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Abstract: The extreme and unconventional properties of mechanical metamaterials originate in their
sophisticated internal architectures. Traditionally, the architecture of mechanical metamaterials is
decided on in the design stage and cannot be altered after fabrication. However, the phenomenon of
elastic instability, usually accompanied by a reconfiguration in periodic lattices, can be harnessed
to alter their mechanical properties. Here, we study the behavior of mechanical metamaterials
consisting of hexagonal networks embedded into a soft matrix. Using finite element analysis, we
reveal that under specific conditions, such metamaterials can undergo sequential buckling at two
different strain levels. While the first reconfiguration keeps the periodicity of the metamaterial intact,
the secondary buckling is accompanied by the change in the global periodicity and formation of a
new periodic unit cell. We reveal that the critical strains for the first and the second buckling depend
on the metamaterial geometry and the ratio between elastic moduli. Moreover, we demonstrate that
the buckling behavior can be further controlled by the placement of the rigid circular inclusions in
the rotation centers of order 6. The observed sequential buckling in bulk metamaterials can provide
additional routes to program their mechanical behavior and control the propagation of elastic waves.

Keywords: mechanical metamaterials; buckling; sequential buckling; instabilities; elastic wave
propagation; reconfiguration

1. Introduction

Cellular lattice structures assembled from repeating cells are widely known for their
superior combination of low weight and high mechanical properties [1–3]. In general, the
mechanical performance of lattices is defined by the geometry of the unit cells [4–7], and
rational design of the internal architecture enables the engineering of lattices with enhanced
stiffness [8,9], controlled anisotropy of mechanical properties [10,11], or lattices that are
tolerant to partial failure [12,13]. Unsurprisingly, many mechanical metamaterials can be
considered as successors of cellular materials [14,15]. Indeed, the unconventional properties
of mechanical [16–18], elastic [19–23], and acoustic metamaterials [24,25] originate in their
intrinsic periodicity, along with the rational design of unit cells.

Simultaneously, such intrinsic periodicity can give rise to the elastic instability phe-
nomena often observed in cellular materials and mechanical metamaterials [26]. While
for engineering materials loss of stability is usually unwanted, on par with failure or
delamination, for functional metamaterials, loss of stability can be frequently harnessed
to control their unconventional properties [26–31]. The elastic instabilities were used to
adjust the stiffness or auxeticity of structured materials [25,32], open and close elastic
bandgaps [33], and realize other unusual wave phenomena [34]. Adding a soft deformable
matrix into the design facilitates extra coupling between stiff components, enabling more
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involved buckling behavior accompanied by the formation of various instability-driven
patterns [35,36].

The classical and perhaps the simplest examples of such systems in 2D and 3D are
periodic layered and fiber composites, respectively. Under uniaxial compression, such
composites can undergo elastic loss of stability at a specific value of critical strain defined
mainly by the composite geometry and the elastic modulus contrast [37–40]. In layered
and fiber composites, instabilities may develop at different wavelengths ranging from
the size of a typical heterogeneity to the size of an entire specimen [41,42]. The onset of
macroscopic (or long-wave) instabilities, characterized by a wavelength significantly larger
than a characteristic microstructure size, can be predicted by the loss of ellipticity analysis
with the homogenized tensor of elastic moduli [43–45] that in certain cases can be obtained
via micromechanics-based homogenization [46–48]. Analysis of microscopic instabilities
with wavelengths comparable to the period of a structure requires the application of more
involving techniques, such as Bloch–Floquet analysis [42,49]. Surprisingly, the Bloch–
Floquet method helped to demonstrate that the secondary loss of stability may occur
in bilayer structures under some specific conditions [50]. However, to the best of our
knowledge, a realization of such sequential buckling was reported only in the stiff films
attached to the soft substrates [51–53] or in multilayered structures embedded into the
soft media [54,55]. Note that, here, we do not consider cases when the sequential loss of
stability occurs due to the change in the metamaterial topology because of contact between
elements [56].

Recently, Gao et al. [57] showed that metamaterials consisting of stiff hexagonal
networks embedded into a soft matrix undergo loss of stability under biaxial compression.
Similar to layered or fiber composites, the instability-induced patterns can be classified as
Type 1 or Type 2, corresponding to microscopic and macroscopic instabilities, respectively.
In the post-buckling regime, the amplitude of instability-induced patterns increases with
an increase in the applied strain, while the overall structure remains the same. It has
been shown that such instability-induced transformations can be harnessed to open elastic
bandgaps with strain-controlled characteristics. At the same time, the maximal level of
applied strain for equibiaxial compression does not exceed 10% for Type 1 and 16% for
Type 2 modes. One can notice that in the post-buckling regime, the dispersion curves
for metamaterials with Type 1 buckling [57] have values close to zero for the specific
wavevectors at the contour of the irreducible Brillouin zone (IBZ). In layered composites,
such behavior foreshadows the oncoming loss of stability [34]. An instability occurs when
a zero eigenvalue is found for a non-trivial wavevector. In other words, instabilities are
associated with zero modes other than rigid body translations and rotations. Zero modes
have been observed in Kagome lattices [58] and origami structures [59] and have even been
harnessed for elastic cloaking [60].

In the current manuscript, we will explore the buckling phenomenon and demonstrate
that stiff hexagonal networks can undergo secondary loss of stability for some specific
geometries and material constants. Moreover, we will demonstrate how critical strains for
the primary and secondary buckling can be controlled using stiff inclusions placed in the
rotation centers of order 6.

2. Materials and Methods

Figure 1a shows a periodic hexagonal network embedded into a soft deformable
matrix. The strut thickness t and the width of a hexagonal element H univocally define
the geometry of a metamaterial, while the additional parameter ri is necessary for a
metamaterial with central inclusions (Figure 1b). The struts and matrix were considered to
be hyperelastic materials with the neo-Hookean strain energy density function

W = 0.5µ(I1 − 3)− µ ln(J) + 0.5λ(ln(J))2,

where I1 and J are the first and third invariants of the right Cauchy–Green deformation
tensor, and µ and λ are Lame constants that can be expressed through Young’s modulus
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E and Poisson’s ratio ν as µ = E
2(1+ν)

and λ = Eν
(1+ν)(1−2ν)

, respectively. Subscripts N and
M stand for network and matrix, respectively. The Poisson ratios of both materials were
assumed to be equal, namely, νM = νN = 0.3, while EN/EM > 1. The materials had the
same densities ρN = ρM.
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Figure 1. Hexagonal networks embedded into a soft deformable matrix without (a) and with (b)
central inclusions. A primitive unit cell is shown in red color. Lattice vectors rH and rV couple the
points on the opposite boundaries of the primitive unit cell.

2.1. Search for Sequential Instabilities

To facilitate a search for the multiple onsets of instability and analyze the propagation
of elastic waves, we used finite element (FE) analysis in COMSOL 5.4. The employment
of the FE method for computation of dispersion relations in periodic materials relies on
the approach developed in [61,62]. The following multistep procedure, similar to [50], was
used to study the reconfiguration of metamaterials undergoing sequential instabilities.

A. Search for the first onset of instabilities

1. We identified the primitive unit cell in the undeformed state (Figure 1a).
2. We subjected the selected unit cell to equibiaxial compression under plane

strain conditions by applying the following periodic boundary conditions:


uright = ule f t − εHh

vright = vle f t
utop = ubottom − εHv cos π

3
vtop = vbottom − εHv sin π

3
uA = vA = 0

where u and v are horizontal and vertical displacements, respectively, Hh and Hv are
horizontal and vertical periods (Hh = Hv = H for an initial state), and ε is the applied
strain (positive for compression).

3. For the obtained deformed state, we performed a sweep along the perimeter of the
IBZ computing dispersion relations ω(k), where ω is the eigenfrequency for the
corresponding wavevector k at the IBZ contour [63]. To this end, Bloch–Floquet
conditions were superimposed on the finitely deformed metamaterials using the
following equations on the primitive unit cell boundaries:


uright = ule f te−ikrH

vright = vle f te−ikrH

utop = ubottome−ikrV

vtop = vbottome−ikrV

where rH and rV are the vectors connecting matching points on horizontal and vertical
boundaries of the cell. These equations were implemented in COMSOL using integrated
Bloch–Floquet conditions.

4. If ω(k) > 0 for all wavevectors k except for the trivial one k = (0, 0), then the material
remains stable at the specified strain level ε.
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5. We repeated steps 2–4, gradually increasing the applied strain ε by 0.01% until the

non-trivial k1
cr with ω

(
k1

cr

)
= 0 was found. The determined ε1

cr = ε and k1
cr are the

critical strain and critical eigenmode, respectively, corresponding to the first or primary
onset of instabilities.

6. For verification of the buckling mode, we also performed linear buckling analysis [57]
to compare critical strains and buckling modes found using these two methods.

B. Subsequent buckling

7. We used the previously found buckling modes as an initial imperfection to guide a
reconfiguration of the metamaterial after reaching the buckling strain. If buckling
was accompanied by the periodicity change, we increased the unit cell using Floquet
continuation. The amplitude of the superimposed imperfection was chosen to be
1/1000 of the stiff layer thickness. The imperfections were superimposed in COMSOL
with the help of the Deformed Geometry (dg) interface.

8. We continuously increased the applied strain ε beyond the onset of the first buckling
strain and observed the instability-driven transformation of the structure with a
gradually increasing buckling amplitude.

9. When necessary, we defined a new primitive cell and updated the IBZ to perform
procedure A again, searching for the second onset of instability.

Theoretically, this procedure can be repeated indefinitely to search for sequential
onsets of instabilities.

2.2. Wave Propagation Analysis

The propagation of the plane elastic waves through the metamaterial was studied
using a similar approach due to intricate relations between elastic waves and elastic
instabilities [42,63]. Bloch–Floquet boundary conditions (step A3) were superimposed on
the finitely deformed metamaterial, and the corresponding eigenproblem was solved for
wavevectors k at the IBZ contour [57].

3. Results
3.1. Hexagonal Networks Embedded into Soft Matrix

First, we recall the classification of two types of buckling modes that can be observed
in hexagonal networks embedded into the soft deformable matrix [57]. Similar to the
micro-instability and macro-instability, we can distinguish Type 1 buckling with local
wrinkling patterns (Figure 2c) and Type 2 buckling accompanied by the formation of a
global alternating pattern (Figure 2b). For clarity, we define Type 1 buckling as a case when
the metamaterial periodicity remains unaltered, while Type 2 is defined as a case when a
new primitive unit cell must be constructed.

Figure 2a shows the map of the eigenmodes as a function of the thickness to the cell
ratio α = t/H and the elastic modulus contrast β = EN/EM. As it was already established
for a large enough α and β, Type 2 buckling is realized, while for relatively small values,
the metamaterial buckles with the formation of a wrinkling pattern. In general, Type 2
buckling occurs when parameter γ = αβ

1
3 > γcr, defined as

γcr = 2.17

(
3 − 4ν

(1 − ν)2

) 1
3

(1)

Note that this analytical estimation (obtained previously in [57]) is shown here for
the specific case of linear elastic constituents with equal Poisson’s ratios νM = νN = ν.
The continuous solid line in Figure 2a corresponds to Equation (1), and it should separate
(α, β) pairs associated with Type 1 and Type 2 buckling. However, multiple simulations
for various (α, β) pairs reveal that this expression underestimates the threshold value of
γcr, and microscopic buckling is observed even for γ & γcr (see the blue stars above the
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black curve). This slight discrepancy is partially caused by the fact that in Equation (1),
the struts of hexagonal networks are treated as Euler–Bernoulli beams. We observed that
with an increase in the elastic modulus contrast, the critical value of γ observed in the
simulations tends to the critical value defined by Equation (1); however, this is beyond
the scope of the current manuscript. While for γ � γcr metamaterials undergo buckling
with the formation of fine wrinkling patterns, here, we focus on the case γ ≈ γcr associated
with Type 1 buckling in which a pattern that accommodates half of the critical wavelength
can be observed (Figure 2d). (α, β) combinations corresponding to the formation of this
specific pattern are shown by the blue star symbol in Figure 2a. Such a pattern still satisfies
the definition of Type 1 buckling since there are no changes in the periodicity. However, the
vicinity of such metamaterials to the configurations with global buckling (Type 2) implies
that critical buckling strains associated with Type 1 and Type 2 buckling may be very close
to each other, enabling conditions for the subsequent loss of stability. Therefore, we will
further focus mainly on the buckling behavior of these intermediate Type 1.5 metamaterials.
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Figure 2. (a) Buckling modes as a function of geometrical α and material β parameters. (b) Type 2
global mode denoted by solid black squares. (c) Type 1 local mode denoted by empty red circles. (d)
Type 1.5 buckling mode considered in this study denoted by blue stars. The solid continuous line
corresponds to the analytical estimation of the transition zone between Type 1 and Type 2 buckling
modes, i.e., Equation (1).

Figure 3c,d illustrate the behavior of elastic waves in the mechanical metamaterial with
α = 1/30 and β = 1000 in the vicinity of the first onset of elastic instability. In particular,
Figure 3c shows the evolution of the lowest branches of dispersion curves observed as
the applied strain ε increases. One can see that an increase in the applied strain leads to a
decrease in the phase velocity of elastic waves. In physics, this phenomenon is also known
as mode “softening” [64]. According to the procedure described above, metamaterial
remains stable when ω(k) > 0 for all k. Note that for k = (0, 0), there is always a trivial
solution ω(k) = 0, associated with the rigid body movement. At the same time, since Type
1 buckling does not cause the change in periodicity, to find the onset of Type 1 buckling, we
track the second lowest shear branch of the dispersion diagram, focusing on a non-trivial
solution for k = (0, 0). Figure 3d shows how the eigenvalue ωloc = ω(G) computed for
vector k = (0, 0), corresponding to point G of the IBZ contour, decreases with an increase
in the applied strain until it reaches ωloc

cr = 0 for the strain ε1, loc
cr = 0.87%. This critical

strain corresponds to the first onset of the instabilities associated with Type 1 local buckling,
and the corresponding buckling mode is shown in Figure 4a. Surprisingly, simultaneously,
the eigenfrequency ωgl = ω(K) computed for point K of the IBZ contour also noticeably
decreases with the increase in ε, especially in the vicinity of ε1, loc

cr . The pattern shown in
Figure 4b corresponds to point K, and this pattern has a different periodicity compared
to the undeformed state. However, ωgl > 0 for ε1, loc

cr ; therefore, Type 1 buckling occurs
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first. Realization of buckling should lead to the change in the geometry of the unit cell;
however, if no perturbations are superimposed on the undeformed state, the numerical
methods may fail to detect the buckling mode, allowing us to reach higher strains without
any reconfigurations.
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Figure 3. The primitive unit cell (a) and its reciprocal lattice (b) of the studied structures in the
undeformed state. The gray area represents the IBZ, and the red arrows show the path along its
contour. (c) Evolution of lowest branches of dispersion curves in the vicinity of the primary instability.
* denotes the minimal strain (ε = 0.87%) for which a non-trivial zero eigenvalue is found at point G.
(d) Evolution of the eigenfrequencies corresponding to Type 1 and Type 2 modes with an increase in

the applied strain. The Y-axis represents normalized frequency f = ωH
2π

√
ρM
µM
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Figure 4. Type 1 (a) and Type 2 (b) patterns associated with the first onset of buckling.

Figure 5a shows the dispersion diagrams for metamaterials in undeformed (ε = 0%)
and deformed (ε = 7%) states. Note that the dispersion curves for the deformed state are
obtained for two distinct cases—with (Figure 5c) and without (Figure 5b) reconfiguration,
triggered by the first onset of instabilities at ε1, loc

cr = 0.87%. One can see that without
reconfiguration, the dispersion curves continuously move towards the x-axis, enabling
us to define ε

1, gl
cr = 0.90% as the lowest strain level, such as ωgl = 0 (see Figure 3d). The

linear perturbation analysis confirms that this critical value ε
1, gl
cr and the corresponding

eigenmode (Figure 4b) can be observed as the second minimal buckling mode if the
enlarged unit cell, consisting of nine primitive unit cells, is considered. However, the second
value ε

1, gl
cr can be reached only because the instability-driven transformation associated

with Type 1 buckling was restricted. Figure 5b reveals that if the reconfiguration does
not occur, after the onset of local instability in the post-buckling regime, ω(k) = 0 for the
selected directions k, and, therefore, the phase velocity of the waves propagating through
the metamaterial is equal to zero [65]. Zero phase velocity corresponds to the degenerate
case, and the existence of zero eigenvalues after the bifurcation hints at inconsistencies in
numerical analysis. In contrast, if reconfiguration takes place, zero eigenfrequencies are not
observed apart from trivial ones (Figure 5c), and the metamaterial maintains its stability in
the updated configuration.
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Figure 5. Dispersion curves for metamaterial with α = 1/30 and β = 1000. (a) Undeformed state,
(b) ε = 7% without reconfiguration, (c) ε = 7% with reconfiguration.

Figure 6 shows the pattern evolution after the first buckling. With an increase in the
applied strain ε, the amplitude of the pattern gradually increases (compare Figure 6a,b),
while the node positions continue to form the right hexagons, proving that the metama-
terial keeps its initial periodicity even in the post-buckling regime. However, according
to Figure 7c, with a further increase in the applied strain, the value ωG starts to tend to
zero again. Eventually, ωG = 0 for the value of strain ε

2,gl
cr = 10.8% (Figure 7c). Since

the zero eigenfrequency is observed for point K, the metamaterial undergoes secondary
buckling accompanied by global reconfiguration with the formation of the same pattern as
for hypothetical global buckling canceled by the first local reconfiguration at ε1, loc

cr = 0.87%
(Figure 4b). However, since the local patterns have already developed prior to the sec-
ond onset of the instabilities, the resulting patterns in the post-buckling regime (after
secondary buckling) gain a mixed geometry combining the features from both buckling
modes (Figure 8). This sequential buckling lowers the plane group of the metamaterial
from p6mm in the undeformed state down to p3 (e.g., see [66] for a reference regarding the
plane groups). With the further increase in the applied strain ε, the formed pattern contin-
ues to evolve. At the same time, one can see that the applied strain does not significantly
affect the dispersion curves after the first reconfiguration (Figure 6d,e), and the secondary
buckling leads to the noticeable increase in the density of dispersion curves (Figure 6f) due
to the more complex geometry of the new primitive cell.
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Figure 6. Evolution of the pattern (a–c) and corresponding dispersion curves (d–f) after the first and
the second buckling for metamaterial with α = 1/30 and β = 1000. (a,d) ε = 3%, (b,e) ε = 9%, (c,f)
ε = 25% (updated IBZ is shown in Figure 7b). Colors denote von Mises stresses (color ranges are not
synchronized for (a–c)).
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Figure 7. The primitive unit cell (a) and its reciprocal lattice (b) of the studied structure after
secondary buckling. The updated (virtual) IBZ contour is shown in red [66]. (c) Evolution of the
lowest eigenfrequency at point K in the vicinity of primary instability.Materials 2021, 14, x FOR PEER REVIEW 9 of 15 
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We note that all considered Type 1.5 metamaterials (Figure 2a) undergo the subsequent
loss of stability. Therefore, one can conclude that for selected α and β such as αβ

1
3 ≈

γcr, Type 1 local buckling does not cancel the Type 2 instability but barely postpones
it. For instance, for the metamaterial with α = 0.05 (H/t = 20) and β = 350, global
buckling occurs only after an additional 12% strain (ε2, gl

cr − ε1, loc
cr ≈ 11.7%). Figure 9

shows the values of the critical buckling strains that correspond to the first and secondary
onsets of instability for the selected metamaterials denoted by smaller star symbols in
Figure 2a. Due to the definition of Type 1.5 metamaterials ε1, loc

cr < ε
1,gl
cr , one may notice

that the geometric factor α does not affect the primary buckling in any significant way
(Figure 9b). In contrast, an increase in parameter α, for instance, due to the wider struts of
the hexagonal network postpones the secondary buckling, making the metamaterial more
stable. A more significant effect is observed concerning the material factor β. Figure 9a
reveals the opposite dynamics for the onsets of the first and second instabilities. While
metamaterials with a higher elastic modulus contrast undergo primary buckling at lower
strains, the subsequent secondary buckling is postponed as compared with metamaterials
with a lower elastic modulus contrast. Hence, the strain range between two consecutive
bucklings is wider for the metamaterials with a higher contrast between the elastic moduli
of constituents. For example, for the mechanical metamaterial with α = 1/30 and β = 800,
the width of such a strain range is 9.7% versus 10.8% for a metamaterial with β = 1800. In
general, since Type 1 buckling induces fewer perturbations in the architecture of mechanical
metamaterials, in some practical cases, it may be practical to alter the geometric parameters
of the hexagonal networks with the intention to broaden the operation conditions by
postponing the global buckling. However, the observed effect is relatively minute and
requires a precise selection of α and β; therefore, even slight fabrication imperfections may
undermine the desired effect.
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3.2. Hexagonal Networks with Embedded Inclusions

As the soft matrix in the considered metamaterials couples the deformation of the
stiff struts on the unit cell boundaries, the additional modification of the soft matrix
seems to be a promising way to tune their stability and control the propagation of elastic
waves. Thus, we modify the architecture of the metamaterials by placing a stiff circular
inclusion in the rotation center of order 6—the center of the soft hexagon (Figure 1b). It was
previously shown, however, that various systems consisting of rigid inclusions embedded
into a soft matrix could undergo instability-driven transformations with the formation of
wavy patterns or twinning domains for a singular loss of stability [67]. Here, we harness
inclusions (without reducing the symmetry group of the metamaterial) as an additional
factor, enabling us to control the values of critical buckling strains. We select the elastic
constants of the inclusions to match the elastic constants of the stiff network, causing the
inclusions to be virtually undeformable.

Figure 10 shows dependencies of the values of critical strains (ε1, loc
cr , ε

1,gl
cr , and ε

2,gl
cr )

on the radius of the inclusions ri and dimensionless parameter δ = 2ri/H for metama-
terials with α = 1/30 and β = 1000. One can see that relatively small inclusions do
not significantly affect the first onset of instabilities, and the metamaterial still under-
goes two subsequent transformations. However, with an increase in the inclusion radius,
the difference between the two first buckling modes (ε1,gl

cr − ε1, loc
cr ) starts to decrease until

ε1,loc
cr > ε

1,gl
cr approximately when δ ≈ 0.4, representing the transition from the configuration

with sequential buckling to the configuration with single-step buckling. Simultaneously,
the critical strain corresponding to the secondary buckling monotonically decreases with
an increase in the inclusion radius. Finally, for δ ≈ 0.4, which corresponds to the transition
between modes, we have ε1, loc

cr = ε
1,gl
cr = ε

2,gl
cr . Hence, the addition of the central inclusions

proves to be an efficient strategy to control buckling behavior in metamaterials consisting
of hexagonal networks embedded into a soft deformable matrix.

While embedded inclusions are shown to affect the buckling behavior, they can also
alter the propagation of the elastic waves in metamaterials, especially if the density contrast
between the soft matrix and inclusions can be realized. Figure 11 shows dispersion curves
for the selected metamaterial with α = 1/30, β = 1000, δ = 0.1 deformed up to 10%. One
can see that while the dispersion curves for the metamaterials without (Figure 11a) and
with (Figure 11b,c) inclusions are very similar, the additional density contrast between
embedded inclusions may facilitate the opening of the elastic bandgaps (Figure 11c). Since
the localized masses can be employed to design locally resonant elastic metamaterials, the
change in the architecture caused by the elastic instabilities in the hexagonal networks
could be potentially harnessed to control bandgaps.
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4. Conclusions

We revisited the mechanical behavior of the stiff hexagonal networks embedded into
the soft matrix, primarily focusing on the phenomenon of elastic loss of stability. Previously,
two different types of instability-driven transformations were distinguished depending
on the periodicity of the emerged patterns. In this paper, we revealed that mechanical
metamaterials consisting of stiff hexagonal networks embedded into the soft matrix could
undergo sequential buckling for the specific combinations of geometric and material pa-
rameters. Under equibiaxial compression, these metamaterials first undergo local buckling,
keeping their periodicity in the post-buckling regime. However, with the further increase
in the applied strain, a secondary loss of stability accompanied by the formation of new
patterns can be triggered. We studied how geometrical and material factors affect the
buckling behavior. In particular, we demonstrated that the elastic modulus contrast affects
the values of the critical strain for primary and secondary losses of stability in opposite
ways: while the metamaterial becomes less stable with an increase in contrast between
elastic moduli, the critical strain corresponding to the secondary buckling increases.

The method to search for the sequential instabilities using COMSOL was described.
Moreover, we highlighted the importance of the minute perturbations in the undeformed
states for numerical analysis to avoid degenerate dispersion curves with zero phase veloci-
ties. This analysis helped us to show that even though initially two eigenvalues associated
with local and global buckling might be close to each other, the primary loss of stability can
significantly postpone the secondary buckling, accompanied by the global reconfiguration.
We demonstrated that the placement of additional stiff inclusions in the rotation centers of
order 6 can be employed to control the buckling behavior and propagation of elastic waves.
In conclusion, we note that the experimental verification of the described phenomena can
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be a challenging task due to the relatively narrow region in the design space for which
sequential buckling is observed, and imperfections associated with the manufacturing
process [68,69]. Nevertheless, we believe that these results are useful for engineering other
bulk systems with sequential buckling.
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