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Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the
differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of
subjects with Parkinsonian syndromes (Parkinson’s disease,multiple system atrophy, and progressive supranuclear palsy) compared
to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET
brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised
classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance.
We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are
easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very
important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training
data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

1. Introduction

Neurodegenerative brain diseases like Parkinson’s disease
(PD), multiple system atrophy (MSA), or progressive supra-
nuclear palsy (PSP) are difficult to diagnose at early disease
stages [1]. It is important to develop neuroimaging tech-
niques that can differentiate between the various forms of
Parkinsonian syndromes and stages in progression. Early
disease detection is aided by brain imaging techniques like
[18F]-fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) and magnetic resonance imaging (MRI) to
obtain image data and derive significant patterns of changed
brain activity. Several techniques have been developed to
identify disease-related network patterns of cerebral glucose
metabolism.

Covariance techniques like principal component analysis
(PCA) can be used to extract significant patterns from brain

image data. PCA is known for its capability to identify
patterns in high-dimensional data like brain image data. A
possible approach to biomarker identification is the scaled
subprofile model/principal component analysis (SSM/PCA)
method [2, 3]. SSM/PCA is a feature extractionmethodwhich
enhances identification of significant patterns in multivariate
imaging data. This method has been extensively applied to
positron emission tomography data to identify brain patterns
which display significant differences between healthy con-
trols and Parkinsonian conditions. The SSM/PCA method
helps to reduce data dimensions and to reveal the brain
patterns characteristic for a certain Parkinsonian syndrome.
Resting state metabolic networks obtained from FDG-PET
scans were used to identify disease-related metabolic brain
patterns of PD, MSA, and PSP [4–7]. In a previous study by
Tang et al. [8], it was demonstrated that by using an image-
based classification routine, it was possible to distinguishwith
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high specificity between PD and MSA/PSP and in a second
step between MSA and PSP as compared to controls.

In a recent study byHellwig et al. [9], the diagnostic accu-
racy of FDG-PET in discriminating Parkinsonian patients
was investigated. FDG-PET scans were analyzed by visual
assessment including individual voxel based statistical maps
(a 3D stereotactic surface projection technique; 3D-SSP).
These studies compared only two classes at a time or on two
levels (healthy and patient group, or two patient groups).This
puts forward a research challenge to improve the SSM/PCA
method to be able to distinguish different neurodegenerative
brain diseases from each other in one analysis.

For this reason we consider machine learning approaches
like decision tree methods to be able to compare more
than two patient groups at the same time and possibly
detect subtypes within patient groups.The C4.5 decision tree
classification algorithm by Quinlan [10] is used to classify
Parkinsonian conditions from FDG-PET imaging data. This
algorithm uses a feature selection criterion known as infor-
mation gain to induce decision trees from training data. The
subject scores derived from the SSM/PCAmethod are used as
input features for theC4.5 algorithm.After the training phase,
the decision trees can then be used as predictors for unseen
cases with unknown disease type. Decision trees are known
to be intuitive and easily understandable by humans [11]. In
other words, they can be easily visualized and interpreted by
the clinicians.

In this paper, we combine the SSM/PCA method in a
novel way with the C4.5 decision tree classification algorithm
which classifies Parkinsonian disorders according to their
respective disease types. We also compare the decision tree
method with a number of other classifiers with respect to
different criteria, such as performance and interpretability by
humans.

2. Materials and Methods

The extraction of patterns and classification involves four
main steps: data acquisition, feature extraction, feature selec-
tion, and classification (see Figure 1).

2.1. Data Acquisition. FDG-PET scans selected from a pre-
vious study [12] describing 18 healthy controls (HC), 20 PD,
21 MSA, and 17 PSP patients were included for the present
analysis. At the time of referral for imaging, the clinical
diagnosis of most patients was uncertain. The final clinical
diagnoses according to established clinical research criteria
[1, 13, 14] were made after a follow-up time after scanning of
4 ± 3 years (y) in PD, 2 ± 1 y in MSA, and 3 ± 2 y in PSP.
Included PD patients were 9 male (M) and 11 female (F), 6
right body side affected and 14 left side affected, with mean
age of 63±9 y andDisease Duration (DD) at scanning of 3±2
years. Fourteen probable MSA and 7 possible MSA patients
(10 M and 11 F, age 64 ± 10 y; DD 4 ± 2 y) and 13 probable and
4 possible PSP patients (9 M and 8 F, age 68± 8 y; DD 2± 1 y)
were included.

2.2. Feature Extraction. We reimplemented the SSM/PCA
method in MATLAB based on the description by Spetsieris

and Eidelberg [6, 15–17]. First, the FDG-PET images are
loaded in a data matrix 𝑃

𝑠V, and a mask is applied to each
subject image in 𝑃

𝑠V (𝑠[1, . . . ,𝑀] refers to subjects and the
column index V refers to voxels) to remove all voxels with
intensity value less than 35% of the whole brain volume
maximum. Then the subject matrix is log-transformed and
doubly centered to create a subject residual profile (SRP)
matrix SRP

𝑠V. PCA is then applied to the matrix SRP
𝑠V to

obtain its eigenvectors. These eigenvectors are called Group-
Invariant Subprofile (GIS) patterns (GIS

𝑘
, 𝑘 = 1, 2, . . . ,𝑀)

and represent characteristic disease-related brain patterns.
Furthermore, subject scores are computed as the contribution
of each subject image to a disease-related pattern GIS

𝑘
.

The SSM/PCAmethod was applied to several data groups
(disease group(s) compared to healthy controls) in train-
ing set(s) from which disease-related patterns (GIS

𝑘
) were

extracted with positive and negative loadings (voxel weights)
[18].The brain images from the training set are weighted onto
the patterns to obtain subject scores, which depict howmuch
each subject image contributes to a pattern.

Subject Scores as Features for Classification. Features are
usually derived as characteristics of an object such as texture,
color, or shape [19], which can be computed for each subject
(data set) separately. The use of PCA-based subject scores
as features deviates significantly from the standard situation
through the fact that features now depend on the whole
dataset. Also, the number of features is, at least initially, equal
to the number of data sets. So when a subject is removed
or added to the data collection the scores of all the other
subjects change as well. Therefore, there is a need to redo the
SSM/PCA procedure once the dataset changes to obtain new
scores.

2.3. Decision Tree Classification. The C4.5 decision tree
method [20] is a supervised learning strategy which builds a
classifier from a set of training samples with a list of features
(or attributes) and a class label. The algorithm splits a set
of training samples into subsets such that the data in each
of the descending subsets are “purer” than the data in the
parent subset (based on the concept of information gain
from information theory). Each split is based on an optimal
threshold value of a single feature. The result is a tree in
which each leaf carries a class name and each interior node
specifies a test on a particular feature. The tree constructed
in the training phase of a decision tree classifier can be
drawn easily to understand graphical representation which
shows the successive features and threshold values which the
algorithm has used to separate the data set in nonoverlapping
classes. Once a tree has been obtained from the training
samples, it can be used for testing to classify unseen cases
where the class label is unknown.

The C4.5 decision tree algorithm [10] has been used in
many previous studies, ranging from diatom identification
[21] to classification of anomalous and normal activities in
a computer network to curb intrusions [22]. The method
has also been applied to improve accuracy in multiclass
classification problems. For example, Polat and Güneş [23]
applied a novel hybrid classification system based on the C4.5
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Figure 1: Classification steps.

decision tree classifier and one-against-all approach, obtain-
ing promising results. In addition, Ture et al. [24] analysed
several decision treemethods (CHAID, CART, QUEST, C4.5,
and ID3) together with Kaplan-Meier estimates to investigate
their predictive power of recurrence-free survival in breast
cancer patients. In summary, decision trees are considered
to be powerful for classification and are easy to interpret by
humans. Not only are they simple and effective but also they
work well with large datasets [25].

Decision Tree Classification of Parkinsonian Syndromes.Using
the C4.5 machine learning algorithm, we trained classifiers
on subject scores of extracted patterns for healthy subjects
and subjects with known types of neurodegenerative disease.
The result is a pruned decision tree showing classified subject
images. The goal of pruning is to obtain a tree that does not
overfit cases. Note that it would be possible to obtain 100%
correct classification in the training phase by using a less
stringent pruning strategy. However, this would come at the
expense of generalization power on unseen cases.

In contrast to applications of the SSM/PCA method
whichmake a preselection of principal components (GIS vec-
tors) on which the classification will be based, the C4.5 algo-
rithm uses all principal components and the corresponding
subject scores as input.The algorithm itself determines which
principal components aremost discriminative to separate the
data set into classes. More discriminative components appear
higher in the decision tree, that is, closer to the root; refer to
Figure 2 for an example, where the subject score SSPC5 is the
most discriminative feature.

In order to apply the C4.5 classifier to unseen cases,
the required subject scores for testing are first computed by
projecting the SRP of the new subject on the GIS profiles of
the training set. The computation of the SRP for the unseen
case involves centering along the subject dimension, that is,
subtracting the GMP (group mean profile). The assumption
is that this GMP can be obtained from the reference group

only, that is, the group used for training the classifier; see the
discussion in Spetsieris et al. [17, page 1244].

2.4. Other Classifiers. We also applied a number of other
classifiers: nearest neighbors; linear classifiers: linear dis-
criminant analysis and support vector machines; random
forests, which is an extension of decision trees; classification
and regression trees (CART) for predicting real/continuous
variables; and naive Bayes, a probabilistic classifier. Linear
classifiers in particular are simple to implement. They are
known to work better in situations where the data is uni-
formly distributed with equal covariance.

Nearest Neighbors (NN).NN is a classification method which
assigns a class to a new data point based on the class of
the nearest training data point(s). In the 𝐾-NN (𝐾-Nearest
Neighbors) method, distances to the neighbors are computed
first. Then, a new data point receives the majority label of the
𝐾 nearest data points.

Linear Discriminant Analysis (LDA). LDA, like PCA, is used
for data classification and dimensionality reduction. This
classifier maximizes the between-class variance and mini-
mizes the within-class variance to ensure a clear separation in
datasets. Accordingly, the training data are first transformed;
then the data in the transformed space are classified as
belonging to a class which minimizes the Euclidean distance
of its mean to the transformed data [26].

Support Vector Machine (SVM). SVM performs classification
by generating an optimal decision boundary in the form of a
hyperplane which separates different classes of data points in
the feature space. The decision boundary should maximize
the distance between the hyperplane and support vectors
called the margin [27].

Random Forests. Random forests is a machine learning
method for classification of objects based on a majority
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Figure 2: The decision tree built from the PD-HC dataset. Oval-shaped interior nodes: features (subject scores) used to split the data.
Threshold values are shown next to the arrows. Rectangular leaf nodes: the final class labels (red = PD, blue = HC).

vote of a multitude of decision trees. This method combines
bagging (random selection of cases) and random selection of
features (at each node) during the training phase. Also, the
trees are not pruned.

Classification and Regression Trees (CART). CART, just like
C4.5, is a decision tree learningmethod.However, in addition
to using decision trees as predictors, CART includes regres-
sion trees for predicting continuous variables.

Naive Bayes.This is a method that classifies data points based
on their likelihood and the prior probabilities of occurrences
of known classes. The final classification is achieved by
combining the prior and the likelihood to form a posterior
probability using Bayes’ rule. Overall, the new data will
belong to a class which maximizes the posterior probability.

3. Results and Discussion

3.1. Results for Decision Tree Classifiers. Decision tree clas-
sifiers were trained by applying the C4.5 algorithm to
individual (each disease group versus healthy controls) and
combined datasets of PD, PSP, andMSA patients and healthy
controls (HC) with known class labels, as listed in Section 2.1.
For the individual datasets, we were interested in identifying
features which best separate two groups (i.e., a disease
group from healthy controls). For the combined datasets we
compared all the groups, that is, PD, MSA, PSP, and HC to
each other to obtain feature(s) which can separate the four
groups. Tree pruning was carried out by using the default
values of the C4.5 algorithm [10].

3.1.1. Building Classifiers for Individual Datasets. Decision
tree classifiers were built in the training phase from the

individual datasets (PD, PSP, and MSA) compared to the HC
group of 18 subjects.

PD Group. The decision tree built from the PD-HC dataset
(18 healthy and 20 PD subjects) is illustrated in Figure 2.
The subject scores derived from 38 principal components
(GIS vectors) are the attributes on which decisions are made.
They are represented as oval-shaped interior nodes in the
tree. Next to the arrows the threshold values that were used
to split the dataset are shown. Likewise, the leaf nodes,
represented as rectangles, show the final class or decision
made at that level of the tree (e.g., PD or HC in Figure 2).
Red and blue colors are used to indicate cases labeled as PD
and healthy, respectively. The numbers between brackets in
the rectangles show the total number of cases classified at
that leaf. Additionally, the number after the slash (if present)
represents the number of misclassified cases at that leaf.

As can be seen in Figure 2, the classifier chooses the
subject score based on component 5 (SSPC5) to make the
first split. In the right subtree, nine PD subjects > 254.14
are identified. The classifier goes on to test the rest of the
subjects based on component 26, where nine subjects (subject
score > 29.684) are identified as HC, and so forth. Only one
PD subject is misclassified as HC, as can be seen in Figure 2
in the lower left rectangle.

MSAGroup.Thedecision tree built from theMSA-HCdataset
(18 healthy and 21 MSA subjects) is illustrated in Figure 3(a).
The attributes are subject scores derived from 39 principal
components. Again, one HC subject is misclassified.

PSP Group. The decision tree built from the PSP-HC dataset
(18 healthy and 17 PSP subjects) is illustrated in Figure 3(b).
The attributes are subject scores derived from 35 principal
components.
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Figure 3: The decision trees built from the MSA-HC (a) and PSP-HC (b) datasets. For details, refer to Figure 2.

3.1.2. Building Classifiers on Combined Datasets. We also
applied the C4.5 classification algorithm to the combined
datasets consisting of all four groups. Therefore, the dataset
consisted of 76 subjects, 18 HC, 20 PD, 21 MSA, and 17
PSP. Subject scores were obtained by applying the SSM/PCA
method to the combined group. The resulting decision tree
is shown in Figure 4. Three PSP subjects are classified erro-
neously, two as PD and one as MSA.

3.1.3. Leave-One-Out Cross Validation. In leave-one-out
cross validation (LOOCV), a single observation from the
original dataset is used as the validation set (also known as
test set) and the remaining observations form the training set.
This procedure is repeated𝑁 times where each observation is
used once as a validation set.

The LOOCV method was applied to individual and
combined datasets, that is, PD-HC, MSA-HC, PSP-HC, and
the combined dataset PD-MSA-PSP-HC to estimate classifier
performance on unseen cases. Here performance is defined
as the percentage of correct classifications over the𝑁 repeti-
tions. To ensure that attributes of the training set, and thus the
trained classifier, are independent of the validation sample,
the test subject was removed from the initial dataset before
applying the SSM/PCAmethod to the training set (with𝑁−1
samples) for obtaining the subject scores needed to train the
C4.5 decision tree classifier. The classifier was then used to
determine the label for the test subject. This procedure was
applied for each of the 𝑁 subjects in the original dataset.
Table 1 shows the classifier performance.

As seen in Table 1, the C4.5 classifier performs highest
with the PSP group at 80% and lowest with the PD group
at 47.4%. The feature at the root of a decision tree is most
significant in classification, since it has the highest informa-
tion gain (see Section 2.3). As seen in Figure 3, feature 1 (i.e.,
the subject score on principal component 1) is chosen by the

Table 1: Classifier performance for the different data sets (patients
versus healthy controls, number of cases in brackets) in the LOOCV,
without feature preselection. The column Perf. (%) indicates the
percentage of subject cases correctly classified per group, Sensitivity
(%) indicates the percentage of correctly classified healthy controls,
and Specificity (%) indicates the percentage of correctly classified
patients.

Feature set (size) Perf. (%) Sensitivity (%) Specificity (%)
PD-HC (38) 47.4 50 45
MSA-HC (39) 71.8 83.3 61.9
PSP-HC (35) 80.0 77.8 82.4

classifier in making a first separation between healthy and
PSP/MSA subjects. Moreover, we observed that for the PSP-
HC group feature 1 occurs as the root for all LOOCV trees.
This behaviour is strongly linked to the high performance
of the PSP group, since the classifier is utilizing the relevant
feature(s) for the separation of the groups.

The MSA-HC dataset has the second best performance
and we observed that the feature at the root of the MSA-HC
tree in Figure 3(a) also appears as root in 32 out of 39 trees in
LOOCV. On the contrary, for the PD group, different features
were chosen by the classifier as root nodes of the different
LOOCV trees. Apparently, the different features contain only
weakly relevant information to separate the healthy group
from the PD group. In this case, application of the decision
tree method with all features included leads to a form of
overfitting. We attribute this to the fact that the PD group
is quite similar to the HC group, at least with respect to the
features we havemeasured.The early PD groupmight contain
other disease subtypes which need to be identified.

For the combined dataset (see Figure 4), feature 3 occurs
as the root node, so it is the best at separating the four
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Figure 4: The decision tree built from the combined PD-PSP-MSA-HC dataset.

groups (HC, PD, MSA, and PSP). Furthermore, the same
feature occurs as the root node in 63 out of 76 LOOCV
trees, implying consistency of the classifier. However, the
performance for the combined group is low, that is, 53.9% (the
number of correctly classified healthy controls, PD, PSP, and
MSA subjects is equal to 55.6%, 35%, 58.5%, and 66.7%, resp.).
Our explanation is that the number of subjects per class is
quite low given the large variability in each group. In addition,
the combined group is not well balanced in view of a relatively
small size of the healthy subject group versus the combination
of the three disease groups.

Permutation Test. In order to determine the significance of
the performance results we ran a permutation test on the PD-
HC, MSA-HC, and PSP-HC groups [28, 29]. The steps of the
procedure are as follows:

(1) for each group, perform a LOOCV on the original
subject labels to obtain a performance 𝑃

𝑂
;

(2) repeatedly permute the labels and then do a LOOCV
to obtain performances 𝑃

𝑖
for 𝑖 = 1, . . . , 𝑁perm (we

used𝑁perm = 100);
(3) compute the 𝑝 value as the total number of all 𝑃

𝑖

greater or equal to 𝑃
𝑂
, divided by𝑁perm.

If 𝑝 < 0.05, the original LOOCV result is considered to be
statistically significant.

The results of the permutation test were as follows. For the
PSP-HC group, 𝑝 = 0.00; for the MSA-HC group, 𝑝 = 0.01;

for the PD-HC group, 𝑝 = 0.62. So we can conclude that for
the PSP-HC and MSA-HC groups the performance results
are significant. However, for the PD-HC group this is not
the case. This is consistent with the lack of robustness of the
LOOCV trees we already noted above. The healthy and PD
groups are very similar and hard to separate, given the small
number of datasets.

3.1.4. Preselection of Features. In the hope to improve the
classifier performance, we varied the number of features used
to build the classifier in the LOOCV. This was done in two
different ways: (i) by choosing the subject scores of the 𝑛 best
principal components according to the Akaike Information
Criterion (AIC) [30] and (ii) by choosing the first 𝑛 principal
components arranged in order of highest to lowest amount
of variance accounted for. The classifier performance at the
varying numbers of features is shown in Table 2.

As shown in Table 2, the performance of the PD group
improves from 47.4% to 63.2% when the number of features
is reduced from 100% to 70% and 5%. Also the performance
improves when only one best feature according to AIC is
used to build the classifier. Likewise the performance of the
MSA and PSP groups improves from 71.8% to 74.4% and
80% to 82.9%, respectively, when the number of features is
reduced. Notable is that the number of features at which
distinct groups perform best may differ. Specifically, when
using the AIC for preselection, not always one feature is
good enough to separate groups. This can be seen for
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Table 2: Classifier performance with preselection of features
(patients versus healthy controls, number of cases in brackets). The
percentage of principal components is arranged in order of highest
to lowest variance accounted for and best number of PCs according
to AIC. Highest performances are in bold.

%/number
of PCs

In order of amount of variance According to AIC
3% 5% 50% 70% 100% 1 3 5

PD-HC
(38) 55.3 63.2 57.9 63.2 47.4 63.2 50 47.4

MSA-HC
(39) 71.8 74.4 69.2 71.8 71.8 66.7 69.2 74.4

PSP-HC
(35) 82.9 80 77.1 77.1 80 82.9 80 80

the MSA group where five best features were required to
obtain the best performance. Overall, preselection/reduction
of features to include relevant features can boost classifier
performance.

3.1.5. Disease Groups versus Each Other. Disease groups were
compared to each other in a binary classification, that is to
say, the PD group of 20 subjects versus the MSA group of 21
subjects, PD group of 20 versus PSP group of 17, and MSA
group of 20 versus PSP group of 17.

As seen in Table 3, PD versus MSA has the highest
performance with a relatively high sensitivity and specificity;
consequently PD can be separated rather well fromMSA. For
the PD versus PSP and MSA versus PSP groups the perfor-
mance is slightly lower.The performance of all groups slightly
increases when features are reduced to only 5 according to
AIC. In spite of the high performance of the PSP group versus
the healthy group as seen in Table 1, PSP performs relatively
low when compared to the other disease groups (PD and
MSA). Apparently, the PSP features look more like those of
PD or MSA patients than those of healthy controls.

3.1.6. Combined Disease Groups. Our main interest is to
distinguish the Parkinsonian syndromes from each other.
Therefore, we combined all disease groups (i.e., PD, PSP, and
MSA) without the healthy controls in a decision tree mul-
ticlassification and applied LOOCV (at 100% features used).
The performance of the classifier is 65.5%, with 75% correctly
classified PD subjects, 47.1% correctly classified PSP subjects,
and 71.4% correctly classified MSA subjects. Altogether the
PSP group has the lowest number of correctly classified
subjects, which is in agreement with the previous observation
that it has similarities to PD and MSA. Figure 5 shows the
decision tree diagram obtained after training the classifier
with all features. Only one PD subject is misclassified as PSP.

Varying the Number of Features for Classification. Several
LOOCV experiments were carried out while varying the
number of features used to build the classifier. The highest
performance was achieved when including 25% of all fea-
tures. Results for 100, 50, and 25% of all features are shown
in Table 4.

Table 3: Performance for binary classification of disease groups in
the LOOCV. The number of cases per group is in brackets. The
column Perf. indicates the percentage of subject cases correctly
classified (all features included), Sensitivity indicates the percentage
of correctly classified first disease group, Specificity indicates the
percentage of correctly classified second disease group, and Perf.
(AIC-5) indicates the performance when features are reduced to the
best 5 PCs according to AIC.

Group Perf. (%) Sensitivity Specificity
Perf.

(AIC-5)
(%)

PD versus
MSA (41) 73.2 70 76.2 78

PD versus
PSP (37) 67.6 80 52.9 70.3

MSA versus
PSP (38) 68.4 76.2 58.8 71.1

Table 4: Performance for binary classification of disease groups
(number of cases in brackets) in the LOOCV with feature pres-
election. The columns Feat. and Perf. indicate the percentage of
features used and the corresponding performance. The remaining
columns show confusionmatrices and class accuracies.The number
of subjects correctly classified for each class is in bold.

Feat. % Perf. % Class PD (20) PSP (17) MSA (21)

100 65.5

PD 15 5 3
PSP 4 8 3
MSA 1 4 15

Accuracy 75 47.1 71.4

50 67.2

PD 15 5 2
PSP 4 9 4
MSA 1 3 15

Accuracy 75 52.9 71.4

25 69

PD 15 5 2
PSP 4 9 3
MSA 1 3 16

Accuracy 75 52.9 76.2

3.2. Results for Other Classifiers. We used “scikit-learn” [31], a
software package that includes a variety of machine learning
algorithms, to obtain classification results for a number
of other classifiers. The classifiers used were described in
Section 2.4. In principle, we should test on subject scores
obtained from the leave-one-out method before applying
the SSM/PCA method. However, this would lead to a very
time-consuming procedure. Since our goal is to obtain an
impression of the improvements possible by using other
classifiers, we instead applied LOOCV on subject scores
obtained from applying the SSM/PCA method to the whole
training set (all subjects included).

Performances of PD,MSA, andPSP groups versus healthy
controls are shown in Table 5. No preselection of features was
applied.

3.3. Discussion. The LOOCV performance shown in Table 5
is highest for the SVM and NN classifiers. These classifiers
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≤541.39 >541.39

>−110.44≤−110.44

>−23.796≤−23.796

>−52.757≤−52.757

Figure 5: The decision tree built from the disease groups compared to each other, that is, PD-PSP-MSA dataset.

perform better than C4.5, especially for the PD-HC group.
We attribute this to the fact that SVM and NN only have
one decision boundary. On the other hand, C4.5 has several
decision boundaries, one for each internal node of the
decision tree. Thus a subject is tested more than once and
may become vulnerable to misclassification in the case where
the features depict noise or are irrelevant. CART is quite
similar to C4.5; for the PD and PSP groups it has a higher
performance but for MSA it is considerably lower.

Decision tree methods are faced with the problem of
overfitting, which causes all training cases to be correctly
classified but with limited generalizability; that is, the learned
tree tends to be so perfect that it is prone tomisclassify unseen
cases. Also, providing many features to the decision tree
inducer can cause a low performance due to irrelevant and
redundant features, especially when the number of subjects
is relatively small. Moreover it has been observed that C4.5’s
feature selection strategy is not optimal, so having irrelevant
and correlated features can degrade the performance of
the classifier [25]. In addition, the C4.5 classifier has been
reported to perform lower when it comes to continuous
attributes, which is the case in our study (as subject scores
are continuous) [32]. However, with preselection of features
and pruning decision trees after construction, these problems
can be reduced. Indeed, we found an increase in performance,
especially for the PD-HC group (see Table 2).

When the number of subjects in the training set is large
enough, the decision tree classifier will be capable of per-
forming subtype classification of Parkinsonian syndromes.
Another important advantage of the decision tree method
over most other methods is that it provides an intuitive

Table 5: The LOOCV performance for various types of classifier.
Features used were the subject scores obtained after applying the
SSM/PCA method on all subjects included in the datasets. (∗) Note
that for LDA only 90% of the features were considered because of
the classifier’s restrictions while constructing the covariance matrix.
For easy reference, the feature preselection results for C4.5 already
presented in Table 2 are included.

Dataset PD-HC MSA-HC PSP-HC
Nearest neighbors 76.3 76.9 80.0
Linear SVM 78.9 92.3 88.6
Random forest 63.2 61.5 71.4
Naive Bayes 65.8 71.8 71.4
LDA (∗) 50.0 61.5 65.7
CART 57.9 53.8 85.7
C4.5 63.2 74.4 82.9

way to get insight in the behavior of the classification algo-
rithm to physicians. Drawings of decision trees are human
understandable, and the way a decision tree algorithm takes
repeated decisions with respect to multiple criteria is close
to the way humans carry out multicriteria decision making.
Likewise, the significance of a particular feature is recogniz-
able from the level in which the corresponding node appears
in the constructed tree. Therefore, we have the opportunity
to use human intelligence in the decision tree method to
select those features (i.e., the corresponding disease-related
patterns) that best distinguish between healthy subjects and
patients.
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4. Conclusions

Using the SSM/PCA method, Group-Invariant Subprofile
(GIS) patternswere extracted fromFDG-PETdata of patients
with three distinct groups of syndromes, that is, Parkinson’s
disease (PD), multiple system atrophy (MSA), and progres-
sive supranuclear palsy (PSP), always matched with a healthy
control (HC) group. The subject scores corresponding to
these patterns served as the feature set for the C4.5 decision
tree classification algorithm. Classifiers were constructed for
future prediction of unseen subject images. Validation of
classifiers to ensure optimal results was performed using
the leave-one-out cross validation (LOOCV) method. A
permutation test was performed to assess the statistical
significance of the results.

We also compared the C4.5 classifier to various other
classification algorithms, that is, nearest neighbors, linear
SVM, random forest, naive Bayes, LDA, and CART. Of all
classifiers, the performance of nearest neighbors and linear
SVM was highest. We found that most classifiers perform
relatively well for the PSP-HC and MSA-HC groups but less
well for the PD-HC group. This may be closely linked to the
fact that the FDG-PET activation pattern of (early stage) PD
patients is close to that of normal subjects, whereas there is
one distinctive feature which is present in MSA (low uptake
in putamen) and PSP (low frontal uptake), respectively, and
absent in controls.

In clinical practice, the main problem is not so much
to distinguish patients with Parkinsonian syndromes from
healthy controls but to distinguish between the different
Parkinsonian diease types. For this reason, we also compared
disease groups to each other in a binary classification with
promising results: in this case classifier performance was
significantly higher also when the PD group was involved.
In a recent study, Garraux et al. [33] used Relevance Vector
Machine (RVM) to classify 120 Parkinsonian patients on the
basis of either binary classification (a single class of 3 atypical
Parkinsonian syndromes (APS) versus PD) or multiple clas-
sification (PD and the 3 APS separately versus each other).
The performance achieved in the study of Garraux et al. was
higher than in ours. Note, however, that they had a larger
dataset and incorporated bootstrap aggregation (bagging) to
boost the performance. We plan to incorporate bagging in
future work to improve classifier performance.

To achieve high-quality biomarker identification, one
needs to accumulate large numbers of patient data in several
phases of disease progression. This is what we are cur-
rently pursuing in the GLIMPS project [34] which aims
at establishing a national database of FDG-PET scans in
Netherlands. Additionally, data could be generated from
other imaging modalities such as (f)MRI, ASL, and DTI to
enable the collection of a broad set of brain features needed
for distinguishing the different disease types.
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