPE membrane phospholipids by NAPE-PLD (which directly generates AEA) or sequential action of several enzymes (not shown), followed by a lyso-PLD (17).

Although lipophilic, ECs have membrane transport mechanisms (EMT, light gray) (18). EC binding sites on CB1 (red) and CB2 (green) are extracellular, whereas on TRP

channels (blue) the site is intracellular. Degradation of AEA is mainly due to FAAH, whereas 2-AG is primarily degraded by MAGL, and less by ABHD6 and

ABHD12 (19). Created with Biorender.

analgesic and antihyperalgesic effects of phytocannabinoids are,
at least in part, mediated by this channel (53).

EC System in the Brain
CBRs are expressed in most tissues of the body (73) and are by
far the most abundant type of G-protein-coupled receptors in the
mammalian brain (74). CB1R is predominantly expressed in the
CNS (75), at comparable levels as glutamate and GABA receptors
(74, 76). On the other hand, CB2R was originally thought to be
restricted to immune and hematopoietic cells (77, 78), but more
precise localization tools have subsequently allowed to assess its
expression in other systems, including the nervous system (79)
and the inner ear (80). CB2R expression in the healthy brain
is in fact hundreds of times less than for CB1R but is strongly
upregulated under pathological conditions (81). Localization,
splice variants, and physiology of CBRs appear to be highly
species-dependent (73), thus complicating result comparisons
between animal and human studies.

CB1R neuronal effects are well known and have been
extensively covered in several exhaustive reviews (49, 82, 83).
Glial responses are less completely characterized but appear
important especially in the presence of neuroinflammation
(84), where EC tone is elevated (85). Neuroinflammation is a
protective brain defense response that can however degenerate
into a chronical state involved in the pathophysiology of several
neurological and psychiatric disorders (86).

In neurons (Figure 1Aa), the classical EC effect is retrograde
inhibition mediated by presynaptic neuronal CB1Rs and
postsynaptically produced 2-AG: CB1R activation inhibits the
release of the presynaptic transmitter (22), causing short-term
DSE on excitatory neurons, or DSI on inhibitory neurons (87).
This mechanism has been dissected in the DCN molecular
layer, where glutamatergic parallel fibers carrying non-auditory
signals contact fusiform cells and glycinergic cartwheel cells
(which in turn provide feedforward inhibition to fusiform
cells) (88). Fusiform cell output is shaped by plasticity in the
molecular layer circuits, which collectively generate “negative
images” of expected sounds to be attenuated at fusiform
apical dendrites (89). Plasticity changes in this circuit have
been correlated with tinnitus onset (90, 91). Cartwheel cells
release EC from their dendrites upon stimulation, thus inducing
DSE at parallel fibers (92), whereas fusiform cells do not;
therefore, activation of cartwheel cells depresses its parallel
fiber input, gradually reducing their feedforward inhibition (93).
In fusiform cells, ECs are involved in acetylcholine-induced
plasticity changes at parallel fiber synapses (94) which have
been correlated with tinnitus (95). Prolonged exposure to high
doses of salicylate (a well-known tinnitus inducer) increases EC
release in the DCN, thus changing molecular layer plasticity

(96). Unfortunately, cannabinoid modulation of this circuit
has not yielded effective tinnitus treatments [see discussion
in (97)].

For AEA, on the other hand, the biosynthetic enzyme
NAPE-PLD is both pre- and postsynaptic, and the catabolic
enzyme FAAH-1 is predominantly postsynaptic (1). Postsynaptic
production of AEA produces a “tonic” retrograde inhibition
at some synapses, which is shut down by neuronal inactivity
through upregulation of FAAH1 (98); presynaptic production
feeds instead into an anterograde mechanism. In addition, in the
hippocampus, NAPE-PLD is localized in intracellular membrane
cisternae of axonal Ca2+ stores (99) and AEA may act as
an intracellular messenger by activating TRPV1 intracellular
binding site.

Like neurons, glial cells can synthesize ECs in response to

physiological or pathological stimuli (100, 101). In astrocytes,
more than 70% of CB1Rs are found at perivascular endfeet,
and EC activation has been found to modulate brain energy

consumption (102) through EC effects on astrocytemitochondria
(103). At synapses, astrocytes express both DAGLα and MAGL
and may display Ca2+-dependent EC release, which modulates

synaptic response (104); conversely, astrocytic CB1R activation
may induce Ca2+-dependent release of Glu (105), ATP, or D-
serine (106) in response to synaptic EC. Astrocyte EC effects
have been found to be involved in the regulation of sleep in
the PPT (107) and in the regulation of circadian rhythms in
the suprachiasmatic nucleus (108). These latter effects may be
relevant for tinnitus given its association with sleep disturbances
(109) and its circadian modulation (110).

Neuroinflammation is a brain reaction aimed at counteracting

acute damage, restoring the homeostasis and limiting brain
parenchyma injury, and includes microglial activation, reactive

astrogliosis, production of inflammatory mediators, BBB
breakdown, and subsequent brain infiltration of circulating
immune cells (111). Neuroinflammation dysregulation may turn

microglia and astrocytes in uncontrolled sources of inflammatory
mediators, which may worsen damage progression.

A growing body of data suggest that EC are able to
exert immunoregulatory and anti-inflammatory properties (112–
114), by decreasing the production of NO, ROS/RNS, free
radicals, and pro-inflammatory cytokines in activated glial cells,
while switching microglia toward anti-inflammatory phenotypes
(115–118). Remarkably, the increase in EC concentration and
microglial CB receptors during neuroinflammation may yield a
neuroprotective negative feedback mechanism aimed at limiting
inflammatory responses.

The main brain source of ECs in neuroinflammatory
conditions is microglia (119, 120), the resident immune cells
of the CNS (121–123). Consistently with its immune role
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and nature, microglia express DAGL-β and (mainly) ABHD12
instead of the neuronal DAGL-α and MAGL (124), and
while CB1Rs are expressed at low levels and mostly located
intracellularly (120), microglia is the main CB2R-expressing
cell in the brain (125). Microglial CB2R expression may
increase up to 100 fold upon inflammation or tissue injury
(126), and microglial Ca2+ increases [e.g., from P2X7 receptor
activation (127)] and directly increases DAGL, thus increasing
the production of 2-AG (128), which during neuroinflammation
becomes 20-fold higher in microglia than in other brain cells
(120). Mounting evidence suggests that the EC system might
represent a promising tool to modify (micro)glial activity and
profiles in order to achieve benefits for neuroinflammatory
diseases (104). Indeed, CB2Rs can downregulate astrocyte
and microglial cell overactivation during neuroinflammatory
disorders, thus protecting them (129); selective depletion of
MAGL in astrocytes attenuates LPS-induced neuroinflammation
[(130), and CB2R upregulation and activation of EC signaling
pathways have been associated with a restoration of tissue
homeostasis in neuroinflammatory conditions (118, 131).

Brain CB2Rs have been less studied than CB1Rs (79),
mainly due to the delay in the availability of sensitive genetic
and molecular tools (126, 132, 133). In the CNS, CB2Rs are
chiefly expressed on microglia (134, 135), and to some extent
on astrocytes, oligodendrocytes, progenitor neural cells, and
neurons (136–138); neuronal CB2R is mainly postsynaptic,
differently from CB1R (137). In human, the brain only expresses
one CB2R isoform (CB2RA) whereas a second one (CB2RB)
is expressed in the immune system (139); rats express two
additional isoforms (CB2RC and CB2RD) present neither in
mice nor in humans (126), and their CB2R expression is
lower and with a different distribution from mice (140).
Lack of CB2R brain expression was incorrectly inferred by
methods only evidencing non-brain isoforms or with insufficient
sensitivity (126).

Microglial actions range from protection against damaging
signals altering CNS homeostasis through phagocytosis,
release of proinflammatory cytokines, and recruitment of
circulating immune cells [reviewed in (141)], to controlling
neuronal proliferation and differentiation [through selective
neuronal phagocytosis and release of neurotrophic and
neurotoxic factors reviewed in (142)], to modulating neuronal
plasticity and memory [through neurotrophin release and
selective synaptic pruning reviewed in (141, 142)]. In order
to fulfill all these tasks, microglia are extremely plastic cells
that readily change their phenotypes on demand; microglial
phenotypes, previously crammed into an M1–M2 gradient
to fit a classical macrophage activation model (143), are now
recognized to be much more diverse (144) and influenced
by the brain region (145), species (146), age (147), gender
(148), and physiopathological state (149). In particular,
neurodegenerative diseases appear to associate with specific
microglial phenotypes which release pro-inflammatory
mediators, as well as contributing to prolonged oxidative
stress, leading to chronic neuroinflammation, which in turn
drives neurodegeneration (141, 150, 151).

As regards hearing loss, which is a risk factor for tinnitus,
chronic inflammation is seen as a major player in presbycusis
[reviewed in (152)] and has been found to be associated with
poorer hearing in a population-based cross-sectional study
(153). Moreover, in mice, microglial ablation and TNF-alpha
antagonism (154) both decrease tinnitus signs, and TNF-alpha
KO mice are resilient to noise trauma-induced tinnitus (154).
In human, gene polymorphisms in both TNF-alpha (155) and
IL-6 (156) have been found to increase tinnitus risk in an
elderly population with a history of occupational noise exposure.
Neuroinflammation (and its dysregulation) appears therefore as
a promising candidate mechanism for tinnitus susceptibility, and
its modulation by cannabinoids may provide novel therapeutic
targets. A caveat regarding neuroinflammation as a target is
the complexity emerging from single-cell studies (157), which
could underlie a heterogeneity similar to that observed in most
multifactorial inflammatory disorders [e.g., rheumatoid arthritis
(158), Menière’s disease (159), and IBD (160)].

Besides neurons and glial cells, neuroinflammation involves
cells of the immune system, where EC cellular mechanisms differ
from neuronal ones. Cannabinoid immunomodulatory effects
are complex but appear to be largely mediated through CB2Rs,
whose expression on immune cells is usually higher than that
of CB1R (161, 162). Moreover, nonclassical cannabinoid targets
such as TRP channels (53) and PPARs (15) are well-known as key
regulators of the immune response (163–165). It is interesting
that EC responses in the cochlea (see below) appear more
similar to those observed in the immune system than in the
nervous system.

In human immune cells, CB2R is expressed most in B cells,
followed by NK cells, monocytes, neutrophils, and finally T
cells (134, 166, 167). Peripheral blood T cells, monocytes, and
dendritic cells only express intracellular CB2R (168), whereas
naïve peripheral blood B cells also express these receptors on the
cell surface and lose it upon activation (169). Intracellular CB2Rs
in immune cells have been associated with Ca2+ release from
stores (3).

CB2R activation in immune cells regulates all three major
MAPKs (12) and decreases DNA binding for various nuclear
factors (170), which results in the downregulation of critical
immunoregulatory genes including IL-2 (171, 172). Overall,
these major signaling networks play important roles in CB2R-
mediated effects on immune cell functions including migration,
proliferation, differentiation, apoptosis, and cytokine production
(28). Generally, effects of the EC system on immune cells
appear directed toward an anti-inflammatory action, although
the context-dependent action of cannabinoids may support
different responses in different cell types and states (62, 173–176).

As regards neuroinflammatory responses, a major player is
the Toll-like receptor (TLR) system (177). TLRs are able to
recognize pathogen-associated and damage-associated molecular
patterns (PAMPs and DAMPs), and several of their effects appear
to be counteracted by ECs [especially through CB2R-related
mechanisms (11)]. Since cochlear damage has also been found
to induce TLR4-responses (178), similar protective effects could
be expected on the cochlea.
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Cannabinoids and Tinnitus
Cannabinoids have been considered as potential treatment for
tinnitus percept and/or distress, and with the legalization of
light cannabis (L.242/2016 as regards Italy), several tinnitus
sufferers are turning to it as a possible DIY remedy. Interest
in cannabinoids as possible treatment for tinnitus has been
motivated by several reasons. Early models of tinnitus stressed its
similarities with neuropathic pain (179) and with epilepsy (180),
both of which can be modulated by cannabinoids (181, 182).

The association between tinnitus and marijuana use in
humans has been studied with contrasting results. In one
study on health problems related to illicit drug use from the
NSDUH database (n = 29,195) (183), tinnitus did not show
any association to marijuana use (whereas an association was
found with hallucinogens and inhalants); in a second, cross-
sectional study on the NHANES database (n = 2,705) (184),
a correlation was found between tinnitus and cannabis use,
although not between cannabis use frequency and tinnitus
severity, and the authors concluded that it was not possible to
differentiate between causal association (cannabis use increases
tinnitus prevalence), reverse causal association (tinnitus sufferers
use more cannabis than non-sufferers), and association due
to external common cause (i.e., anxiety, which increases both
tinnitus risk and cannabis use).

Animal studies [reviewed in (97)] suggest that cannabinoids
do not reduce, and may even favor, tinnitus percept. Similarly,
tinnitus in humans has been sporadically observed in association
with abuse of synthetic cannabinoid mixtures (185, 186).

These seemingly contradictory results arise from two inherent
complexities in the problem under study. First, the responses
to cannabinoids (even for the same compound mixtures)
strongly depend on drug formulation, administration route, and
concentration. Second (Figure 2), tinnitus can result from many
different mechanisms which are often hard to identify.

As regards the first complexity, it is important to stress
that isolated and characterized phytocannabinoids, present in
Cannabis sativa L. and a few other plant species (187, 188),
include about 120 molecules (189), the most studied of which
are 19-THC, mainly responsible for cannabis psychoactive
effects (55), and cannabidiol (CBD), the major non-psychotropic
component (190).

After the explanation of the structure–activity relationships in

the 19-THC series (191, 192), a large and heterogeneous array of

cannabimimetic compounds (Supplementary Tables 1, 2) have

been synthesized (193, 194) including cannabinoid receptor

agonists and antagonists (195), as well as drugs acting on EC

metabolism (18, 196). Although, for several of them, dangerous

health effects and strong potential for abuse and addiction greatly

limit therapeutic use (197–199), several synthetic and phyto-

cannabinoids are currently under clinical evaluation for different

pathological conditions (see Table 1).
Cannabinoid bioavailability varies significantly by their

formulation and route of administration (200, 201) and is

also affected by poorly controllable factors such as subjective

inhalation characteristics (200, 202, 203) or hepatic first-pass
metabolism (202, 204–206). This is particularly relevant because

the expansion of legal use of cannabinoids, for medical and
nonmedical purposes, has substantially increased the types of
commercially available preparations (207).

Second, besides the intrinsic complexities of cannabinoid
pharmacology, the main problem in attempting a
pharmacological approach to tinnitus is the lack of a clear
unifying causative hypothesis for this condition (208, 209).
Current models of tinnitus include (1) a peripheral trigger
[which is assumed to be reduced or altered cochlear input (210),
even if transient (211) or “hidden” [but see (212)], or possibly a
somatosensory trigger (210, 213)]; (2) an aberrant compensatory
response in the brainstem [most likely more complex than a
simple “gain increase” (91, 210, 214) as was initially postulated to
compensate for reduced input (215)]; and (3) a reconfiguration
of cortical pathways including auditory, attentional, salience-
related, and emotion-processing networks [which is thought to
be necessary for the tinnitus percept to emerge to consciousness
(216, 217)]. Given the absence of a causative hypothesis for
tinnitus, in this review we will consider cannabinoid effects
linked to both tinnitus and its main risk factors such as hearing
loss or anxiety.

In animal models, tinnitus may be induced by noise trauma
or ototoxic drugs such as salicylate (218). In humans, tinnitus
is associated with several risk factors such as hearing loss,
head trauma, and endocrine and immune dysregulation (208);
however, the association between risk factors and tinnitus is far
from linear. For example, although hearing loss is the main
risk factor for tinnitus, it is not always accompanied by it,
and tinnitus may be present without hearing loss (208). Non-
auditory brain circuits also play important roles: in particular,
tinnitus shows comorbidity with anxiety and depression (208,
219) and chronic tinnitus is associated with changes in
attentional, memory, and limbic circuits (220, 221). The
hypothesis explaining the involvement of non-auditory circuits
includes a misdirection of attention which stays anomalously
focused on the tinnitus percept (216), the involvement of
limbic circuits encoding distress (220, 221) and the “replaying”
of phantom sounds from memory in the absence of real
percepts (220, 221).

At each of the levels thought to be associated with tinnitus
onset and chronicization there are both well-known and potential
cannabinoid targets. EC mechanisms have been found in the
auditory brainstem, and particularly in the DCN, which is
thought to be a major site of tinnitus onset (91, 222, 223). These
neuronal, CB1R-based mechanisms (see previous section for a
discussion of DCN effects) were considered very promising for
a cannabinoid-based tinnitus treatment; unfortunately, animal
studies displayed no effects, or even tinnitus increase, upon
treatment [see discussion in (97)].

In addition to these targets, however, several other
EC mechanisms (mainly related to inflammation) are
present in the auditory system and in other CNS regions
important for tinnitus (Figure 2). A protective EC
mechanism is present in the cochlea (224, 225). Moreover,
animal studies show inflammatory responses in the
auditory cortex after tinnitus induction (154, 226), and
inflammatory responses in the cochlea (154, 227, 228)
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FIGURE 2 | Tinnitus-related EC targets are present in the cochlea and central auditory system but also in CNS circuits altered in tinnitus; moreover, ECs may target

phenomena which are known to be associated with tinnitus risk (e.g., anxiety) even though precise cellular mechanisms are uncertain. In panel “Tinnitus network,”

numbers indicate as follows: 1: parahippocampal cortex; 2: ventromedial prefrontal cortex; 3: cingulate cortex; 4: amygdala; 5: dorsolateral prefrontal cortex; 6: insula

(from 273). In panel “Auditory CNS” numbers indicate as follow: 1: cochlear nuclei; 2: auditory pons and midbrain; 3: medial geniculate body; 4: auditory cortex. In

panel “Cochlea,” numbers indicate as follows: 1: spiral ganglion; 2: organ of Corti; 3: stria vascularis; 4: cochlear macrophages. Created with Biorender.

and cochlear nuclei (229–232) after tinnitus-inducing
treatments. Neuroinflammation may uncover novel
EC-related therapeutic strategies, given the well-known anti-
inflammatory effect of several cannabinoid drugs and pathways
(see previous section).

In the auditory system, EC receptors and biosynthetic
enzymes have been observed in several species and at several
levels, and EC system modulation affects hearing at various
levels. Moreover, several immune components and mechanisms
known to be affected by EC modulation are also present
in the auditory system, both peripheral and central. In the
mammalian auditory system, EC system components or effects
have been found in the cochlea (80), cochlear nuclei (93, 96,
233), MNTB (234), inferior colliculus (235, 236), and auditory
cortex (237).

The hearing phenotypes of knockout mice for CB1R
(238) and ABHD12 (239) have been characterized. In
CB1R KO mice, high-frequency hearing is reduced but
gap detection is improved, suggesting a change in auditory
processing (238) or attentional modulation of perception,
since in humans, chronic cannabis use is associated with
attention-modulated deficit in PPI (240). Of relevance

for tinnitus, CB1R KO mice also exhibit increased anxiety
responses (241).

ABHD12 KO mice (239) and human ABHD12 nonsense
mutations (242) display progressive hearing loss within PHARC
syndrome. The absence of functional ABHD12 removes a
catabolic pathway for 2-AG (see Figure 1); although the causative
link between mutation and phenotype is still missing, a pro-
inflammatory phenotype displaying microglial activation is
observed (243), consistent with the expression of ABHD12 in
both resting and activated microglia (242). Moreover, in the
ABHD12 KOmouse the AA-related lipidome displays significant
brain region-dependent changes (239) andmacrophages increase
LPS-induced cytokine production (244). On the other hand, the
selective block of ABHD12 in adult mice does not induce hearing
loss, suggesting developmental effects (245).

KO mice for CB2R (246) and other EC system components
(239) are available, but their hearing has not been characterized;
CB2R KO mice, on the other hand, display significant memory
alterations (247).

In the cochlea, CB1R mRNA has been detected, and it
decreases upon tinnitus-inducing salicylate treatment (248).
However, the role of CB1Rs in the cochlea is still uncertain.
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TABLE 1 | Major clinical trials based on pharmacological treatment targeting the endocannabinoid system (updated to July 21, 2020).

Drug Pharmacology Phase Conditions Completion date

(*estimated date for

ongoing studies)

National clinical

trials (NCT)

number

AZD1940 CB1/CB2 non-selective

agonist

1

2

Back pain

Pain

November 2008

May 2008

NCT00689780,

NCT00659490

Org 28611 CB1/CB2 non-selective

agonist

2 Pain August 2007 NCT00782951

SAB378 CB1/CB2 non-selective

agonist

2 Pain January 2010 NCT00723918

APD-371 CB2 selective agonist 2

2

Abdominal Pain,

Crohn disease

Abdominal pain

September 2018

*February 2022

NCT03155945

NCT04043455

GW-

842,166X

CB2 selective agonist 1

2

Inflammatory pain

Pain

July 2007

May 2009

NCT00511524

NCT00444769

Lenabasum CB2 selective agonist 2

3

3

2

2

2

2

Chronic

inflammation

*August 2020

*December 2021

March 2020

December 2016

*July 2023

*December 2020

*December 2021

NCT03451045

NCT03813160

NCT03398837

NCT02465450

NCT02466243

NCT03093402

NCT02465437

Cannabidiol

(Epidiolex)

See cannabidiol section for

details

1,2

3

3

3

1

3

3

3

1

Seizures May 2016

June 2017

February 2019

*February 2022

August 2019

March 2016

May 2016

*January 2021

June 2019

NCT02324673

NCT02318602

NCT02544763

NCT02544750

NCT02700412

NCT02224690

NCT02224560

NCT03808935

NCT02286986

1

1

1

1

1

1,2

2

3

2

2

3

3

3

3

3

3

3

3

3

3

1

2

3

2

4

Pain

Chronic pain

Neuropathic pain

December 2019

December 2020

*December 2021

*December 2021

January 2015

*December 2021

December 2019

August 2002

*December 2020

January 2010

January 2016

September 2006

January 2005

November 2014

July 2015

December 2015

August 2002

September 2002

September 2008

March 2004

*September 2022

November 2018

December 2004

July 2020

June 2020

NCT04193631

NCT03215940

NCT04044729

NCT04030442

NCT01893424

NCT02751359

NCT04088929

NCT01606176

NCT03099005

NCT00530764

NCT01337089

NCT00675948

NCT01606202

NCT01361607

NCT01262651

NCT01424566

NCT01604265

NCT01606189

NCT00391079

NCT00674609

NCT03679949

NCT03763851

NCT01606137

NCT04195269

NCT03891264

2

2

2

Anxiety *August 2021

*February 2021

*March 2022

NCT02548559

NCT04267679

NCT04286594

(Continued)
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TABLE 1 | Continued

Drug Pharmacology Phase Conditions Completion date

(*estimated date for

ongoing studies)

National clinical

trials (NCT)

number

2

1

2

2

2

2,3

3

*January 2021

*November 2021

*July 2021

November 2017

*June 2021

February 2017

*October 2020

NCT04086342

NCT04075435

NCT03948074

NCT02818777

NCT03582137

NCT02283281

NCT03549819

ABX-1431 MAGL inhibitor 1

1

1

1

1

2

Pain

Neurodegerative

disorders

March 2018

July 2018

May 2019

October 2017

July 2018

January 2020

NCT02929264

NCT03138421

NCT03447756

NCT03058562

NCT03138421

NCT03625453

ASP8477 FAAH inhibitor 2 Neuropathic pain February 2015 NCT02065349

JNJ-

42165279

FAAH inhibitor 1

1

2

2

2

Anxiety July 2014

August 2014

August 2018

February 2019

*March 2022

NCT02169973

NCT01826786

NCT02432703

NCT02498392

NCT03664232

PF-

04457845

FAAH inhibitor 1

1

2

2

2

2

2

Pain July 2009

March 2017

May 2010

March 2015

June 2020

June 2020

*December 2022

NCT00836082

NCT02134080

NCT00981357

NCT02216097

NCT01618656

NCT01665573

NCT03386487

SSR411298 FAAH inhibitor 2

2

Pain February 2010

February 2012

NCT00822744

NCT01439919

V158866 FAAH inhibitor 1

2

Neuropathic pain July 2011

July 2015

NCT01634529

NCT01748695

On the other hand, CB2Rs have been found in rodent hair
cells and pillar and Deiters’ cells, spiral ganglion and nerve, and
stria vascularis basal cells (224), and their expression increases
upon cisplatin administration (80). Cisplatin is known to be
strongly ototoxic by inducing cochlear inflammation (249), and
CB2R block or knockdown makes the cochlea more sensitive to
cisplatin ototoxicity (224): moreover, treatment with the CB2R
antagonist AM630 is in itself proinflammatory, suggesting the
presence of a cytoprotective EC tone in the cochlea (224). In
addition, EC protective role in the cochlea has been found to
involve TRPV1 activation: TRPV1 channels are expressed in
hair cells (especially toward the apical pole), pillar, and Deiters’
cells and in the marginal cells of the stria vascularis (250). The
TRPV1 agonist capsaicin increases cochlear CB2R expression,
and a CB2R-dependent mechanism induces the activation of
STAT3; on the other hand, cisplatin induces the activation
of proapoptotic factor STAT1 (225). The protective effect of
capsaicin, which transiently induces STAT1 and TTS (225), is
most likely due to the strong desensitization it induces on TRPV1
channels after a transient activation, similar to its effect in pain
treatment (251).

CB1Rs are present in both ventral (VCN) and dorsal (DCN)
cochlear nuclei of the rat; in the VCN, their role is unclear,
but their expression decreases upon salicylate treatment, which
induces tinnitus (233). In the DCN, salicylate does not change
CB1R expression (233) but alters EC response on cartwheel
cells (96). It is interesting to note the presence of CB1R
(252) and CB2R (253) in the IV ventricle choroid plexus,
especially because CB2R promote neural stem cell proliferation
(254) and neurogenesis was observed in cochlear nuclei after
deafferentation (255). In both man (256) and rat (257), there
is a variable direct contact between the DCN surface and
branches of the choroid plexus, where ECs released in the DCN
molecular layer (92) could reach the plexus, possibly modulating
its immune gate function (258).

As regards cortical effects important for tinnitus treatment,
it is well known that anxiety (181) and attention (259) are
strongly affected by cannabinoids. A point to be remembered
is that, although cannabis use is associated with an acute anti-
anxiety effect (260), chronic cannabis use may dramatically
worsen anxiety (261, 262), thus exacerbating tinnitus severity.
The anxiety-inducing effect of cannabis is correlated with its
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19-THC content, and 19-THC alone may induce anxiety and
paranoia (263); on the other hand, CBD appears to have opposite
effects on anxiety (264) and is currently under clinical evaluation
for the treatment of anxiety, psychosis, and posttraumatic stress
disorder (190, 265, 266).

These data show that cannabinoid effects of possible relevance
for tinnitus are very diverse and include anti-inflammatory,
protective reactions and selective circuit modulation of “auditory
context.” Since the anti-inflammatory route is starting to be
explored as a possible therapeutic target in hearing loss (152)
and tinnitus (154), interest has been raised for cannabinoids as
a treatment option, and in particular for CBD, owing to its good
toxicological profile in humans and lack of psychotropic effects.
The recent availability of CBD preparations underlies anecdotal
use reports by tinnitus patients; however, no controlled human
studies have been performed yet.

Cannabidiol (CBD) is currently under clinical evaluation
for the treatment of pain, anxiety, depression, sleep disorders,
PTSD, headaches, and seizures (see Supplementary Table 1), all
conditions which display analogies or associations with tinnitus
(97, 179, 208). Despite such a wide spectrum of potentially
interesting pharmacological properties, the practical effects of
CBD on tinnitus are still underexplored.

Indeed, as of today the only study using CBD investigated
the effects of a THC-CBD 1:1 mixture on noise trauma-induced
tinnitus in the rat, showing no effects of daily treatment on
tinnitus animals, and actually suggesting that cannabinoidsmight
favor tinnitus onset, since treatment increased the fraction
of animals showing tinnitus signs (267). These results agree
with the effects of synthetic CB1R agonists (WIN55, 212-
2, CP55,940, and ACEA) which have been tested in animal
models of salicylate-induced tinnitus, with negative results
[rat: (268); guinea pig: (269)]. It has to be remembered,
however, that co-administered CBD and THC interact in a
very complex way, and cannabinoid mixtures exert effects
which may be very different from the simple combination
of the effects of each drug per se (270). One example is
CB1R activation in the cerebral cortex and hippocampus,
associated with effects on cognition and memory (271): in
this model, CBD is able to counteract THC-induced memory
impairment (272).

In general, the pharmacodynamic of CBD appears particularly
complex, with over 65 identified molecular targets, and different
mechanisms proposed to explain its actions (190, 273, 274). Here
we summarize only the CBD targets which may bear relevance
for tinnitus.

On CB1R/CB2R, CBD has a very low affinity (in the µM
range) and shows little agonist activity; on the other hand,
it seems to antagonize CB1/CB2 synthetic agonist action with
KB values in the nM range (275). It has been suggested that
CBD acts as negative allosteric modulator of CB1R and as
antagonist/inverse agonist of CB2R (276); in addition, it may
indirectly affect CBR function by inhibiting FAAH activity,
thus increasing endogenous anandamide levels (277, 278). For
example, CBD neuroprotective effect after cerebral hypoxia–
ischemia in immature pigs involves CB2R activation (279) and

may be therefore due to EC increase rather than to a direct
receptor effect.

Besides these effects, CBD acts as antagonist/inverse agonist of
GPCR3, GPCR6, GPCR18, and GPCR55 (33, 280) andmodulates
serotonergic transmission acting as an allosteric agonist of
5HT1A receptor, a partial agonist of 5HT2A, and an allosteric
inhibitor of 5HT3A (281–283). CBD protective effects on a
BBB permeability model (284) required PPARγ and 5HT1A and
were independent of CBRs. Similarly, CBD anti-depressant and
anxiolytic effects also appear independent from CB2R (285) and
linked to 5HT1A activation.

In the µM range, CBD may also activate adenosine A1
(286) and A2A receptors (287), activate glycine α1 (288) and
α3 receptors (289), inhibit α7 nicotinic acetylcholine receptors
(290), and allosterically modulate µ and δ opioid receptors (half
maximal inhibition was observed at ∼10µM) (291). As a caveat,
since CBD concentrations > 20µM are unlikely to be attained in
vivo (292), not all the described CBD pharmacological activities
are likely to be physiologically meaningful.

Modulation of α7 nAChRs may be relevant for tinnitus
since these receptors are expressed in cortical and hippocampal
neurons and affect cognition and memory [reviewed in (293)];
moreover, these receptors are also expressed in microglia
(294) and macrophages (295) and are involved in the vagal-
mediated cholinergic anti-inflammatory response signaling
through the JAK2/STAT3 pathway, decreasing levels of pro-
inflammatory cytokines, such as TNF-α, IL-1β, and IL-6
and increasing levels of anti-inflammatory cytokines such as
IL-10 (295–298).

Finally, CBD may affect several ion channels including
voltage-dependent Na channels (299), T-type Ca channels (300),
and TRPV1 and TRPV2 channels (301). In particular, CBD can
act on TRPV-1, exhibiting an action similar to capsaicin, both in
vitro (302) and in an animal model of acute inflammation (303).
This is relevant since capsaicin is able to exert protective effects
on cochlear inflammatory damage (225), and therefore, CBDmay
exert similar otoprotective actions.

CONCLUSIONS

1. Cannabinoids are involved in neural processing in the healthy
auditory system, in protective reaction to auditory damage,
and in most non-auditory circuits known to be associated
with tinnitus.

2. Given the availability of a large number of drugs with a wide
spectrum of different effects on the EC system, it appears
possible that some of themmay reduce tinnitus percept or risk
factors rather than increase them, similar to what is seen, e.g.,
for anxiety (where EC-targeting drugs may either worsen or
ameliorate it).

3. EC modulation of neuroinflammatory responses in
the auditory system, in particular by CBD, which is
neuroprotective, is anti-inflammatory, undergoes clinical trial
as an anxiolytic, and acts on pathways involved in cochlear
damage protection, may represent a novel pharmacological
approach to hearing loss and tinnitus, although more data
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are necessary (especially on humans) to assess the therapeutic
value of this or other EC drugs.
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