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ABSTRACT Population genomic analysis is a powerful tool to understand the evolu-
tionary history of pathogens and the factors contributing to the success or failure of
lineages. These studies have significant implications for human health, as evident
from our ongoing tracking of SARS-CoV-2. In their article, Gill et al. (J. L. Gill, J.
Hedge, D. J. Wilson, and R. C. MacLean, mBio 12:e02168-21, 2021, https://doi.org/10
.1128/mBio.02168-21) demonstrate the utility of pathogen genomic data by compre-
hensively elucidating the origin of methicillin-resistant Staphylococcus aureus ST239.
To accomplish this, they leveraged newly developed tools for querying large
genomic data sets. Overall, these analyses rely on the availability of representative
genomic data along with their associated metadata—information about where and
when samples were collected, clinical and epidemiological characteristics, and phe-
notypic properties. However, in many instances, these data are missing. Here, I bor-
row the term “meaningful use” from the Health IT field to describe the need to max-
imize the utility of genomic data and make suggestions for how to address the
current limitations.
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Acommon goal among population genomic studies is to understand the evolution-
ary history of a pathogen and the relative success of its lineages. These

approaches are dependent on access to pathogen genomic data, rich metadata, and
preferably the isolate and/or relevant phenotypic profiling. In their recent mBio publi-
cation, Gill et al. provide a clear example of how, when available, such data can be
applied to answering unresolved questions, thereby increasing the utility of genomic
data beyond their initial purpose (1). The authors analyzed published Staphylococcus
aureus genomic data spanning 70 years to understand the origins of ST239, a well
known methicillin-resistant S. aureus (MRSA) strain. After its emergence, MRSA ST239
became a leading cause of health care-associated infections, highly prevalent and
globally distributed, except in the United States, where it has remained relatively rare.
Before their work, it was proposed that ST239 arose from a large recombination event
between ST8 and ST30 strains (2). By querying representative genomes of ST30 and
ST8, the authors were able to provide more definitive evidence of this hybrid evolu-
tion. They showed that the genomic backbone was most related to ST8, while the
acquired region originated from an ST30 lineage that evolved from the phage type 80/
81 clone, a notorious strain of methicillin-susceptible S. aureus (MSSA) that frequently
caused hospital outbreaks in the 1950s and 1960s. As the SCCmec type III element,
which confers resistance to multiple antibiotics, was not found among ;1,900 pub-
lished ST30 genomes, they posit that it was acquired from an ST30 ancestor after diver-
gence of the ST239 lineage. Furthermore, they were able to date the origin of ST239
MRSA to between 1920 and 1945, echoing findings from another group that recently
showed that methicillin-resistant S. aureus emerged prior to the clinical introduction of
methicillin (3). To explain the recent decrease in prevalence of ST239, the authors
investigated the competitive fitness of ST239, finding it lower than its ST30 and ST8
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progenitors. To reinforce this finding, they assessed selective forces acting on the
genomic backbone and acquired regions, finding a fitness cost associated with acqui-
sition of genes coding for antimicrobial resistance. Nevertheless, it remains unclear
whether the decline of ST239 was the result of direct competition with other lineages
or some combination of competition with improvements in infection prevention in
the health care setting and decreased selective pressure as the result of antibiotic
stewardship.

Although the limited geographic distribution of ST239 was not specifically addressed
by their analysis, Gill and colleagues also provide a putative explanation for why it was
never a successful strain in North America. In the United States, USA100 and USA800
belonging to ST5 and USA500 belonging to ST8 were historically the leading causes of
health care-associated MRSA infections (4). These lineages emerged in the Western
Hemisphere at approximately the same time that ST239 was emerging elsewhere. The
emergence of the highly successful ST8 USA300 North American epidemic clone in the
1990s likely ensured that ST239 would never become established (5). This was supported
by the authors’ findings that ST8 demonstrated greater fitness and the observation that
the few sequenced ST239 North American isolates were interspersed throughout the
ST239 global phylogeny, suggesting multiple introductions that never took hold. Taken
together, their findings provide insight into the fate of prevalent lineages and consider-
ably advance our understanding about how new lineages emerge, how selection may
act on different parts of the genome, and why we observe considerable geographic vari-
ation in lineage distribution. More work is needed to investigate the relative contribution
of human interventions and strain competition, especially among MRSA and MSSA line-
ages. Overall, the authors present an eloquent synthesis of computational and experi-
mental approaches combined with genomic detective work, highlighting the promise of
pathogen genomic data meta-analysis.

The present analysis was made possible by the wealth of published sequencing
data on S. aureus, which is one of the most well represented bacterial species in pub-
licly available genomic data repositories (6). Over the last decade, the advances in
sequencing technology and accompanying reduction in sequencing costs have
resulted in an exponential increase in the number of published microbial data sets

FIG 1 Yearly published draft prokaryotic genomes published in the National Center for Biotechnology
Information (NCBI) database (https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt).
The release dates of notable sequencing platforms are noted on the figure. ONT, Oxford Nanopore
Technologies.

Commentary mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.00311-22 2

https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt
https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00311-22


(Fig. 1) (7). However, the vast majority of these data exist as raw sequencing experi-
ments deposited in the European Nucleotide Archive (ENA) and/or NCBI Sequence
Read Archive (SRA), which makes them less accessible for routine querying. This limita-
tion, compounded by the scarcity of available metadata, has diminished the utility of
genomic data for secondary studies. In particular, it has been difficult for researchers to
identify relevant data sets (e.g., genomes of samples collected from a disease type/
sampling site, date range, or location) or search genomes for features of interest such
as a specific genotype, virulence or antibiotic resistance determinants, or other mobile
genetic element. Often this difficulty results in the generation of new genomic data
when existing data may have sufficed had metadata been made available. The ideal
genomic database would offer more comprehensive and easily searchable metadata,
which would enable improved tracking of the emergence and spread of epidemiologi-
cally important pathogens, elucidate the factors contributing to emergence, and facili-
tate the identification of novel mechanisms for virulence and antimicrobial resistance.

Current limitations are partially being addressed by significant methodological
advances in development of computational tools for handling the ever-growing amount
of data. Two such tools, BIGSI (https://bigsi.readme.io/) and Staphopia (https://staphopia
.emory.edu/), were used in the present study (8, 9). BIGSI allows for efficient indexing
and rapid querying of large genomic databases. As an early proof of concept, the
authors indexed the raw sequencing data in the entire ENA database, while in subse-
quent iterations these data were assembled into draft genomes and then indexed (6). As
a result, researchers were no longer limited to searching the ;330,000 published draft
prokaryotic genomes in NCBI/ENA but also the .660,000 genomes that previously
existed only as raw sequencing data (6). Staphopia houses a centralized database for S.
aureus genomes and pathogen-specific results such as genotype and antibiotic resist-
ance and virulence gene profiles. Its successor Bactopia (https://bactopia.github.io/) pro-
vides an analysis framework that can be easily applied to other pathogens. In combina-
tion, these tools allowed the authors of the present study to easily identify all published
genomes belonging to ST239, ST30, and ST8 in the Staphopia database and then use
BIGSI to search all microbial genomic data for the SCCmec-III mobile genomic element
sequence found in ST239. Simply put, their analysis would not have been possible or as
comprehensive without these tools.

During the development of Staphopia, the authors also highlighted two common
limitations of large genomic databases: accessible metadata and geographic represen-
tation. In their work, Petit and Read found that of the ;43,000 S. aureus samples de-
posited between 2010 and 2017, only 40% had a collection date, 35% had a geo-
graphic location, and 35% had an isolate source (9). Only 28% of samples could be
linked to a publication, and while most journals require genomic data to be deposited
and the metadata published, there are minimal standards for which fields are required.
Even if rich metadata were included with associated publications, it is tedious for
researchers to identify relevant genomic studies and then aggregate largely incom-
plete and inconsistent metadata. A recent secondary analysis of S. aureus genomic
data we performed utilized 436 genomes spanning 45 published studies and 55 NCBI
bioprojects (10). This required resource intensive abstraction of metadata, and in many
instances, the study authors were contacted to obtain the requisite data for meaning-
ful analysis. Finally, by assessing the available metadata, it is evident that there is a
strong geographic bias among published genomic data, with much of it comprised of
samples collected from North America and Western Europe. This has clear implications
for population genomic studies. For example, accurately tracking the demographic his-
tory of a pathogen or identifying the origin of a recombination block relies on having
representative sampling of the ancestor within the data set.

Myriad entities such as private laboratories, public health agencies, and academic
researchers routinely generate sequencing data, and reasons can vary for not publish-
ing detailed metadata, including (i) privacy concerns, (ii) the desire to use the data to
its fullest extent before others gain access, (iii) wanting credit for invested resources,
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and (iv) a feeling of inequity among data generators. Furthermore, when data are gen-
erated by a public health entity, common data elements such as date of collection or
location can be considered protected health information released at the discretion of
the agency. The debate about genomic data-sharing practices and policies has been
brought to the forefront of scientific discussion during the SARS-CoV-2 pandemic (11).
There are strong arguments from groups advocating for unrestricted data access and
others wanting a more conservative approach. Moving forward, the scientific commu-
nity should revisit how sequencing data are published along with their associated
metadata. Likely, a top-down and bottom-up approach will be needed to address the
current limitations. While the National Institutes of Health (NIH) published a genomic
data-sharing policy in 2015 that set requirements for the publication of data generated
through federal funding, the metadata requirements are relatively minimal (12).
Further, the disparity between the number of published assembled draft genomes and
those stored as raw sequencing data is partially the result of the current policy, which
requires that genomic data be deposited within 45 days after generation (13). This
approach favors rapid, prepublication data availability, which undeniably is necessary
for responding to public health emergencies. However, the proper collection and cura-
tion of metadata requires considerable effort and is frequently performed during prep-
aration for publication. The unintended result is a less than optimal genomic database.
Currently, NIH is revisiting this policy and has posted a request for information, provid-
ing an opportunity for stakeholders in the fields of genomics, infectious diseases, pub-
lic health, ecology, microbiology, and epidemiology to shape the long-term vision and
balance acceptability with usability.

As a community of scholars with a vested interest in access to useful microbial
genomic data, we can improve our practices by publishing detailed metadata with
their associated sequence data. While a minimal acceptable data set is not well estab-
lished, at the least, the year and month of collection, location of collection (at a mini-
mum region/state/province and country), source (e.g., human, fomite, or animal; car-
riage or disease if from a host), and disease type should be included. Ideally,
phenotypic properties that cannot be inferred from the genomic data such as antibi-
otic susceptibility should be included. Further, as more complete metadata and draft
genome assemblies are generated during analysis, these data should be appended to
the primary submission, and as a community, we should determine whether policies
requiring this are needed. Most importantly, metadata should not be relegated to an
unsearchable table in a supplemental pdf file. If more detailed metadata are available
that are not compatible with current data structures, repositories like Data Dryad
(https://datadryad.org/) may provide an alternative to supplemental metadata tables.
Retrospectively, we can leverage computational advances to scrape metadata from
publications and link them to accession numbers of genomic data sets. This may be
most useful for pathogen-specific databases such as Staphopia. Finally, in terms of
increasing the geographic representativeness of genomic data, efforts like that of the
Global Pneumococcal Sequencing Project are a model for engaging countries with lim-
ited resources and ensuring that their participation is equitable (14). Together, these
efforts would greatly improve the richness and utility of genomic data sets and make
analysis such as the one by Gill et al. (1) more commonplace.
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