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Simple Summary: Globally, the Indian meal moth is an insect pest of stored goods and manufactured
foodstuffs. Synthetic fumigants, such as phosphine and methyl bromide, are widely used agents to
control this species. However, due to the development of resistance and increasing concern about
the potential adverse effects of synthetic fumigants, it is now necessary to identify environmentally
friendly alternatives. Naturally occurring compounds, such as essential oils (EOs), are perhaps the
most promising alternative sources; many have been successfully used as active ingredients in contact-
based control products, repellents, and fumigants. Methyl benzoate (MBe) is an environmentally
friendly, food-safe, natural insecticide that offers a possible alternative to synthetic equivalents. Here,
we evaluated the fumigant toxicity of MBe against adults of the Indian meal moth and found that it
had great potential for the control of these insect pests in stored products.

Abstract: The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is an insect
pest that commonly affects stored and postharvest agricultural products. For the control of insect
pests and mites, methyl benzoate (MBe) is lethal as a fumigant and also causes contact toxicity;
although it has already been established as a food-safe natural product, the fumigation toxicity
of MBe has yet to be demonstrated in P. interpunctella. Herein, we evaluated MBe as a potential
fumigant for controlling adults of P. interpunctella in two bioassays. Compared to the monoterpenes
examined under laboratory conditions, MBe demonstrated high fumigant activity using a 1-L glass
bottle at 1 µL/L air within 4 h of exposure. The median lethal concentration (LC50) of MBe was
0.1 µL/L air; the median lethal time (LT50) of MBe at 0.1, 0.3, 0.5, and 1 µL/L air was 3.8, 3.3, 2.8, and
2.0 h, respectively. Compared with commercially available monoterpene compounds used in pest
control, MBe showed the highest fumigant toxicity (toxicity order as follows): MBe > citronellal >
linalool > 1,8 cineole > limonene. Moreover, in a larger space assay, MBe caused 100% mortality of
P. interpunctella at 0.01 µL/cm3 of air after 24 h of exposure. Therefore, MBe can be recommended
for use in food security programs as an ecofriendly alternative fumigant. Specifically, it provides
another management tool for curtailing the loss of stored food commodities due to P. interpunctella
infestation.

Keywords: stored-product insect; fumigation toxicity; naturally available compound; monoterpenes

1. Introduction

The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), is a
cosmopolitan pest that infests a wide range of stored and postharvest products including
cereal products, dried fruits, nuts, and legumes [1,2]. Historically, this species is among the
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world’s major economically important insect pests of raw and manufactured agricultural
products, warehouses, and retail environments [3–5]. For example, its larvae are associated
with 179 different food commodities in 48 different countries across six continents [6].
Infestations of P. interpunctella can cause direct commodity loss as well as indirect economic
costs through pest control, quality losses, and consumer complaints [7]. Given that insect
allergens now represent a serious threat to human health, contamination of commodities
by P. interpunctella is also an important issue for modern allergy-sensitive communities [8].
Over the past few decades, control of P. interpunctella has relied heavily on the use of
synthetic pesticides (e.g., organophosphates and pyrethroids) and fumigants (e.g., methyl
bromide or phosphine) [9,10].

Fumigants have typically been used to control stored-product insect pests in large
commodities, packaged materials, and structures; hence, methyl bromide and phosphine
are widely used as fumigation control agents. Both compounds are highly effective for
pest control; however, their high mammalian toxicity makes them hazardous to work with
during large-scale fumigations, especially in confined spaces [11]. Furthermore, methyl
bromide has been declared an ozone-depleting substance, and its use is currently being
phased out [11,12]. Phosphine is currently used to control adults of stored-product pests,
which are mainly controlled in open spaces such as in flour mills [13]; however, insect
resistance to phosphine is now a global issue, with control failures having been reported in
field situations in some countries [14–20]. Alternative fumigants have been investigated,
including sulfuryl fluoride [21], ethyl formate [22], hydrogen cyanide [23], and nitric ox-
ide [24], but these have several disadvantages [22,23]. Thus, there is an increasing desire to
use more toxicologically and environmentally benign chemicals in insect pest management.
The use of naturally occurring toxins, such as some monoterpenes, rather than conventional
synthetic pesticides is becoming more desirable in pest management programs because
these compounds generally show rapid environmental biodegradation and lower toxi-
city to nontarget organisms, e.g., natural enemies, humans, and other vertebrates [25].
Monoterpenes, which are components of essential oils (EOs) found in many aromatic
plants, are considered suitable compounds with which to develop new insecticides because
they are typically safe, effective, and fully biodegradable [26]. Moreover, the toxicities of
monoterpenes have been demonstrated against P. interpunctella as well as several other
stored-product pests including Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium
castaneum (Herbst) (Coleoptera: Tenebrionidae), Rhyzopertha dominica (F.) (Coleoptera:
Bostrichidae), and Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae) [27–29].

Methyl benzoate (MBe) is a floral volatile organic compound found within many
plants including snapdragons and petunias [30]. It has a sweet, balsamic, spicy, and heady
scent [31]; consequently, it has been used as a component of fragrances within the perfume
industry [32]. In addition, MBe is known to biodegrade slowly in the atmosphere [33].
Recently, MBe has been shown to have contact toxicity against various insect pests in-
cluding spotted wing drosophila, tobacco hornworms, brown marmorated stink bugs,
diamondback moths, red imported fire ants, whiteflies, aphids, and mites [34–38]. Further-
more, the potential fumigation toxicity of MBe has been demonstrated on bed bugs and
some stored-product insect pests [29,39–41]. However, its fumigation toxicity has yet to be
evaluated in P. interpunctella.

This aim of this study was therefore to assess the effectiveness of MBe as a fumigant
against adult P. interpunctella in the laboratory. Moreover, its efficacy relative to some
commercially available monoterpenes, i.e., citronellal, linalool, 1,8 cineole, and limonene,
was evaluated along with a positive control of ethyl formate.

2. Materials and Methods
2.1. Insects and Chemicals

The initial population of moths used in the experiments was acquired originally from
home storage of grain products in Daegu, Korea, in 2019, and brought into the laboratory.
The colony of P. interpunctella was maintained at the insect physiology laboratory, Kyung-
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pook National University, Daegu, Korea, where they were reared at 27 ◦C ± 1 ◦C, 70% ± 5%
relative humidity, with a 16:8 h light:dark photoperiod, on an artificial diet consisting of a
mixture of wheat bran (410 gm), pollen (780 gm), honey (80 mL), glycerin (80 mL), water
(10 mL), and methyl paraben (1.17 gm). During their maintenance, P. interpunctella colony
was not exposed to any insecticides.

The commercially available compounds MBe (99%), citronellal (95%), linalool (95%),
1,8 cineole (99%), limonene (97%), and ethyl formate (97%) were purchased from Sigma-
Aldrich (St. Louis, MO, USA) (Figure 1).
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Figure 1. The chemical structures of methyl benzoate (MBe) and the other tested monoterpenes.

2.2. Fumigant Toxicity of MBe against Adults of P. interpunctella: Glass Bottle Bioassay

Two different methods were employed to evaluate MBe fumigation toxicity on adults
of P. interpunctella. First, MBe fumigation of P. interpunctella was conducted in 1-L glass
bottles (Schott Duran), which were sealed and airtight to serve as fumigation chambers.
Various MBe concentrations (0.1, 0.3, 0.5, and 1 µL/L air) were loaded onto small cotton
balls without any solvent, whereas plain cotton balls served as blank controls; each of
these was placed within a small (1.5 mL) Eppendorf plastic tube (Figure 2A). Different
concentrations of ethyl formate (1, 3, 4, and 5 µL/L air) were applied in the same manner
to serve as positive controls. Each Eppendorf plastic tube was sealed with Parafilm (Bemis
Company Inc., Neenah, WI, USA), leaving only a small hole in the center to prevent
direct contact with the tested insects and the treated cotton ball. The Eppendorf plastic
tube containing the cotton balls were then placed to the bottom of the glass bottle. For
experimentation, sets of 10 mixed-sex adults (<5 days old) were transferred from the
stock culture to the glass bottle. All bottles were maintained in the growth chamber
for 4 h at the temperature and RH conditions described in Section 2.1. The number of
dead P. interpunctella moths in each bottle was counted at 1-h intervals during the 4-h
exposure. Insects that were lying on their backs and/or unable to move upon prodding
were considered dead. All treatments were replicated five times.
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Figure 2. Experimental setups for testing the fumigation toxicity of methyl benzoate (MBe) against adults of Plodia
interpunctella. (A) glass bottles (1 L) and (B) cardboard boxes were used as fumigation chambers.

2.3. Fumigant Toxicity of MBe against Adults of P. interpunctella: Cardboard Box Bioassay

In a second bioassay, cardboard boxes (40 × 40 × 60 cm; volume ca. 96,000 cm3;
Figure 2B) were used as fumigation chambers under the same laboratory conditions de-
scribed in Section 2.1 to determine whether the effective MBe concentrations in the glass
bottle assay retained their fumigant efficacy in a larger space. Filter paper (15 × 5 cm;
Whatman No. 1, Maidstone, England) was first moistened uniformly by applying 1000 µL
of MBe solution. Once dry, the filter paper was attached to the top of each cardboard box
with adhesive tape. In each replicate, 20 mixed-sex P. interpunctella adults (<5 days old)
were added to a mesh-covered insect proof cage (40 × 20 × 15 cm; Figure 2B), which was
placed inside the cardboard box. Control boxes contained untreated filter paper. Each
cardboard box was sealed with tape, and the mortality of the moths was assessed after 24 h.
Each treatment was replicated five times.

2.4. Comparison of the Fumigation Toxicity of MBe with That of Other Monoterpenes

A series of bioassays was conducted as described in Sections 2.2 and 2.3 to compare the
fumigation toxicity of MBe to that of other monoterpenes (i.e., those considered “minimum-
risk pesticides” [34]). To compare the fumigant toxicity of MBe, citronellal, linalool, 1,8
cineole, and limonene against adults of P. interpunctella in the glass bottle bioassay, we
selected an effective concentration of 1 µL/L air. On the other hand, in the cardboard
box bioassay, we compared only MBe and citronellal because the latter showed stronger
fumigant toxicity than the other selected monoterpenes when used in the glass bottle
bioassay. Each comparative bioassay was replicated five times, and mortality data were
recorded as described in Sections 2.2 and 2.3.

2.5. Statistical Analysis

All statistical analyses were performed in SAS 9.4 [42], while SigmaPlot 12.5 was
used to construct all graphs. Two-way ANOVA followed by Dunnett’s post hoc test
determined the interactions of MBe concentrations and exposure times, and variations
between treatment groups were examined by one-way ANOVA followed by Tukey’s post
hoc study (p < 0.05). Additionally, 95% confidence intervals were calculated. Abbott’s
formula was not applied to bioassay data because control mortalities never exceeded 10%.
To determine median lethal concentrations (LC50s) for P. interpunctella after 4 h as well as
median lethal time (LT50s), log-probit analysis of data was applied.
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3. Results
3.1. Fumigant Toxicity of MBe against Adults of P. interpunctella: Glass Bottle Bioassay

MBe fumigation was effective against P. interpunctella adults at all tested concentra-
tions, with maximum mortality achieved by 1 µL MBe/L air following a 4-h exposure
period (Figure 3A). The mortality of P. interpunctella adults was MBe concentration- and
exposure time-dependent. After 4 h of exposure, maximum mortality was recorded at 56%,
70%, 90%, and 100% for MBe with 0.1, 0.3, 0.5, and 1 µL/L air, respectively (Figure 3A). For
ethyl formate as the positive control, 100% mortality was observed with a concentration of
5 µL/L air at a 4-h exposure (Figure 3B).
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Figure 3. Fumigation toxicity of methyl benzoate (MBe) (A) and ethyl formate (positive control) (B) against adults of Plodia
interpunctella. Adult mortality was evaluated at 1-h intervals during 4 h of exposure.

The LT50 values for MBe at 0.1, 0.3, 0.5, and 1 µL/L air were 3.8 h (χ2 = 0.54, df = 2,
p = 0.764), 3.3 h (χ2 = 7.31, df = 2, p = 0.026), 2.8 h (χ2 = 32.7, df = 2, p < 0.0001), and 2.0 h
(χ2 = 34.8, df = 2, p < 0.0001), respectively (Table 1).

Table 1. Probit analysis of time-mortality responses of Plodia interpunctella adults exposed to various
concentrations of methyl benzoate (MBe).

MBe Concentrations
(µL/L air) LT50 (h) 95% CI

(Lower–Upper) Slope (SEM) X2 (df)

0.1 3.8 (3.6–4.2) 6.5 (0.85) 0.54 (2)
0.3 3.3 (2.3–16.4) 4.9 (1.05) 7.31 (2)
0.5 2.8 (1.33–6.0) 4.9 (1.85) 32.7 (2)
1.0 2.0 - 3.9 (1.47) 34.8 (2)

CI = confidence interval; df = degrees of freedom.

Probit analysis revealed that the LC50 value for MBe as a fumigant treatment against
adults of P. interpunctella was 0.1 µL/L air (Table 2). Based on this LC50 value, MBe showed
greater toxicity than the positive control ethyl formate (3.2 µL/L air).

Table 2. Probit analysis of concentration–mortality responses of Plodia interpunctella adults exposed
to various concentrations of methyl benzoate (MBe) and ethyl formate.

Treatment LC50
(µL/L air)

95% CI
(Lower–Upper) Slope (SEM) X2 (df)

Methyl benzoate 0.1 - 1.8 (0.23) 12.16 (2)
Ethyl formate 3.2 (2.1–3.7) 10.4 (1.87) 4.98 (2)

CI = confidence interval; df = degrees of freedom; LC50 values were calculated by using the 4-h mortality data.
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As shown in Table 3, there were significant differences among the mortality effects of
MBe concentrations (F = 184.57; df = 4, 80; p < 0.0001) and exposure times (F = 366.42; df = 3,
80; p < 0.0001). In addition, the interaction between MBe concentrations and exposure
times also had a significant effect on the mortality of P. interpunctella (F = 26.405; df = 12, 80;
p < 0.0001) (Table 3).

Table 3. Two-factor repeated measures ANOVA results testing the effects of different concentrations
and exposure times on the fumigation toxicity of methyl benzoate (MBe) against adults of Plodia
interpunctella.

Source Type III Sum of
Squares df Mean

Square F p

Corrected Model 100,180 19 5272.632 113.39 <0.0001
Intercept 84,100 1 84,100 1808.6 <0.0001

MBe concentrations 34,330 4 8582.5 184.57 <0.0001
Exposure times 51,116 3 17,038.667 366.423 <0.001

MBe concentrations ×
Exposure times 14,734 12 1227.833 26.405 <0.001

Error 3720 80 46.5
Total 188,000 100

Corrected Total 103,900 99
df = degrees of freedom.

3.2. Fumigant Toxicity of MBe against Adults of P. interpunctella: Cardboard Box Bioassay

In the second (confirmatory) fumigation experiment, MBe showed stronger fumigation
toxicity than citronella against adults of P. interpunctella. After 24 h of exposure to MBe
at a concentration of 0.01 µL/cm3, 100% mortality was observed (Figure 4). In contrast,
for the same concentration and exposure time, citronellal produced 86% mortality. There
was a significant difference between the two tested compounds (F = 1034.82; df = 2, 12;
p < 0.0001) (Figure 4).
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3.3. Fumigant Toxicity of MBe Compared to That of Other Monoterpenes

Among all of the tested compounds, MBe had the highest fumigant toxicity against
adults of P. interpunctella. After 4 h of exposure, MBe at a concentration of 1 µL/L air
produced 100% mortality, whereas equivalent concentrations of citronellal, linalool, 1,8
cineole, and limonene produced 82%, 60%, 54%, and 26% mortality rates, respectively
(Figure 5). There were significant differences among the effects of MBe and those of other
monoterpenes (F = 104.77; df = 5, 24; p < 0.0001) (Figure 5).
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4. Discussion

Naturally occurring essential oils are good candidates as safe alternatives to conven-
tional fumigants because of their low mammalian and environmental toxicity, as well as
their high volatility [39,41,43,44]. The present study demonstrated that MBe has potent
fumigation toxicity against adults of P. interpunctella. Based on our laboratory toxicity
data, MBe was more toxic than some commercially available monoterpenes, i.e., citronellal,
linalool, 1,8 cineole, and limonene. In addition, our results indicated that the fumigation
toxicity of MBe is concentration- and exposure time-dependent.

Morrison et al. [39] found that a 24-h exposure to high concentrations of MBe caused
high fumigant toxicity against R. dominica and T. castaneum, whereas Sitophilus zeamais
(Motschulsky) (Coleoptera: Cucurlionidae) and Trogoderma variabile (Ballion) (Coleoptera:
Dermestidae) were less susceptible. Park et al. [29] also found that MBe was highly toxic
to C. chinensis at 5.36 mg/L after 24 h of exposure. In the current study, MBe showed
potent fumigant toxicity against adults of P. interpunctella with LT50 values as low as
2 h with 1 µL/L air. Similarly, Yang et al. [41] reported that the LT50 value of MBe on
S. oryzae was 6.21 h, while the LT50 values against Frankliniella occidentalis (Pergande)
(Thysanoptera: Thripidae) and Rhizoglyphus spp. (Sarcoptiformes: Acaridae) were 0.49 and
19.07 h, respectively [41]. The differences between our results and those of other studies
are likely due to differences in the insects tested.
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Monoterpenes demonstrate strong fumigant action against pest species due to their
high volatility [12,45,46]. Among the monoterpenes used against the adults of P. inter-
punctella in the present study, citronellal had the highest fumigation activity; however,
MBe showed stronger fumigation toxicity than citronellal in both of our laboratory bioas-
says. The toxic effect of a substance was not solely dependent on its volatility but also
depended on toxicokinetic steps and unique target-receptor interactions [46–48] as well as
physiochemical properties (Table 4) [49].

Table 4. Physiochemical properties of the tested compounds.

Compound Vapor Pressure (mmHg at 25 ◦C) Boiling Point (◦C at 760 mmHg)

Methyl benzoate 0.38 199.0
Citronellal 0.28 207.0

Linalool 0.10 198.0
1,8 cineole 1.60 176.0
Limonene 1.50 175.0

Data were obtained from Phillips et al. [50] and the PubChem Open Chemistry Database (https://pubchem.ncbi.
nlm.nih.gov/).

In previous studies, the fumigant toxicities of the monoterpenes tested here were
assessed against other stored-product pests [45,51,52]. For instance, limonene, and linalool
had the highest fumigation toxicities against adults of S. oryzae and T. castaneum with LC50
values of 26.92, 52.78, and 33.37, >100 mg/L of air, respectively [45]. Limonene also showed
fumigation toxicities against adults of R. dominica, S. oryzae, and T. castaneum in another
study, with LD95 values of 7.04, 12.75, and 11.11 mg/L air, respectively [52]. Besides, 1,8
cineole was reported to produce >90% mortality to S. oryzae, T. castaneum, R. dominica,
and Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) with LD95 values of 22.8, 15.3, 9.5,
and 5.7 µL/L of air, respectively [27,53]. Both citronellal and limonene also caused 100%
mortality of Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) at 50 µg/mL air [51].

In the present study, the vapor pressure of MBe was 0.38 mmHg at 25 ◦C (Table 4),
while the calculated saturated vapor concentration of the compound is theoretically
500 ppm [41]. Recently, Yang et al. [41] reported that the vapor concentrations of MBe in a
headspace chamber at 25 ◦C for at 2 and 72 h were 438 and 435 ppm, respectively. Thus,
MBe concentrations were stable at 2–72 h and close to 500 ppm (theoretically). Only a small
amount of liquid MBe was vaporized by the end of the fumigation treatment, likely because
of the low vapor pressure of MBe. In the current study, the low effective concentration of
MBe also suggested its high efficacy against adults of P. interpunctella.

Compared to most other gas fumigants, MBe is much less volatile and may therefore
have less capacity to penetrate products such as vegetables and stored goods. However,
Yang et al. [41] reported that MBe is useful as a fumigant against insects on both fresh
and stored products and showed that MBe fumigation could combat postharvest pests.
Moreover, they also found that MBe fumigation had no adverse effect on the quality of
apples in terms of color, weight, and firmness.

5. Conclusions

In conclusion, our findings indicate that MBe has high fumigant toxicity against adults
of P. interpunctella. Our findings also illustrate that MBe stands out among other potential
natural biofumigants as a strong candidate to protect stored products against insect pests
(here P. interpunctella); thus, MBe may be a safer and perhaps more effective alternative
to traditional fumigants. However, further research is required to assess and promote
the natural evaporation of MBe in commercial-scale trials, improve control efficiency, and
develop protocols for commercial-scale treatment.
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