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Novel homozygous nonsense mutation associated 
with Bardet–Biedl syndrome in fetuses with 
congenital renal malformation
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Abstract 
Background: The Bardet–Biedl syndrome (BBS) is a rare autosomal recessive disorder, characterized by clinical and genetic 
heterogeneity. BBS is more commonly reported in adults and children than in fetuses. Here, a retrospective study on 210 fetuses 
with congenital renal malformation was conducted.

Methods: The fetuses were diagnosed using invasive prenatal tests, including chromosome karyotype analysis, whole exome 
sequencing (WES), and single-nucleotide polymorphism array. We found the intrauterine phenotype of a fetus presenting enlarged 
kidneys, enhanced echo, and oligohydramnios; therefore, the fetus was characterized to have BBS.

Results: Chromosome karyotype analysis presented normal results. Analysis using an Affymetrix CytoScan 750K array revealed 
2 homozygous regions. However, WES revealed a homozygous mutation of c.1177C>T (p.Arg393*) on exon 12 of BBS1 and a 
heterozygous variation of c.2704G>A (p.Asp902Asn) on exon 22 of CC2D2A. The American College of Medical Genetics and 
Genomics guidelines identified c.1177C>T and c.2704G>A as a pathogenic mutation and of uncertain significance, respectively. 
Sanger sequencing identified heterozygous mutation, that is, c.1177C>T and heterozygous variation, that is, c.2704G>A in the 
parents of the fetus.

Conclusions: WES identified a novel homozygous nonsense mutation c.1177C>T in BBS1 of a Chinese fetus with congenital 
renal malformation. This finding provides insight into the BBS1 mutations in Asian populations in general and shows the necessity 
of genetic counseling.

Abbreviations: BBS = Bardet–Biedl syndrome, CNV = copy number variation, SNP = single-nucleotide polymorphism, VUS = 
uncertain clinical significance, WES = whole exome sequencing.

Keywords: Bardet–Biedl syndrome, congenital renal malformation, rare autosomal recessive genetic disorder, whole exome 
sequencing

1. Introduction

Bardet–Biedl syndrome (BBS; MIM 209900) is a rare autoso-
mal recessive disorder. The prevalence of BBS in the European 
and North American populations is very low, that is, approxi-
mately 1/160,000 to 1/140,000,[1] and that in Asian populations 
is even lower, that is, approximately 1 in 18 million.[2] BBS is 
characterized by intellectual disability, retinopathy pigmentosa, 
polydactyly (toes), obesity, gonadal hypoplasia, renal dysplasia, 
and short stature.[3,4] Secondary clinical manifestations include 
developmental disability, motor and neurological dysfunction, 
speech disorders, and behavioral abnormalities, as well as eye 
cataracts, strabismus, and astigmatism.

A total of 21 genes associated with BBS phenotypes have 
been identified so far,[5,6] and different BBS-related genes result 
in different morbidities. For example, BBS related to BBS1,[7] 
BBS2,[8] BBS6,[9] BBS9,[10] BBS10,[11] and BBS12[12] mutations 
accounted for 23.3%, 8.1%, 5.8%, 6.0%, 20%, and 5% of 
the cases, respectively.[13] The mutation frequencies of the 
BBS genes differ among ethnic groups. Mutation frequency of 
BBS1 is high in European populations, thereby leading to the 
occurrence of BBS, while BBS7 mutation is more commonly 
found in the Chinese population. Although mutations in 21 
BBS genes that can result in the BBS phenotypes have been 
identified, only 80% of the patients show mutations located 
in these genes, and the remaining 20% of BBS instances are 
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unrelated to these genes. Therefore, further identification of 
other BBS-related genes is necessary. Several challenges still 
exist regarding the genetic diagnosis and treatment of this 
disease.

BBS is a relatively rare condition and has a very high tendency 
of causing disabilities as it heavily damages multiple systems 
and organs. At present, our understanding of the pathogenic 
molecular mechanism of BBS is incomplete, and no special treat-
ments targeting this condition have been designed.[14] Therefore, 
avoiding consanguineous marriage and using effective prenatal 
screening are important preventive measures to lower the occur-
rence of BBS.[15,16]

To our knowledge, no instances of BBS associated with the 
BBS1 variants have been reported in the Chinese population. 
We retrospectively analyzed 210 fetuses with congenital renal 
malformation, and among these we diagnosed 1 fetus with BBS1 
mutation in the Chinese population. We further analyzed their 
pedigrees to explore the relationship between intrauterine phe-
notypes and fetal genotypes to improve the diagnostic and mon-
itoring methods, as well as our understanding of the disease.

2. Methods

2.1. Ethical approval and consent to participate

The studies were approved by the ethics committee at the Fujian 
Provincial Maternal and Child Health Hospital (no. 2014042). 
All patients signed written-informed consents to participate in 
this study.

2.2. Study participants

A retrospective study on 210 fetuses with congenital renal mal-
formation in the Fujian Provincial Maternal and Child Health 
Hospital was conducted from November 2016 to February 
2021. These fetuses were diagnosed using invasive prenatal 
tests. Amniocentesis, chorion villus sampling, or blood sampling 
from the umbilical cord was performed according to the preg-
nant woman’s gestational stage.

2.3. Chromosome karyotype analysis

Transabdominal amniocentesis was performed using ultra-
sound, and 40 mL of amniotic fluid was extracted. Of the 
extracted amniotic fluid, 20 mL was cultured in vitro under 
aseptic conditions, and the remaining 20 mL was used for DNA 
extraction. The cultured cells from the amniotic fluid were har-
vested, fixed, and prepared for karyotyping and G banding. 
Chromosomal abnormalities were described according to the 
International System of Human Cytogenetics Nomenclature 
(2016). Forty karyotypes were counted in each case, and 5 were 
analyzed karyotypes; the count and analysis of karyotypes were 
increased in case of any abnormality.

2.4. Single-nucleotide polymorphism array

Experiments were conducted in strict accordance with the stan-
dard operating procedures provided by Affymetrix. The data 
were analyzed using CHAS 2.0 software. The single-nucleotide 
polymorphism (SNP) array structure was analyzed in combina-
tion with the relevant databases to determine the nature of the 
obtained copy number variation (CNV). The reference databases 
included DGV (http://dgv.tcag.ca/dgv/app/home), DECIPHER 
(http://decipher.sanger.ac.uk/), OMIM (http://www.omim.org), 
ISCA (http://www.iscaconsortium.org), and CAGdb (http://
www.cagdb.org/). CNVs can be divided into 5 categories,[17,18] 
that is, pathogenic, possibly pathogenic, of uncertain clinical 
significance (VUS), possibly benign, and benign. For the VUS 
category, it is recommended to conduct SNP analysis in the fetal 

cells isolated from maternal peripheral blood in combination 
with pedigree analysis to further clarify the nature of CNV.

2.5. Whole exome sequencing

A library was prepared from the fetal DNA. Then, the exons of the 
target genes and DNA in the adjacent shear region were captured 
and enriched using a Roche KAPA HyperExome chip. Finally, 
mutations were detected using the MGISEQ-2000 sequencing plat-
form. The quality control index of sequencing data was as follows: 
the average sequencing depth of the target region was ≥180×, and 
loci with average depths >20× in the target region accounted for 
over 95% of the total loci. Sequenced fragments were compared 
with the UCSC hg19 human reference genome to remove dupli-
cates. INDEL and genotype detection were performed using GATK. 
ExomeDepth was used to detect CNV at the exon level, and genes 
were named according to the Human Genome Organization Gene 
Nomenclature Committee (HGNC). Variants were named accord-
ing to Human Genome Variation Society (HGVS) nomenclature. 
The following reference databases and prediction software versions 
were used: Clinvar (2020-03-16), ESP6500 (V2), 1000 Genomes 
(phase 3), GnomAD (r2.0.1), ExAC (r0.3.1), BPGD* (V3.1), 
SecondaryFinding_Var*(v1.1_202.3), dbscSNV (1.1), SpliceAI 
(1.3), dbNSFP (2.9.1), SIft, MutationTaste, and Polyphen2. The 
pathogenic properties of the variants were classified in accordance 
with the sequence variation interpretation guidelines recommended 
by the American Society of Medical Genetics and Genomics 
(ACMG) and the American Society of Molecular Pathology.[19–22] 
The Clingen Working Group on the Interpretation of Sequence 
Variations and the Society for Clinical Genome Sciences were con-
sulted to refine our interpretation of the guidelines.

2.6. Sanger sequencing to validate pedigree analysis

Peripheral blood samples (5 mL) from both parents of the 
fetus were collected, and ethylene diamine tetraacetic acid 
was used to prevent coagulation. DNA was extracted using a 
DNA extraction kit (Tiangen Biochemical Technology Co., Ltd, 
Beijing, China) according to the manufacturer’s instructions. 
Suspected pathogenic loci found by whole exome sequencing 
(WES) were amplified using polymerase chain reaction. After 
purification and quantification, the products were sequenced 
using an ABI 3130 Genetic Analyzer, and the obtained sequences 
were compared with human wild-type sequences.

3. Results

3.1. Clinical phenotype

Among the 210 fetuses with congenital renal malformation, the 
intrauterine analysis of 1 fetus exhibited enlarged kidneys and 
enhanced echo; this resulted in the diagnosis of suspected to be 
infantile polycystic kidney disease. The amniotic fluid index was 
slightly low (2.9 cm; Fig. 1A–C).

3.2. Chromosome karyotype analysis

Prenatal cytogenetic analysis of amniotic fluid revealed a nor-
mal karyotype: 46, XY (Fig. 2).

3.3. SNP array

SNP analysis indicated a homozygous region of 41 Mb in the 
q31.1q35 region of chromosome 2 containing 153 OMIM genes 
and a homozygous region of 28 Mb in the q14.3q22.3 region of 
chromosome 5 containing 51 OMIM genes. No imprinted genes 
in these regions were identified; however, an increased risk of 
recessive genetic diseases caused by homozygous mutations was 
indicated (Fig. 3).

http://dgv.tcag.ca/dgv/app/home
http://decipher.sanger.ac.uk/
http://www.omim.org
http://www.iscaconsortium.org
http://www.cagdb.org/
http://www.cagdb.org/
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Figure 1.  Intrauterine ultrasound phenotype of the fetus. (A) Ultrasound of the fetus at 24 +2 gestational week; single pregnancy in utero. (B) Ultrasound of the 
fetus at 24 +2 gestational week; both kidneys were enlarged, the echo was enhanced, and infantile polycystic kidney was suspected. (C) Ultrasound of the fetus 
at 24 +2 gestational week; the amniotic fluid index was 2.9 cm, showing a slightly sparse state.

Figure 2.  Karyotype of the fetus from amniotic fluid.
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3.4. WES

WES revealed homozygous variation of c.1177C>T 
(NM_024649.4, p.Arg393*) in exon 12 of BBS1 in the fetus 
(Fig.  4). This variation leads to the premature termination of 
protein synthesis at amino acid position 393, resulting in the 
production of truncated proteins. This ultimately affects protein 
function. In accordance with the ACMG guidelines, c.1177C>T 
was identified as a pathogenic mutation, with the PVS1, PM2, 
and PM3 criteria.

These criteria are defined by several standards. PVS1 occurs 
when the pathogenic mechanism underlying disease is a loss 
of function mutation. This mutation can occur as a nonsense, 
frameshift, or start codon mutation, depending on the deletion 
of 1 or more exons. PM2 occurs when variations are not found 
in control population in the ESP, 1000 genome, and EXAC data-
bases. PM3 occurs when recessive genetic diseases and patho-
genic variants are detected at the trans position.

WES further revealed a heterozygous variation, that is, 
c.2704G>A (NM_00108052.2.2, p.Asp902Asn) in exon 22 of 
CC2D2A of the fetus (Fig. 5). According to the ACMG guide-
lines, c.2704G>A is a variant of unknown significance (PM2).

3.5. Sanger sequencing for validation of pedigree

Sanger sequencing identified heterozygous mutations at the 
same gene positions in the DNA samples of the parents. BBS1 
of the parents exhibited heterozygous variation of exon 12 
c.1177C>T (NM_024649.4, p.Arg393*) (Fig.  3). The parents 
also displayed heterozygous variation of CC2D2A on exon 22 
c.2704G>A (NM_00108052.2.2, p.Asp902Asn) (Fig. 4).

3.6. Pregnancy outcome

The pregnancy was terminated at 25 weeks of gestation, and the 
parents of the fetus did not provide consent for a postinduction 
autopsy.

4. Discussion
In this study, an intrauterine ultrasound was conducted to deter-
mine the phenotype of a fetus with bilateral-kidney enlarge-
ment, enhanced echo, polycystic kidney, and an amniotic fluid 
index of 2.9 cm (a low level at 24 + 2 weeks of gestation). We 
first conducted traditional karyotyping and SNP analysis for 
genetic testing of the fetus. Karyotyping showed no abnormali-
ties. SNP analysis showed no imprinted genes in the 2 homozy-
gous regions, but revealed an increased risk of recessive genetic 
disease caused by homozygous mutation. WES revealed homo-
zygous variation of c.1177C>T (NM_024649.4, p.Arg393*) in 
exon 12 of BBS1. Sanger sequencing identified heterozygous 
mutations in the same positions of genes in the parents of the 
fetus. These data are consistent with an autosomal recessive 
inheritance of BBS.

BBS1 (OMIM:209901) is located on chromosome 11q13 
and is also known as BBS2L2. Presently, 94 pathogenic vari-
ants of BBS1 have been reported by Human Gene Mutation 
Database. BBS1 mutation is the most common cause of BBS and 
is responsible for 25% of all BBS incidences. The type of muta-
tion varies among ethnic groups, with the most common BBS1 
variant (p.M390R) accounting for approximately 80% of all 
BBS1 mutations in the European population.[23,24] Mykytyn et 
al[25] conducted genetic screening on 129 patients with BBS and 

Figure 3.  SNP analysis showing 2 homozygous regions.
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found that 30% of these patients possessed at least 1 M390R 
mutation. BBS proteins encoded by different BBS genes are func-
tional throughout the formation of the BBS complex, including 
BBSome, which consists of 7 BBS proteins (BBS1, BBS2, BBS4, 
BBS5, BBS7, BBS8, and BBS9).[26–29] BBS1 mutation results 
in abnormal function of the BBSome, which in turn affects 
the function of microcilia and other systems in the body.[30] 
The homozygous variation of c.1177C>T (NM_024649.4, 

p.Arg393*) in exon 12 of BBS1 has not been reported in the 
Chinese population.

Most BBS1 variants include missense, deletion/insertion, and 
splicing mutations and produce typical BBS phenotypes.[31–34] 
Recent studies indicate that 90% of the BBS patients exhibit 
retinal degeneration,[35] 90% have abnormal renal development 
and function,[36] and 72% to 92% are obese.[37] Additionally, 
63% to 81% of the patients have polydactyly/deformity,[38] 

Figure 4.  BBS1 sequencing of the fetus and parents. (A) homozygous variation of c.1177C>T (NM_024649.4, p.Arg393*) in exon 12 of BBS1 in fetus; (B) het-
erozygous variation of c.1177C>T (NM_024649.4, p.Arg393*) in exon 12 of BBS1 in the mother; and (C) heterozygous variation of c.1177C>T (NM_024649.4, 
p.Arg393*) in exon 12 of BBS1 in the father.

Figure 5.  CC2D2A sequencing of the fetus and parents. (A) heterozygous variation of c.2704G>A (NM_00108052.2.2, p.Asp902Asn) in exon 22 of CC2D2A 
in the fetus; (B) heterozygous variation of c.2704G>A (NM_00108052.2.2, p.Asp902Asn) in exon 22 of CC2D2A in the mother; and (C) heterozygous variation 
of c.2704G>A (NM_00108052.2.2, p.Asp902Asn) in exon 22 of CC2D2A in the father.
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and more than half of the patients exhibit intellectual disabil-
ity and/or gonadal dysplasia.[39] The fetus in this study exhib-
ited a nonsense BBS1 variant with biallelic loss of function 
mutation. Renal abnormalities in the sonography results of the 
fetus are consistent with previously reported clinical abnor-
malities in the renal development in patients with BBS1 muta-
tions. The parents of the fetus did not provide consent for 
postinduction autopsy, therefore, whether the fetus had other 
clinical manifestations associated with BBS1 mutations could 
not be explored.

WES can rapidly and efficiently detect all potentially patho-
genic mutations at once.[40] However, the associated huge data 
output poses a great challenge for bioinformatic analysis and 
clinical interpretation.[41] In this study, WES revealed a het-
erozygous variation, that is, c.2704G>A (NM_00108052.2.2, 
p.Asp902Asn) in exon 22 of CC2D2A in the fetus. This gene 
is primarily involved in the development of the COACH syn-
drome (OMIM:216360), Joubert syndrome 9 (OMIM:612285), 
and Meckel syndrome 6 (OMIM:612284).

The COACH syndrome is an autosomal recessive inher-
ited disorder,[42] which exhibits intellectual disability, ataxia 
(owing to cerebellar hypoplasia), and liver fibrosis as the 
typical clinical features. Joubert syndrome is an autosomal 
recessive inherited disease,[43] which manifests clinically as 
cerebellar ataxia, ocular movement dysfunction, vermis hypo-
plasia, and thickening of the upper cerebellar foot. Meckel 
syndrome, another autosomal recessive inherited disease,[44] 
is a fatal disorder associated with multiple congenital anom-
alies and characterized by clinical features, including brain 
malformation, polycystic kidney malformation, polydactyl 
deformity, cleft lip and palate, cardiac abnormality, mal-
formation of the central nervous system, liver fibrosis, and 
bone dysplasia. Heterozygous variation, that is, c.2704G>A 
(NM_00108052.2.2, p.Asp902Asn) in exon 22 of CC2D2A 
was identified in the parents of the fetus. Further studies are 
necessary to determine the relationship of this variation with 
congenital renal dysplasia.

5. Conclusion
In conclusion, we identified a novel nonsense variant c.1177C>T 
(p.Arg393*) in the BBS1 gene of a Chinese family. To the best of 
our knowledge, this pathogenic homozygous variant in BBS1 is 
the first to be reported in the Chinese population. Importantly, 
it is necessary to carry out prenatal genetic diagnosis in sub-
sequent pregnancies by the parents of the fetus, as both carry 
pathological variants of BBS1.
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